Select one of the three topics defined in the essay quiz section on (2025)

Copyright©2016byMcGraw-HillEducation.Allrightsreserved.ExceptaspermittedundertheUnitedStatesCopyrightActof1976,nopartofthispublicationmaybereproducedordistributedinanyformorbyanymeans,orstoredinadatabaseorretrievalsystem,withoutthepriorwrittenpermissionofthepublisher,withtheexceptionthattheprogramlistingsmaybeentered,stored,andexecutedinacomputersystem,buttheymaynotbereproducedforpublication.

ISBN:978-0-07-183597-8MHID:0-07-183597-0

ThematerialinthiseBookalsoappearsintheprintversionofthistitle:ISBN:978-0-07-183601-2,MHID:0-07-183601-2.

eBookconversionbycodeMantraVersion1.0

Alltrademarksaretrademarksoftheirrespectiveowners.Ratherthanputatrademarksymbolaftereveryoccurrenceofatrademarkedname,weusenamesinaneditorialfashiononly,andtothebenefitofthetrademarkowner,withnointentionofinfringementofthetrademark.Wheresuchdesignationsappearinthisbook,theyhavebeenprintedwithinitialcaps.

McGraw-HillEducationeBooksareavailableatspecialquantitydiscountstouseaspremiumsandsalespromotionsorforuseincorporatetrainingprograms.Tocontactarepresentative,pleasevisittheContactUspageatwww.mhprofessional.com.

SANSInstituteITCodeofEthicsreproducedwithpermission,©SANSInstitute.

InformationhasbeenobtainedbyMcGraw-HillEducationfromsourcesbelievedtobereliable.However,becauseofthepossibilityofhumanormechanicalerrorbyoursources,McGraw-HillEducation,orothers,

McGraw-HillEducationdoesnotguaranteetheaccuracy,adequacy,orcompletenessofanyinformationandisnotresponsibleforanyerrorsoromissionsortheresultsobtainedfromtheuseofsuchinformation.

McGraw-HillEducationisanindependententityfromCompTIA®.ThispublicationanddigitalcontentmaybeusedinassistingstudentstopreparefortheCompTIASecurity+exam.NeitherCompTIAnorMcGraw-HillEducationwarrantsthatuseofthispublicationanddigitalcontentwillensurepassinganyexam.CompTIAandCompTIASecurity+aretrademarksorregisteredtrademarksofCompTIAintheUnitedStatesand/orothercountries.Allothertrademarksaretrademarksoftheirrespectiveowners.

TERMSOFUSE

ThisisacopyrightedworkandMcGraw-HillEducationanditslicensorsreserveallrightsinandtothework.Useofthisworkissubjecttotheseterms.ExceptaspermittedundertheCopyrightActof1976andtherighttostoreandretrieveonecopyofthework,youmaynotdecompile,disassemble,reverseengineer,reproduce,modify,createderivativeworksbasedupon,transmit,distribute,disseminate,sell,publishorsublicensetheworkoranypartofitwithoutMcGraw-HillEducation’spriorconsent.Youmayusetheworkforyourownnoncommercialandpersonaluse;anyotheruseoftheworkisstrictlyprohibited.Yourrighttousetheworkmaybeterminatedifyoufailtocomplywiththeseterms.

THEWORKISPROVIDED“ASIS.”McGRAW-HILLEDUCATIONANDITSLICENSORSMAKENOGUARANTEESORWARRANTIESASTOTHEACCURACY,ADEQUACYORCOMPLETENESSOFORRESULTSTOBEOBTAINEDFROMUSINGTHEWORK,INCLUDINGANYINFORMATIONTHATCANBEACCESSEDTHROUGHTHEWORKVIAHYPERLINKOROTHERWISE,ANDEXPRESSLYDISCLAIMANYWARRANTY,EXPRESSORIMPLIED,INCLUDINGBUTNOTLIMITEDTOIMPLIEDWARRANTIESOF

MERCHANTABILITYORFITNESSFORAPARTICULARPURPOSE.McGraw-HillEducationanditslicensorsdonotwarrantorguaranteethatthefunctionscontainedintheworkwillmeetyourrequirementsorthatitsoperationwillbeuninterruptedorerrorfree.NeitherMcGraw-HillEducationnoritslicensorsshallbeliabletoyouoranyoneelseforanyinaccuracy,errororomission,regardlessofcause,intheworkorforanydamagesresultingtherefrom.McGraw-HillEducationhasnoresponsibilityforthecontentofanyinformationaccessedthroughthework.UndernocircumstancesshallMcGraw-HillEducationand/oritslicensorsbeliableforanyindirect,incidental,special,punitive,consequentialorsimilardamagesthatresultfromtheuseoforinabilitytousethework,evenifanyofthemhasbeenadvisedofthepossibilityofsuchdamages.Thislimitationofliabilityshallapplytoanyclaimorcausewhatsoeverwhethersuchclaimorcausearisesincontract,tortorotherwise.

AbouttheAuthorsDr.Wm.ArthurConklinisanassociateprofessorandDirectoroftheCenterforInformationSecurityResearchandEducationintheCollegeofTechnologyattheUniversityofHouston.Heholdstwoterminaldegrees,aPh.D.inBusinessAdministration(specializinginInformationSecurity)fromTheUniversityofTexasatSanAntonio(UTSA)andthedegreeElectricalEngineer(specializinginSpaceSystemsEngineering)fromtheNavalPostgraduateSchoolinMonterey,CA.HeholdsCompTIASecurity+,CISSP,CSSLP,CRISC,DFCP,GICSP,andCASPcertifications.AnISSAFellow,heisalsoaseniormemberofASQandamemberofIEEEandACM.Hisresearchinterestsincludetheuseofsystemstheorytoexploreinformationsecurity,specificallyincyber-physicalsystems.Hehascoauthoredsixsecuritybooksandnumerousacademicarticlesassociatedwithinformationsecurity.HeisactiveintheDHS-sponsoredIndustrialControlSystemsJointWorkingGroup(ICSJWG)effortsassociatedwithworkforcedevelopmentandcybersecurityaspectsofindustrialcontrolsystems.Hehasanextensivebackgroundinsecurecodingandisaformerco-chairoftheDHS/DoDSoftwareAssuranceForumworkinggroupforworkforceeducation,training,anddevelopment.

Dr.GregoryWhitehasbeeninvolvedincomputerandnetworksecuritysince1986.Hespent19yearsonactivedutywiththeU.S.AirForceandiscurrentlyintheAirForceReservesassignedtothePentagon.HeobtainedhisPh.D.inComputerSciencefromTexasA&MUniversityin1995.Hisdissertationtopicwasintheareaofcomputernetworkintrusiondetection,andhecontinuestoconductresearchinthisareatoday.HeiscurrentlytheDirectorfortheCenterforInfrastructureAssuranceandSecurityandisanassociateprofessorofcomputerscienceatTheUniversityofTexasatSanAntonio.Dr.Whitehaswrittenandpresentednumerousarticlesandconferencepapersonsecurity.Heisalsothecoauthorforfivetextbooksoncomputerandnetworksecurityandhaswrittenchaptersfortwoothersecuritybooks.Dr.Whitecontinuestobeactiveinsecurityresearch.His

currentresearchinitiativesincludeeffortsinhigh-speedintrusiondetection,communityinfrastructureprotection,andvisualizationofcommunityandorganizationsecuritypostures.

DwayneWilliamsisAssociateDirector,SpecialProjectsfortheCenterforInfrastructureAssuranceandSecurity(CIAS)attheUniversityofTexasatSanAntonioandhasmorethan22yearsofexperienceininformationsystemsandnetworksecurity.Mr.Williams’sexperienceincludessixyearsofcommissionedmilitaryserviceasaCommunications-ComputerInformationSystemsOfficerintheU.S.AirForce,specializinginnetworksecurity,corporateinformationprotection,intrusiondetectionsystems,incidentresponse,andVPNtechnology.PriortojoiningtheCIAS,heservedasDirectorofConsultingforSecureLogixCorporation,wherehedirectedandprovidedsecurityassessmentandintegrationservicestoFortune100,government,publicutility,oilandgas,financial,andtechnologyclients.Mr.Williamsgraduatedin1993fromBaylorUniversitywithaBachelorofArtsinComputerScience.Mr.WilliamsisaCertifiedInformationSystemsSecurityProfessional(CISSP),CompTIAAdvancedSecurityPractitioner(CASP),andcoauthorofMcGraw-Hill’sVoiceandDataSecurity,CompTIASecurity+All-in-OneExamGuide,andCASPCompTIAAdvancedSecurityPractitionerCertificationStudyGuide.

RogerL.Davis,CISSP,CISM,CISA,isanAccountManagerforMicrosoft.HehasservedaspresidentoftheUtahchapteroftheInformationSystemsSecurityAssociation(ISSA)andvariousboardpositionsfortheUtahchapteroftheInformationSystemsAuditandControlAssociation(ISACA).HeisaretiredAirForcelieutenantcolonelwith35yearsofmilitaryandinformationsystems/securityexperience.Mr.DavisservedonthefacultyofBrighamYoungUniversityandtheAirForceInstituteofTechnology.HecoauthoredMcGraw-Hill’sCompTIASecurity+All-in-OneExamGuideandVoiceandDataSecurity.HeholdsaMaster’sdegreeinComputerSciencefromGeorgeWashingtonUniversity,aBachelor’sdegreeinComputerSciencefromBrigham

YoungUniversity,andperformedpost-graduatestudiesinelectricalengineeringandcomputerscienceattheUniversityofColorado.

ChuckCothren,CISSP,isaPrincipalSolutionsSpecialistatSymantecCorporationapplyingawidearrayofnetworksecurityexperience,includingperformingcontrolledpenetrationtesting,incidentresponse,andsecuritymanagementtoassistawidevarietyofclientsintheprotectionoftheircriticaldata.HehasalsoanalyzedsecuritymethodologiesforVoiceoverInternetProtocol(VoIP)systemsandsupervisorycontrolanddataacquisition(SCADA)systems.HeiscoauthorofthebooksVoiceandDataSecurity,andCompTIASecurity+All-in-OneExamGuide.

AbouttheTechnicalEditorBobbyE.RogersisanInformationSecurityEngineerworkingasacontractorforDepartmentofDefenseagencies,helpingtosecure,certify,andaccredittheirinformationsystems.Hisdutiesincludeinformationsystemsecurityengineering,riskmanagement,andcertificationandaccreditationefforts.Heretiredafter21yearsintheUnitedStatesAirForce,servingasanetworksecurityengineerandinstructor,andhassecurednetworksallovertheworld.BobbyhasaMaster’sdegreeinInformationAssurance(IA),andispursuingadoctoraldegreeinCybersecurityfromCapitolTechnologyUniversity,Maryland.HismanycertificationsincludeCRISC,CISSP-ISSEP,C|EH,andMCSE:SecurityaswellastheCompTIAA+,Network+,Security+,andMobility+certifications.

AcknowledgmentsThisbookisdedicatedtothemanysecurityprofessionalswhodaily

worktoensurethesafetyofournation’scriticalinfrastructures.Wewanttorecognizethethousandsofdedicatedindividualswhostrivetoprotect

ournationalassetsbutwhoseldomreceivepraiseandoftenareonlynoticedwhenanincidentoccurs.Toyou,wesaythankyouforajobwell

done!

We,theauthorsofPrinciplesofComputerSecurity,FourthEdition,havemanyindividualswhoweneedtoacknowledge—individualswithoutwhomthiseffortwouldnothavebeensuccessful.ThiseditionwouldnothavebeenpossiblewithoutTimGreen,whosesupportandfaithintheauthorsmadethiseditionpossible.Hebroughttogetheranall-starproductionteamthatmadethisbookmorethanjustanewedition,butacompletelearningsystem.ThelistneedstostartwiththosefolksatMcGraw-HillEducationwho

workedtirelesslywiththeproject’smultipleauthorsandcontributorsandledussuccessfullythroughtheminefieldthatisabookscheduleandwhotookourroughchaptersanddrawingsandturnedthemintoafinal,professionalproductwecanbeproudof.WethankallthegoodpeoplefromtheAcquisitionsteam,TimGreenandAmyStonebraker;fromtheEditorialServicesteam,JodyMcKenzieandHowieSeverson;fromtheIllustrationandProductionteams,JamesKussowandAmarjeetKumarandthecompositionteamatCenveoPublisherServices.Wealsothankthetechnicaleditor,BobbyRogers;thecopyeditor,BillMcManus;theproofreader,PaulTyler;andtheindexer,JackLewis;foralltheirattentiontodetailthatmadethisafinerworkaftertheyfinishedwithit.Wealsoneedtoacknowledgeourcurrentemployerswho,toourgreat

delight,haveseenfittopayustoworkinacareerfieldthatweallfindexcitingandrewarding.Thereisneveradullmomentinsecurity,becauseitisconstantlychanging.WewouldliketothankArtConklinforherdingthecatsonthisone.

Finally,wewouldeachliketoindividuallythankthosepeoplewho—onapersonalbasis—haveprovidedthecoresupportforusindividually.Withoutthesespecialpeopleinourlives,noneofuscouldhaveputthisworktogether.

—TheAuthorTeam

ToSusan,yourloveandsupportiswhatenablesmetodoallthethingsIdo.

—ArtConklin,Ph.D.Iwouldliketothankmywife,Charlan,forthetremendoussupportshehasalwaysgivenme.Itdoesn’tmatterhowmanytimesIhaveswornthatI’llnevergetinvolvedwithanotherbookprojectonlytoreturnwithinmonthstoyetanotherone;throughitall,shehasremainedsupportive.IwouldalsoliketopubliclythanktheUnitedStatesAirForce,which

providedmenumerousopportunitiessince1986tolearnmoreaboutsecuritythanIeverknewexisted.Towhoeveritwaswhodecidedtosendmeasayoungcaptain—freshfromcompletingmymaster’sdegreeinartificialintelligence—tomyfirstassignmentincomputersecurity:thankyou,ithasbeenagreatadventure!

—GregoryB.White,Ph.D.Josie,thankyouforalltheloveandsupport.Macon,John,thisisforyou.

—ChuckCothrenGeena,thanksforbeingmybestfriendandmygreatestsupport.AnythingIamisbecauseofyou.Lovetomykidsandgrandkids!

—RogerL.DavisTomywifeandbestfriend,Leah,foryourlove,energy,andsupport—thankyouforalwaysbeingthere.Here’stomanymoreyearstogether.

—DwayneWilliams

ABOUTTHISBOOK

ImportantTechnologySkillsInformationtechnology(IT)offersmanycareerpaths,andinformationsecurityisoneofthefastest-growingtracksforITprofessionals.Thisbookprovidescoverageofthematerialsyouneedtobeginyourexplorationofinformationsecurity.InadditiontocoveringalloftheCompTIASecurity+examobjectives,additionalmaterialisincludedtohelpyoubuildasolidintroductoryknowledgeofinformationsecurity.

ProvenLearningMethodKeepsYouonTrackDesignedforclassroomuseandwrittenbyinstructorsforuseintheirownclasses,PrinciplesofComputerSecurityisstructuredtogiveyoucomprehensiveknowledgeofinformationsecurity.Thetextbook’sactivelearningmethodologyguidesyoubeyondmererecalland—throughthought-provokingactivities,labs,andsidebars—helpsyoudevelopcritical-thinking,diagnostic,andcommunicationskills.

EffectiveLearningToolsThisfeature-richtextbookisdesignedtomakelearningeasyandenjoyableandtohelpyoudeveloptheskillsandcritical-thinkingabilitiesthatwillenableyoutoadapttodifferentjobsituationsandtotroubleshootproblems.Writtenbyinstructorswithdecadesofcombinedinformationsecurityexperience,thisbookconveyseventhemostcomplexissuesinanaccessible,easy-tounderstandformat.

Eachchapterincludes

LearningObjectivesthatsetmeasurablegoalsforchapter-by-chapterprogress

Illustrationsthatgiveyouaclearpictureoftheconceptsandtechnologies

TryThis!,CrossCheck,andTechTipsidebarsthatencourageyoutopracticeandapplyconceptsinreal-worldsettings

Notes,Tips,andWarningsthatguideyou,andExamTipsthatgiveyouadviceorprovideinformationspecificallyrelatedtopreparingfortheexam

ChapterSummariesandKeyTermsListsthatprovideyouwithaneasywaytoreviewimportantconceptsandvocabulary

ChallengingEnd-of-ChapterTeststhatincludevocabulary-buildingexercises,multiple-choicequestions,essayquestions,andon-the-joblabprojects

CompTIAAPPROVEDQUALITYCONTENT

ItPaystoGetCertifiedInadigitalworld,digitalliteracyisanessentialsurvivalskill.Certificationdemonstratesthatyouhavetheknowledgeandskilltosolvetechnicalorbusinessproblemsinvirtuallyanybusinessenvironment.CompTIAcertificationsarehighlyvaluedcredentialsthatqualifyyouforjobs,increasedcompensation,andpromotion.

CompTIASecurity+CertificationHelpsYour

Career

Securityisoneofthehighestdemandjobcategories,growinginimportanceasthefrequencyandseverityofsecuritythreatscontinuestobeamajorconcernfororganizationsaroundtheworld.

Jobsforsecurityadministratorsareexpectedtoincreaseby18%—theskillsetrequiredforthesetypesofjobsmapstotheCompTIASecurity+certification.

NetworkSecurityAdministratorscanearnasmuchas$106,000peryear.

CompTIASecurity+isthefirststepinstartingyourcareerasaNetworkSecurityAdministratororSystemsSecurityAdministrator.

Morethan250,000individualsworldwideareCompTIASecurity+certified.

CompTIASecurity+isregularlyusedinorganizationssuchasHitachiSystems,FujiXerox,HP,Dell,andavarietyofmajorU.S.governmentcontractors.

ApprovedbytheU.S.DepartmentofDefense(DoD)asoneoftherequiredcertificationoptionsintheDoD8570.01-Mdirective,forInformationAssuranceTechnicalLevelIIandManagementLevelIjobroles.

StepstoGettingCertifiedandStayingCertified1.Reviewtheexamobjectives.Reviewthecertificationobjectivesto

makesureyouknowwhatiscoveredintheexam:http://certification.comptia.org/examobjectives.aspx

2.Practicefortheexam.Afteryouhavestudiedforthecertificationexam,reviewandanswersamplequestionstogetanideaofwhattypeofquestionsmightbeontheexam:http://certification.comptia.org/samplequestions.aspx

3.Purchaseanexamvoucher.YoucanpurchaseexamvouchersontheCompTIAMarketplace,www.comptiastore.com.

4.Takethetest!GotothePearsonVUEwebsite,www.pearsonvue.com/comptia/,andscheduleatimetotakeyourexam.

5.Staycertified!EffectiveJanuary1,2011,newCompTIASecurity+certificationsarevalidforthreeyearsfromthedateofcertification.Thereareanumberofwaysthecertificationcanberenewed.Formoreinformationgotohttp://certification.comptia.org/ce.

ForMoreInformationVisitCompTIAonlineGotohttp://certification.comptia.org/home.aspxtolearnmoreaboutgettingCompTIAcertified.

ContactCompTIAPleasecall866-835-8020andchooseOption2,ore-mail[emailprotected].

ConnectwithCompTIAFindCompTIAonFacebook,LinkedIn,Twitter,andYouTube.

mailto:[emailprotected]

ContentSealofQualityThiscoursewarebearsthesealofCompTIAApprovedQualityContent.Thissealsignifiesthiscontentcovers100percentoftheexamobjectivesandimplementsimportantinstructionaldesignprinciples.CompTIArecommendsmultiplelearningtoolstohelpincreasecoverageofthelearningobjectives.

CAQCDisclaimerThelogooftheCompTIAApprovedQualityContent(CAQC)programandthestatusofthisorothertrainingmaterialas“Approved”undertheCompTIAApprovedQualityContentprogramsignifiesthat,inCompTIA’sopinion,suchtrainingmaterialcoversthecontentofCompTIA’srelatedcertificationexam.ThecontentsofthistrainingmaterialwerecreatedfortheCompTIA

Security+examcoveringCompTIAcertificationobjectivesthatwerecurrentasofthedateofpublication.CompTIAhasnotreviewedorapprovedtheaccuracyofthecontentsof

thistrainingmaterialandspecificallydisclaimsanywarrantiesofmerchantabilityorfitnessforaparticularpurpose.CompTIAmakesnoguaranteeconcerningthesuccessofpersonsusinganysuch“Approved”orothertrainingmaterialinordertoprepareforanyCompTIAcertificationexam.

CONTENTSATAGLANCE

Chapter1 IntroductionandSecurityTrends

Chapter2 GeneralSecurityConcepts

Chapter3 OperationalandOrganizationalSecurity

Chapter4 TheRoleofPeopleinSecurity

Chapter5 Cryptography

Chapter6 PublicKeyInfrastructure

Chapter7 PKIStandardsandProtocols

Chapter8 PhysicalSecurity

Chapter9 NetworkFundamentals

Chapter10 InfrastructureSecurity

Chapter11 AuthenticationandRemoteAccess

Chapter12 WirelessSecurityandMobileDevices

Chapter13 IntrusionDetectionSystemsandNetworkSecurity

Chapter14 SystemHardeningandBaselines

Chapter15 TypesofAttacksandMaliciousSoftware

Chapter16 E-MailandInstantMessaging

Chapter17 WebComponents

Chapter18 SecureSoftwareDevelopment

Chapter19 BusinessContinuityandDisasterRecovery,andOrganizationalPolicies

Chapter20 RiskManagement

Chapter21 ChangeManagement

Chapter22 IncidentResponse

Chapter23 ComputerForensics

Chapter24 LegalIssuesandEthics

Chapter25 Privacy

AppendixA CompTIASecurity+ExamObjectives:SY0-401

AppendixB AbouttheDownload

Glossary

Index

CONTENTS

ForewordPrefaceIntroductionInstructorWebSite

Chapter1IntroductionandSecurityTrendsTheComputerSecurityProblem

DefinitionofComputerSecurityHistoricalSecurityIncidentsTheCurrentThreatEnvironmentThreatstoSecuritySecurityTrends

TargetsandAttacksSpecificTargetOpportunisticTargetMinimizingPossibleAvenuesofAttack

ApproachestoComputerSecurityEthicsAdditionalReferencesChapter1Review

Chapter2GeneralSecurityConceptsBasicSecurityTerminology

SecurityBasics

SecurityTenetsSecurityApproachesSecurityPrinciplesAccessControlAuthenticationMechanismsAuthenticationandAccessControlPolicies

SecurityModelsConfidentialityModelsIntegrityModels

Chapter2Review

Chapter3OperationalandOrganizationalSecurityPolicies,Procedures,Standards,andGuidelines

SecurityPoliciesChangeManagementPolicyDataPoliciesHumanResourcesPoliciesDueCareandDueDiligenceDueProcessIncidentResponsePoliciesandProcedures

SecurityAwarenessandTrainingSecurityPolicyTrainingandProceduresRole-BasedTrainingCompliancewithLaws,BestPractices,andStandardsUserHabitsNewThreatsandSecurityTrends/AlertsTrainingMetricsandCompliance

InteroperabilityAgreementsServiceLevelAgreementsBusinessPartnershipAgreement

MemorandumofUnderstandingInterconnectionSecurityAgreement

TheSecurityPerimeterPhysicalSecurity

PhysicalAccessControlsPhysicalBarriers

EnvironmentalIssuesFireSuppression

WirelessElectromagneticEavesdropping

ModernEavesdroppingChapter3Review

Chapter4TheRoleofPeopleinSecurityPeople—ASecurityProblem

SocialEngineeringPoorSecurityPractices

PeopleasaSecurityToolSecurityAwarenessSecurityPolicyTrainingandProcedures

Chapter4Review

Chapter5CryptographyCryptographyinPractice

FundamentalMethodsComparativeStrengthsandPerformanceofAlgorithms

HistoricalPerspectivesSubstitutionCiphersOne-TimePads

AlgorithmsKeyManagementRandomNumbers

HashingFunctionsSHARIPEMDMessageDigestHashingSummary

SymmetricEncryptionDES3DESAESCASTRCBlowfishTwofishIDEABlockvs.StreamSymmetricEncryptionSummary

AsymmetricEncryptionDiffie-HellmanRSAElGamalECCAsymmetricEncryptionSummarySymmetricvs.Asymmetric

QuantumCryptographySteganographyCryptographyAlgorithmUse

ConfidentialityIntegrity

AuthenticationNonrepudiationCipherSuitesKeyExchangeKeyEscrowSessionKeysEphemeralKeysKeyStretchingSecrecyPrinciplesTransportEncryptionDigitalSignaturesDigitalRightsManagementCryptographicApplicationsUseofProvenTechnologies

Chapter5Review

Chapter6PublicKeyInfrastructureTheBasicsofPublicKeyInfrastructuresCertificateAuthoritiesRegistrationAuthorities

LocalRegistrationAuthoritiesDigitalCertificates

CertificateExtensionsCertificateAttributes

CertificateLifecyclesRegistrationandGenerationCSRRenewalSuspensionRevocation

KeyDestructionCertificateRepositoriesTrustandCertificateVerificationCentralizedandDecentralizedInfrastructures

HardwareSecurityModulesPrivateKeyProtectionKeyRecoveryKeyEscrow

PublicCertificateAuthoritiesIn-HouseCertificateAuthorities

ChoosingBetweenaPublicCAandanIn-HouseCAOutsourcedCertificateAuthoritiesTyingDifferentPKIsTogetherTrustModels

Certificate-BasedThreatsStolenCertificates

Chapter6Review

Chapter7PKIStandardsandProtocolsPKIXandPKCS

PKIXStandardsPKCSWhyYouNeedtoKnowthePKIXandPKCSStandards

X.509SSL/TLSCipherSuitesISAKMPCMPXKMSS/MIME

IETFS/MIMEHistoryIETFS/MIMEv3Specifications

PGPHowPGPWorks

HTTPSIPsecCEPOtherStandards

FIPSCommonCriteriaWTLSISO/IEC27002(FormerlyISO17799)SAML

Chapter7Review

Chapter8PhysicalSecurityTheSecurityProblemPhysicalSecuritySafeguards

WallsandGuardsPhysicalAccessControlsandMonitoringConvergencePoliciesandProceduresEnvironmentalControls

FireSuppressionWater-BasedFireSuppressionSystemsHalon-BasedFireSuppressionSystemsClean-AgentFireSuppressionSystemsHandheldFireExtinguishersFireDetectionDevices

PowerProtection

UPSBackupPowerandCableShieldingElectromagneticInterference

ElectronicAccessControlSystemsAccessTokens

Chapter8Review

Chapter9NetworkFundamentalsNetworkArchitecturesNetworkTopologyNetworkProtocols

ProtocolsPackets

InternetProtocolIPPacketsTCPvs.UDPICMP

IPv4vs.IPv6PacketDelivery

EthernetLocalPacketDeliveryRemotePacketDeliveryIPAddressesandSubnettingNetworkAddressTranslation

SecurityZonesDMZInternetIntranetExtranetFlatNetworks

EnclavesVLANsZonesandConduits

TunnelingStorageAreaNetworks

iSCSIFibreChannelFCoE

Chapter9Review

Chapter10InfrastructureSecurityDevices

WorkstationsServersVirtualizationMobileDevicesDeviceSecurity,CommonConcernsNetworkAttachedStorageRemovableStorage

NetworkingNetworkInterfaceCardsHubsBridgesSwitchesRoutersFirewallsHowDoFirewallsWork?Next-GenerationFirewallsWebApplicationFirewallsvs.NetworkFirewallsConcentrators

WirelessDevicesModemsTelephonyVPNConcentrator

SecurityDevicesIntrusionDetectionSystemsNetworkAccessControlNetworkMonitoring/DiagnosticLoadBalancersProxiesWebSecurityGatewaysInternetContentFiltersDataLossPreventionUnifiedThreatManagement

MediaCoaxialCableUTP/STPFiberUnguidedMedia

RemovableMediaMagneticMediaOpticalMediaElectronicMedia

SecurityConcernsforTransmissionMediaPhysicalSecurityConcernsCloudComputing

PrivatePublicHybridCommunitySoftwareasaService

PlatformasaServiceInfrastructureasaService

Chapter10Review

Chapter11AuthenticationandRemoteAccessUser,Group,andRoleManagement

UserGroupRole

PasswordPoliciesDomainPasswordPolicy

SingleSign-OnTimeofDayRestrictionsTokensAccountandPasswordExpiration

SecurityControlsandPermissionsAccessControlListsMandatoryAccessControl(MAC)DiscretionaryAccessControl(DAC)Role-BasedAccessControl(RBAC)Rule-BasedAccessControlAttributeBasedAccessControl(ABAC)AccountExpiration

PreventingDataLossorTheftTheRemoteAccessProcess

IdentificationAuthenticationAuthorizationAccessControl

RemoteAccessMethods

IEEE802.1XRADIUSTACACS+AuthenticationProtocolsFTP/FTPS/SFTPVPNsIPsecVulnerabilitiesofRemoteAccessMethods

ConnectionSummaryChapter11Review

Chapter12WirelessSecurityandMobileDevicesIntroductiontoWirelessNetworkingMobilePhones

WirelessApplicationProtocol3GMobileNetworks4GMobileNetworks

BluetoothBluetoothAttacks

NearFieldCommunicationIEEE802.11Series

802.11:IndividualStandardsAttacking802.11CurrentSecurityMethods

WirelessSystemsConfigurationAntennaTypesAntennaPlacementPowerLevelControlsSiteSurveysCaptivePortals

SecuringPublicWi-FiMobileDevices

MobileDeviceSecurityBYODConcernsLocationServicesMobileApplicationSecurity

Chapter12Review

Chapter13IntrusionDetectionSystemsandNetworkSecurityHistoryofIntrusionDetectionSystemsIDSOverview

IDSModelsSignaturesFalsePositivesandFalseNegatives

Network-BasedIDSsAdvantagesofaNIDSDisadvantagesofaNIDSActivevs.PassiveNIDSsNIDSTools

Host-BasedIDSsAdvantagesofHIDSsDisadvantagesofHIDSsActivevs.PassiveHIDSsResurgenceandAdvancementofHIDSs

IntrusionPreventionSystemsHoneypotsandHoneynetsTools

ProtocolAnalyzerSwitchedPortAnalyzerPortScanner

Passivevs.ActiveToolsBannerGrabbing

Chapter13Review

Chapter14SystemHardeningandBaselinesOverviewofBaselinesOperatingSystemandNetworkOperatingSystemHardening

OSSecurityHostSecurity

MachineHardeningOperatingSystemSecurityandSettingsOSHardeningHardeningMicrosoftOperatingSystemsHardeningUNIX-orLinux-BasedOperatingSystemsUpdates(a.k.a.Hotfixes,ServicePacks,andPatches)AntimalwareWhiteListingvs.BlackListingApplicationsTrustedOSHost-basedFirewallsHardwareSecurityHostSoftwareBaselining

Host-BasedSecurityControlsHardware-BasedEncryptionDevicesDataEncryptionDataSecurityHandlingBigDataCloudStorageStorageAreaNetworkPermissions/ACL

NetworkHardening

SoftwareUpdatesDeviceConfigurationSecuringManagementInterfacesVLANManagementIPv4vs.IPv6

ApplicationHardeningApplicationConfigurationBaselineApplicationPatchesPatchManagementHostSoftwareBaselining

GroupPoliciesSecurityTemplatesAlternativeEnvironments

SCADAEmbeddedSystemsPhonesandMobileDevicesMainframeGameConsolesIn-VehicleComputingSystemsAlternativeEnvironmentMethodsNetworkSegmentationSecurityLayersApplicationFirewallsManualUpdatesFirmwareVersionControlWrappersControlRedundancyandDiversity

Chapter14Review

Chapter15TypesofAttacksandMaliciousSoftware

AvenuesofAttackMinimizingPossibleAvenuesofAttack

MaliciousCodeVirusesWormsPolymorphicMalwareTrojanHorsesRootkitsLogicBombsSpywareAdwareBotnetsBackdoorsandTrapdoorsRansomwareMalwareDefenses

AttackingComputerSystemsandNetworksDenial-of-ServiceAttacksSocialEngineeringNullSessionsSniffingSpoofingTCP/IPHijackingMan-in-the-MiddleAttacksReplayAttacksTransitiveAccessSpamSpimPhishingSpearPhishingVishingPharming

ScanningAttacksAttacksonEncryptionAddressSystemAttacksCachePoisoningPasswordGuessingPass-the-HashAttacksSoftwareExploitationClient-SideAttacks

AdvancedPersistentThreatRemoteAccessTrojans

ToolsMetasploitBackTrack/KaliSocial-EngineeringToolkitCobaltStrikeCoreImpactBurpSuite

AuditingPerformRoutineAudits

Chapter15Review

Chapter16E-MailandInstantMessagingHowE-MailWorks

E-MailStructureMIME

SecurityofE-MailMaliciousCodeHoaxE-MailsUnsolicitedCommercialE-Mail(Spam)SenderIDFramework

DomainKeysIdentifiedMailMailEncryption

S/MIMEPGP

InstantMessagingModernInstantMessagingSystems

Chapter16Review

Chapter17WebComponentsCurrentWebComponentsandConcernsWebProtocols

Encryption(SSLandTLS)TheWeb(HTTPandHTTPS)HTTPSEverywhereHTTPStrictTransportSecurityDirectoryServices(DAPandLDAP)FileTransfer(FTPandSFTP)Vulnerabilities

Code-BasedVulnerabilitiesBufferOverflowsJavaJavaScriptActiveXSecuringtheBrowserCGIServer-SideScriptsCookiesBrowserPlug-insMaliciousAdd-onsSignedApplets

Application-BasedWeaknessesSessionHijackingClient-SideAttacksWeb2.0andSecurity

Chapter17Review

Chapter18SecureSoftwareDevelopmentTheSoftwareEngineeringProcess

ProcessModelsSecureDevelopmentLifecycle

SecureCodingConceptsErrorandExceptionHandlingInputandOutputValidationFuzzingBugTracking

ApplicationAttacksCross-SiteScriptingInjectionsDirectoryTraversal/CommandInjectionBufferOverflowIntegerOverflowCross-SiteRequestForgeryZero-DayAttachmentsLocallySharedObjectsClient-SideAttacksArbitrary/RemoteCodeExecutionOpenVulnerabilityandAssessmentLanguage

ApplicationHardeningApplicationConfigurationBaseline

ApplicationPatchManagementNoSQLDatabasesvs.SQLDatabasesServer-Sidevs.Client-SideValidation

Chapter18Review

Chapter19BusinessContinuityandDisasterRecovery,andOrganizationalPolicies

BusinessContinuityBusinessContinuityPlansBusinessImpactAnalysisIdentificationofCriticalSystemsandComponentsRemovingSinglePointsofFailureRiskAssessmentSuccessionPlanningContinuityofOperations

DisasterRecoveryDisasterRecoveryPlans/ProcessCategoriesofBusinessFunctionsITContingencyPlanningTest,Exercise,andRehearseRecoveryTimeObjectiveandRecoveryPointObjectiveBackupsAlternativeSitesUtilitiesSecureRecoveryCloudComputingHighAvailabilityandFaultToleranceFailureandRecoveryTiming

Chapter19Review

Chapter20RiskManagementAnOverviewofRiskManagement

ExampleofRiskManagementattheInternationalBankingLevelRiskManagementVocabulary

WhatIsRiskManagement?RiskManagementCulture

BusinessRisksExamplesofBusinessRisksExamplesofTechnologyRisks

RiskMitigationStrategiesChangeManagementIncidentManagementUserRightsandPermissionsReviewsDataLossorTheft

RiskManagementModelsGeneralRiskManagementModelSoftwareEngineeringInstituteModelNISTRiskModelsModelApplication

QualitativelyAssessingRiskQuantitativelyAssessingRisk

AddingObjectivitytoaQualitativeAssessmentRiskCalculation

Qualitativevs.QuantitativeRiskAssessmentTools

Cost-EffectivenessModelingRiskManagementBestPractices

SystemVulnerabilitiesThreatVectorsProbability/ThreatLikelihood

Risk-Avoidance,Transference,Acceptance,Mitigation,DeterrenceRisksAssociatedwithCloudComputingandVirtualization

Chapter20Review

Chapter21ChangeManagementWhyChangeManagement?TheKeyConcept:SeparationofDutiesElementsofChangeManagementImplementingChangeManagement

Back-outPlanThePurposeofaChangeControlBoard

CodeIntegrityTheCapabilityMaturityModelIntegrationChapter21Review

Chapter22IncidentResponseFoundationsofIncidentResponse

IncidentManagementAnatomyofanAttackGoalsofIncidentResponse

IncidentResponseProcessPreparationSecurityMeasureImplementationIncidentIdentification/DetectionInitialResponseIncidentIsolationStrategyFormulationInvestigationRecovery/ReconstitutionProcedures

ReportingFollow-up/LessonsLearned

StandardsandBestPracticesStateofCompromiseNISTDepartmentofJusticeIndicatorsofCompromiseCyberKillChainMakingSecurityMeasurable

Chapter22Review

Chapter23ComputerForensicsEvidence

TypesofEvidenceStandardsforEvidenceThreeRulesRegardingEvidence

ForensicProcessAcquiringEvidenceIdentifyingEvidenceProtectingEvidenceTransportingEvidenceStoringEvidenceConductingtheInvestigation

AnalysisChainofCustodyMessageDigestandHashHostForensics

FileSystems WindowsMetadataLinuxMetadata

DeviceForensicsNetworkForensicsE-Discovery

ReferenceModelBigDataCloud

Chapter23Review

Chapter24LegalIssuesandEthicsCybercrime

CommonInternetCrimeSchemesSourcesofLawsComputerTrespassSignificantU.S.LawsPaymentCardIndustryDataSecurityStandard(PCIDSS)Import/ExportEncryptionRestrictionsNon-U.S.LawsDigitalSignatureLawsDigitalRightsManagement

EthicsChapter24Review

Chapter25PrivacyPersonallyIdentifiableInformation(PII)

SensitivePIINotice,Choice,andConsent

U.S.PrivacyLawsPrivacyActof1974FreedomofInformationAct(FOIA)

FamilyEducationRecordsandPrivacyAct(FERPA)U.S.ComputerFraudandAbuseAct(CFAA)U.S.Children’sOnlinePrivacyProtectionAct(COPPA)VideoPrivacyProtectionAct(VPPA)HealthInsurancePortability&AccountabilityAct(HIPAA)Gramm-Leach-BlileyAct(GLBA)CaliforniaSenateBill1386(SB1386)U.S.BankingRulesandRegulationsPaymentCardIndustryDataSecurityStandard(PCIDSS)FairCreditReportingAct(FCRA)FairandAccurateCreditTransactionsAct(FACTA)

Non-FederalPrivacyConcernsintheUnitedStatesInternationalPrivacyLaws

OECDFairInformationPracticesEuropeanLawsCanadianLawsAsianLaws

Privacy-EnhancingTechnologiesPrivacyPolicies

PrivacyImpactAssessmentWebPrivacyIssues

CookiesPrivacyinPractice

UserActionsDataBreaches

Chapter25Review

AppendixACompTIASecurity+ExamObjectives:SY0-401

AppendixB

AbouttheDownloadSystemRequirementsDownloadingTotalTesterPremiumPracticeExamSoftwareTotalTesterPremiumPracticeExamSoftware

InstallingandRunningTotalTesterTechnicalSupport

TotalSeminarsTechnicalSupportMcGraw-HillEducationContentSupport

Glossary

Index

FOREWORD

Selectingabookistrickyforme.Ifitisforpersonalreading,willIlikereadingit?Ifitisformyprofessionaldevelopment,willitmeettheneed?Ifitisformystudents,willitbeclearandconcise?ThisneweditionofPrinciplesofComputerSecuritypassesallthreetestswithflyingcolors.Ienjoyedreadingit.IfIneededtopasstheCompTIASecurity+orotherpractitionerexamination,itwouldprepareme.Andfinally,basedonpersonalexperience,studentswilllikethisbookandfindittobevaluablereadingandstudymaterial.Itevenhaspracticeexamsforcertificationformyconvenience.Formorethan40yearsIhaveworkedinsomevarietyofcomputer

security.Whenpeopleaskmewhatdefinesmyjob,Irespondwith“Idon’tknowuntilIreadthemorningnewspaperbecausethesecurityenvironmentchangesrapidly.”Ifyouwanttogetintothecomputersecurityindustry,readingandunderstandingthisbookisagreatintroduction.Nowinitsfourthedition,the25chaptersofPrinciplesofComputerSecurityfocusonabroadspectrumofimportanttopicstopreparethereadertobeacertifiedcomputersecuritypractitioner.Therealdealmakerformeisthefurtherendorsementofthecontents:thebookisbasedonCompTIAApprovedQualityContent(CAQC)andservesasbothanexampreparationguideandausefulreference.Dr.Conklinandhisteamofcoauthorseasethereaderintothemeatof

thetopicbyreviewingbothsecuritytrendsandconcepts.Theythenaddresssecurityfromtwodifferentperspectives.Firsttheyfocusontheorganization’sneedforsecurity,andthenfocusontheimportantroleofpeople.Thesetwoperspectivesareintertwined;itisessentialforasecuritypractitionertounderstandthesecurityenvironmentandhowthepeoplemakeitwork.Everypractitionerneedstounderstandtheunderlyingtechnologyand

toolsofcomputersecurity.Someindividualshaveanideaaboutsecuritytopicsbutdonothavetheessentialknowledgeneededtoaddressthemindepth.Theauthorshaveprovidedninemasterfulchaptersintroducingthesekeyconcepts.Forexample,inasinglechaptertheyprovidethebasisforthereadertodealwithsecurityofnetworks.Thischaptersupportseverythingthereaderneedstoknowtoaddressstandardsandprotocols,infrastructuresecurity,remoteaccessandauthentication,aswellaswireless.Theauthorsintegratetheseconceptstosupportpublickeyinfrastructure(PKI)andintrusiondetectionsystemsfornetworksecuritywithoutforgettingtheimportanceofphysicalsecurityinprotectingtheinformationsystemaswellasinfrastructure.Oneofthemostdebatedtopicsinsecurityistheimportanceof

cryptography.Somewouldassertthatalmostalldigitalsecuritycanbeaccomplishedwithcryptography,thatsecurityandcryptographyareinseparable,withcryptographybeingthecornerstoneofsecuringdatainbothtransmissionandstorage.However,ifcomputersecuritywereaseasyas“encrypteverything,”thiswouldbeaveryshortbook.Whilecryptographyisveryimportantandaverycomplexsecuritymeasure,itisnotapanacea—butitdoesprovideforlivelydiscussions.Theauthorsbringallthesecomponentstogetherwithacomprehensivechapteronintrusiondetectionandprevention.Oncethereaderhasmasteredthebasics,theauthorsaddresse-mail,

malicioussoftware,instantmessaging,andwebcomponentsinsuchawaythatthereadercanapplyhisorherknowledgeofnetworksandsecurityfundamentals.Thereaderwillthenbeprovidedwithanoverviewofsecuresoftwaredevelopment.In2015,boththeU.S.DepartmentofHomelandSecurityandCSOmagazineconcludedthatpoorlydevelopedsoftwareisoneofthebiggestcyberthreats—perhaps90percentofthethreatscomethroughpoorsoftwaredesign.Inthefinalanalysis,securityisreallyallaboutriskmanagement.What

isyourorganization’sappetiteforriskandhowisthatriskmanaged?Thechapterscoveringriskmanagementleadthereaderthroughtheselesstechnicalissuestogainanunderstandinghowtheseimpactthe

organization.Baselinesandchangemanagementareessentialtounderstandingwhatassetsarebeingsecuredandhowtheyarebeingchanged.Areaderwholearnstheseskillswellwillbeabletoworkinincidentresponse,disasterrecovery,andbusinesscontinuity.Understandingtheseprocessesandhowtheyworkwithtechnicalissuesexpandscareeropportunities.Theauthorsconcludetheirreviewoftheprinciplesofcomputersecurity

withanexaminationofprivacy,legalissues,andethics.Althoughthesetopicsappearattheendofthebook,theyarecrucialissuesinthemodernworld.Remember,asacomputersecuritypractitioner,youwillhavelegalaccesstomoredataandinformationthananyelseintheorganization.Althoughnotthelastchapterinthebook,Ihavedecidedtocommenton

forensicslast.Theauthorshavedoneawonderfuljobofaddressingthiscomplextopic.Butwhymentionitlast?Becausemanytimesforensicsiswhatonedoesaftercomputersecurityfails.Itmakesagoodepitaphforawonderfulbook.Tonightitis15degreesandsnowingoutsidewhileIsitinmystudy—

warm,dry,andcomfortable;myhomeismycastle.Notbadformid-winterinIdaho;however,IshouldnotforgetthatonereasonIamcomfortableisbecausecertifiedcomputersecuritypractitionersareprotectingmyinformationandprivacyaswellasthecriticalinfrastructurethatsupportsit.

ForInstructorsIhavetaughtfromprioreditionsofthisbookandhaveuseditscompanionlaboratorymanualforseveralyears.BothPrinciplesofComputerSecurity,FourthEditionandPrinciplesofComputerSecurityLabManual,FourthEditionhaveinstructormaterialsonacompanionWebsiteavailabletoadoptinginstructors.Instructormanuals,includingtheanswerstotheend-of-chapterquestions,PowerPointslides,andthetestbankofquestionsforuseasquizzesorexams,makepreparationasnap.

CoreyD.Schou,PhDSeriesEditor

UniversityProfessorofInformaticsProfessorofComputerScience

DirectoroftheNationalInformationAssuranceTrainingandEducationCenter

IdahoStateUniversity

PREFACE

InformationandcomputersecurityhasmovedfromtheconfinesofacademiatomainstreamAmericainthe21stcentury.Databreaches,informationdisclosures,andhigh-profilehacksinvolvingthetheftofinformationandintellectualpropertyseemtobearegularstapleofthenews.Ithasbecomeincreasinglyobvioustoeverybodythatsomethingneedstobedonetosecurenotonlyournation’scriticalinfrastructurebutalsothebusinesseswedealwithonadailybasis.Thequestionis,“Wheredowebegin?”Whatcantheaverageinformationtechnologyprofessionaldotosecurethesystemsthatheorsheishiredtomaintain?Oneimmediateansweriseducationandtraining.Ifwewanttosecureourcomputersystemsandnetworks,weneedtoknowhowtodothisandwhatsecurityentails.Ourwayoflife,fromcommercetomessagingtobusiness

communicationsandevensocialmedia,dependsontheproperfunctioningofourworldwideinfrastructure.Acommonthreadthroughoutallofthese,however,istechnology—especiallytechnologyrelatedtocomputersandcommunication.Thus,anindividual,organization,ornationwhowantedtocausedamagetothisnationcouldattackitnotjustwithtraditionalweaponsbutwithcomputersthroughtheInternet.Complacencyisnotanoptionintoday’shostilenetworkenvironment.Theprotectionofournetworksandsystemsisnotthesoledomainoftheinformationsecurityprofessional,butrathertheresponsibilityofallwhoareinvolvedinthedesign,development,deployment,andoperationofthesystemsthatarenearlyubiquitousinourdailylives.Withvirtuallyeverysystemwedependupondailyatrisk,theattacksurfaceandcorrespondingriskprofileisextremelylarge.Informationsecurityhasmaturedfromaseriesoftechnicalissuestoacomprehensiveriskmanagementproblem,andthisbookprovidesthefoundationalmaterialtoengageinthefieldina

professionalmanner.So,wheredoyou,theITprofessionalseekingmoreknowledgeon

security,startyourstudies?Thisbookoffersacomprehensivereviewoftheunderlyingfoundationsandtechnologiesassociatedwithsecuringoursystemsandnetworks.TheITworldisoverflowingwithcertificationsthatcanbeobtainedbythoseattemptingtolearnmoreabouttheirchosenprofession.Theinformationsecuritysectorisnodifferent,andtheCompTIASecurity+examoffersabasiclevelofcertificationforsecurity.InthepagesofthisbookyouwillfindnotonlymaterialthatcanhelpyoupreparefortakingtheCompTIASecurity+exambutalsothebasicinformationthatyouwillneedinordertounderstandtheissuesinvolvedinsecuringyourcomputersystemsandnetworkstoday.Innowayisthisbookthefinalsourceforlearningallaboutprotectingyourorganization’ssystems,butitservesasapointfromwhichtolaunchyoursecuritystudiesandcareer.Onethingiscertainlytrueaboutthisfieldofstudy—itnevergets

boring.Itconstantlychangesastechnologyitselfadvances.Somethingelseyouwillfindasyouprogressinyoursecuritystudiesisthatnomatterhowmuchtechnologyadvancesandnomatterhowmanynewsecuritydevicesaredeveloped,atitsmostbasiclevel,thehumanisstilltheweaklinkinthesecuritychain.Ifyouarelookingforanexcitingareatodelveinto,thenyouhavecertainlychosenwisely.Securityoffersachallengingblendoftechnologyandpeopleissues.Andsecuringthesystemsoftomorrowwillrequireeveryonetoworktogether,notjustsecurity,butdevelopers,operators,andusersalike.We,theauthorsofthisbook,wishyouluckasyouembarkonanexcitingandchallengingcareerpath.

Wm.ArthurConklin,Ph.D.GregoryB.White,Ph.D.

INTRODUCTION

Computersecurityisbecomingincreasinglyimportanttodayasthenumberofsecurityincidentssteadilyclimbs.Manycorporationsarenowspendingsignificantportionsoftheirbudgetsonsecurityhardware,software,services,andpersonnel.Theyarespendingthismoneynotbecauseitincreasessalesorenhancestheproducttheyprovide,butbecauseofthepossibleconsequencesshouldtheynottakeprotectiveactions.Securityhasbecomeacomprehensiveriskmanagementexerciseinfirmsthattaketherisksseriously.

WhyFocusonSecurity?Securityisnotsomethingthatwewanttohavetopayfor;itwouldbeniceifwedidn’thavetoworryaboutprotectingourdatafromdisclosure,modification,ordestructionfromunauthorizedindividuals,butthatisnottheenvironmentwefindourselvesintoday.Instead,wehaveseenthecostofrecoveringfromsecurityincidentssteadilyrisealongwiththeriseinthenumberofincidentsthemselves.Sincehackershavelearnedhowtomonetizehacks,theplayingfieldhasbecomesignificantlymoredangerous.Therearenowincentivesforaprofessionalclassofhackerwiththeintentofreapingbenefitsbothlongandshortterm.Withtheadventofadvancedpersistentthreats,theriseofnation-statehacking,andtheincreaseincriminalactivityfrombotnetstoransomware,theITplayingfieldisnowviewedasacontestedenvironment,onewherehackingcanresultingains.Lawenforcementistoooverwhelmedandunder-resourcedtomakeadentintheproblem,andtheresultisaneedfortrainedsecuritypractitionersinallbusinesssegments—andafurtherneedforsecurity-awareITpersonnelinregularITpositions.Securityhasbecomeamainstreamtopic.

AGrowingNeedforSecuritySpecialistsToprotectourcomputersystemsandnetworks,wewillneedasignificantnumberofnewsecurityprofessionalstrainedinthemanyaspectsofcomputerandnetworksecurity.Thisisnotaneasytask,asthesystemsconnectedtotheInternetbecomeincreasinglycomplex,withsoftwarewhoselinesofcodenumberinthemillions.Understandingwhythisissuchadifficultproblemtosolveisnothardifyouconsiderhowmanyerrorsmightbepresentinapieceofsoftwarethatisseveralmillionlineslong.Whenyouaddtheadditionalfactorofhowfastsoftwareisbeingdeveloped—fromnecessityasthemarketisconstantlymoving—understandinghowerrorsoccuriseasy.Notevery“bug”inthesoftwarewillresultinasecurityhole,butit

doesn’ttakemanytoaffecttheInternetcommunitydrastically.Wecan’tjustblamethevendorsforthissituation,becausetheyarereactingtothedemandsofgovernmentandindustry.Mostvendorsarefairlyadeptatdevelopingpatchesforflawsfoundintheirsoftware,andpatchesareconstantlyissuedtoprotectsystemsfrombugsthatmayintroducesecurityproblems.Thisintroducesawholenewproblemformanagersandadministrators—patchmanagement.Howimportantthishasbecomeiseasilyillustratedbyhowmanyofthemostrecentsecurityeventshaveoccurredasaresultofasecuritybugforwhichapatchwasavailablemonthspriortothesecurityincident;membersofthecommunityhadnotcorrectlyinstalledthepatch,however,thusmakingtheincidentpossible.Oneofthereasonsthishappensisthatmanyoftheindividualsresponsibleforinstallingthepatchesarenottrainedtounderstandthesecurityimplicationssurroundingtheholeortheramificationsofnotinstallingthepatch.Manyoftheseindividualssimplylackthenecessarytraining.Becauseoftheneedforanincreasingnumberofsecurityprofessionals

whoaretrainedtosomeminimumlevelofunderstanding,certificationssuchastheCompTIASecurity+havebeendeveloped.Prospectiveemployerswanttoknowthattheindividualtheyareconsideringhiringknowswhattodointermsofsecurity.Theprospectiveemployee,inturn,wantstohaveawaytodemonstratehisorherlevelofunderstanding,

whichcanenhancethecandidate’schancesofbeinghired.Thecommunityasawholesimplywantsmoretrainedsecurityprofessionals.

PreparingYourselffortheCompTIASecurity+ExamPrinciplesofComputerSecurity,FourthEditionisdesignedtohelpprepareyoutotaketheCompTIASecurity+certificationexam.Whenyoupassit,youwilldemonstrateyouhavethatbasicunderstandingofsecuritythatemployersarelookingfor.Passingthiscertificationexamwillnotbeaneasytask,foryouwillneedtolearnmanythingstoacquirethatbasicunderstandingofcomputerandnetworksecurity.

HowThisBookIsOrganizedThebookisdividedintochapterstocorrespondwiththeobjectivesoftheexamitself.Someofthechaptersaremoretechnicalthanothers—reflectingthenatureofthesecurityenvironmentwhereyouwillbeforcedtodealwithnotonlytechnicaldetailsbutalsootherissuessuchassecuritypoliciesandproceduresaswellastrainingandeducation.Althoughmanyindividualsinvolvedincomputerandnetworksecurityhaveadvanceddegreesinmath,computerscience,informationsystems,orcomputerorelectricalengineering,youdonotneedthistechnicalbackgroundtoaddresssecurityeffectivelyinyourorganization.Youdonotneedtodevelopyourowncryptographicalgorithm,forexample;yousimplyneedtobeabletounderstandhowcryptographyisused,alongwithitsstrengthsandweaknesses.Asyouprogressinyourstudies,youwilllearnthatmanysecurityproblemsarecausedbythehumanelement.Thebesttechnologyintheworldstillendsupbeingplacedinanenvironmentwherehumanshavetheopportunitytofoulthingsup—andalltoooftendo.

OnwardandUpward

Atthispoint,wehopethatyouarenowexcitedaboutthetopicofsecurity,evenifyouweren’tinthefirstplace.Wewishyouluckinyourendeavorsandwelcomeyoutotheexcitingfieldofcomputerandnetworksecurity.

INSTRUCTORWEBSITE

Forinstructorresources,visitwww.mhprofessional.com/PrinciplesSecurity4e.Adoptingteacherscanaccessthesupportmaterialsidentifiedbelow.ContactyourMcGraw-HillEducationsalesrepresentativefordetailsonhowtoaccessthematerials.

InstructorMaterialsThePrinciplesofComputerSecuritycompanionWebsite(www.mhprofessional.com/PrinciplesSecurity4e)providesmanyresourcesforinstructors:

Answerkeystotheend-of-chapteractivitiesinthetextbook

Answerkeystothelabmanualactivities(labmanualavailableseparately)

EngagingPowerPointslidesonthelecturetopics(includingfull-colorartworkfromthebook)

AnInstructorManual

Accesstotestbankfilesandsoftwarethatallowsyoutogenerateawidearrayofpaper-ornetwork-basedtests,andthatfeaturesautomaticgrading

Hundredsofpracticequestionsandawidevarietyofquestiontypesanddifficultylevels,enablingyoutocustomizeeachtesttomaximizestudentprogress

Blackboardcartridgesandotherformatsmayalsobeavailableuponrequest;contactyoursalesrepresentative

chapter1 IntroductionandSecurityTrends

Securityismostlyasuperstition.Itdoesnotexistinnature,nordothechildrenofmenasawholeexperienceit.Avoidingdangerisnosaferinthelongrunthanoutrightexposure.Lifeis

W

eitheradaringadventureornothing.

—HELENKELLER

Inthischapter,youwilllearnhowto

Definecomputersecurity

Discusscommonthreatsandrecentcomputercrimesthathavebeencommitted

Listanddiscussrecenttrendsincomputersecurity

Describecommonavenuesofattacks

Describeapproachestocomputersecurity

Discusstherelevantethicalissuesassociatedwithcomputersecurity

hyshouldwebeconcernedaboutcomputerandnetworksecurity?Allyouhavetodoisturnonthetelevisionorreadthenewspapertofindoutaboutavarietyofsecurityproblemsthataffectournation

andtheworldtoday.Thedangertocomputersandnetworksmayseemtopaleincomparisontothethreatofterroriststrikes,butinfacttheaveragecitizenismuchmorelikelytobethetargetofanattackontheirownpersonalcomputer,oracomputertheyuseattheirplaceofwork,thantheyaretobethedirectvictimofaterroristattack.Thischapterwillintroduceyoutoanumberofissuesinvolvedinsecuringyourcomputersandnetworksfromavarietyofthreatsthatmayutilizeanyofanumberofdifferentattacks.

TheComputerSecurityProblemFiftyyearsagocompaniesdidnotconductbusinessacrosstheInternet.Onlinebankingandshoppingwereonlydreamsinsciencefictionstories.Today,however,millionsofpeopleperformonlinetransactionseveryday.CompaniesrelyontheInternettooperateandconductbusiness.Vastamountsofmoneyaretransferredvianetworks,intheformofeitherbanktransactionsorsimplecreditcardpurchases.Wherevertherearevast

amountsofmoney,therearethosewhowilltrytotakeadvantageoftheenvironmenttoconductfraudortheft.Therearemanydifferentwaystoattackcomputersandnetworkstotakeadvantageofwhathasmadeshopping,banking,investment,andleisurepursuitsasimplematterof“draggingandclicking”(ortapping)formanypeople.Identitytheftissocommontodaythatmosteveryoneknowssomebodywho’sbeenavictimofsuchacrime,iftheyhaven’tbeenavictimthemselves.ThisisjustonetypeofcriminalactivitythatcanbeconductedusingtheInternet.Therearemanyothersandallareontherise.

DefinitionofComputerSecurityComputersecurityisnotasimpleconcepttodefine,andhasnumerouscomplexitiesassociatedwithit.Ifoneisreferringtoacomputer,thenitcanbeconsideredsecurewhenthecomputerdoeswhatitissupposedtodoandonlywhatitissupposedtodo.Butaswasnotedearlier,thesecurityemphasishasshiftedfromthecomputertotheinformationbeingprocessed.Informationsecurityisdefinedbytheinformationbeingprotectedfromunauthorizedaccessoralterationandyetisavailabletoauthorizedindividualswhenrequired.Whenonebeginsconsideringtheaspectsofinformation,itisimportanttorealizethatinformationisstored,processed,andtransferredbetweenmachines,andallofthesedifferentstatesrequireappropriateprotectionschemes.Informationassuranceisatermusedtodescribenotjusttheprotectionofinformation,butameansofknowingthelevelofprotectionthathasbeenaccomplished.

TechTip

HistoricalComputerSecurityComputersecurityisanever-changingissue.Fiftyyearsago,computersecuritywasmainlyconcernedwiththephysicaldevicesthatmadeupthecomputer.Atthetime,computerswerethehigh-valueitemsthatorganizationscouldnotaffordtolose.Today,computerequipmentisinexpensivecomparedtothevalueofthedataprocessedbythecomputer.Nowthehigh-value

itemisnotthemachine,buttheinformationthatitstoresandprocesses.Thishasfundamentallychangedthefocusofcomputersecurityfromwhatitwasintheearlyyears.Todaythedatastoredandprocessedbycomputersisalmostalwaysmorevaluablethanthehardware.

Computersecurityandinformationsecuritybothrefertoastatewherethehardwareandsoftwareperformonlydesiredactionsandtheinformationisprotectedfromunauthorizedaccessoralterationandisavailabletoauthorizeduserswhenrequired.

HistoricalSecurityIncidentsByexaminingsomeofthecomputer-relatedcrimesthathavebeencommittedoverthelast30orsoyears,wecanbetterunderstandthethreatsandsecurityissuesthatsurroundourcomputersystemsandnetworks.Electroniccrimecantakeanumberofdifferentforms,buttheoneswewillexamineherefallintotwobasiccategories:crimesinwhichthecomputerwasthetarget,andincidentsinwhichacomputerwasusedtoperpetratetheact(forexample,therearemanydifferentwaystoconductbankfraud,oneofwhichusescomputerstoaccesstherecordsthatbanksprocessandmaintain).Wewillstartourtourofcomputercrimeswiththe1988Internetworm

(Morrisworm),oneofthefirstrealInternetcrimecases.Priorto1988,criminalactivitywaschieflycenteredonunauthorizedaccesstocomputersystemsandnetworksownedbythetelephonecompanyandcompaniesthatprovideddial-upaccessforauthorizedusers.Virusactivityalsoexistedpriorto1988,havingstartedintheearly1980s.

TheMorrisWorm(November1988)RobertMorris,thenagraduatestudentatCornellUniversity,releasedwhathasbecomeknownastheInternetworm(ortheMorrisworm).Theworminfectedroughly10percentofthemachinesthenconnectedtotheInternet

(whichamountedtoapproximately6000infectedmachines).Thewormcarriednomaliciouspayload,theprogrambeingobviouslya“workinprogress,”butitdidwreakhavocbecauseitcontinuallyre-infectedcomputersystemsuntiltheycouldnolongerrunanyprograms.

CitibankandVladimirLevin(June–October1994)StartingaboutJuneof1994andcontinuinguntilatleastOctoberofthesameyear,anumberofbanktransfersweremadebyVladimirLevinofSt.Petersburg,Russia.Bythetimeheandhisaccompliceswerecaught,theyhadtransferredanestimated$10million.Eventuallyallbutabout$400,000wasrecovered.Levinreportedlyaccomplishedthebreak-insbydialingintoCitibank’scashmanagementsystem.Thissystemallowedclientstoinitiatetheirownfundtransferstootherbanks.

KevinMitnick(February1995)KevinMitnick’scomputeractivitiesoccurredoveranumberofyearsduringthe1980sand1990s.Arrestedin1995,heeventuallypledguiltytofourcountsofwirefraud,twocountsofcomputerfraud,andonecountofillegallyinterceptingawirecommunicationandwassentencedto46monthsinjail.Inthepleaagreement,MitnickadmittedtohavinggainedunauthorizedaccesstoanumberofdifferentcomputersystemsbelongingtocompaniessuchasMotorola,Novell,Fujitsu,andSunMicrosystems.Hedescribedusinganumberofdifferent“tools”andtechniques,includingsocialengineering,sniffers,andclonedcellulartelephones.

TechTip

IntellectualCuriosityIntheearlydaysofcomputercrime,muchofthecriminalactivitycenteredongainingunauthorizedaccesstocomputersystems.Inmanyearlycases,theperpetratorofthecrimedidnotintendtocauseanydamagetothecomputerbutwasinsteadonaquestof“intellectualcuriosity”—tryingtolearnmoreaboutcomputersandnetworks.Todaytheubiquitousnatureofcomputersandnetworkshaseliminatedtheperceivedneedfor

individualstobreakintocomputerstolearnmoreaboutthem.Whiletherearestillthosewhodabbleinhackingfortheintellectualchallenge,itismorecommontodayfortheintellectualcuriositytobereplacedbymaliciousintent.Whateverthereason,todayitisconsideredunacceptable(andillegal)togainunauthorizedaccesstocomputersystemsandnetworks.

OmegaEngineeringandTimothyLloyd(July1996)OnJuly30,1996,asoftware“timebomb”wentoffatOmegaEngineering,aNewJersey–basedmanufacturerofhigh-techmeasurementandcontrolinstruments.Twentydaysearlier,TimothyLloyd,acomputernetworkprogramdesigner,hadbeendismissedfromthecompanyafteraperiodofgrowingtensionbetweenLloydandmanagementatOmega.TheprogramthatranonJuly30deletedallofthedesignandproductionprogramsforthecompany,severelydamagingthesmallfirmandforcingthelayoffof80employees.TheprogramwaseventuallytracedbacktoLloyd,whohadleftitinretaliationforhisdismissal.

WorcesterAirportand“Jester”(March1997)InMarchof1997,telephoneservicestotheFAAcontroltoweraswellastheemergencyservicesattheWorcesterAirportandthecommunityofRutland,Massachusetts,werecutoffforaperiodofsixhours.Thisdisruptionoccurredasaresultofanattackonthephonenetworkbyateenagecomputer“hacker”whowentbythename“Jester.”

TheMelissaVirus(March1999)Melissaisthebestknownoftheearlymacro-typevirusesthatattachthemselvestodocumentsforprogramsthathavelimitedmacroprogrammingcapability.Thevirus,writtenandreleasedbyDavidSmith,infectedaboutamillioncomputersandcausedanestimated$80millionindamages.

TechTip

SpeedofVirusProliferationThespeedatwhichtheSlammerwormspreadservedasawakeupcalltosecurityprofessionals.ItdrovehomethepointthattheInternetcouldbeadverselyimpactedinamatterofminutes.Thisinturncausedanumberofprofessionalstorethinkhowpreparedtheyneededtobeinordertorespondtovirusoutbreaksinthefuture.Agoodfirststepistoapplypatchestosystemsandsoftwareassoonaspossible.Thiswillofteneliminatethevulnerabilitiesthatthewormsandvirusesaredesignedtotarget.

TheLoveLetterVirus(May2000)Alsoknownasthe“ILOVEYOU”wormandthe“LoveBug,”theLoveLetterviruswaswrittenandreleasedbyaPhilippinestudentnamedOneldeGuzman.Theviruswasspreadviae-mailwiththesubjectlineof“ILOVEYOU.”Estimatesofthenumberofinfectedmachinesworldwidehavebeenashighas45million,accompaniedbyapossible$10billionindamages(itshouldbenotedthatfiguresliketheseareextremelyhardtoverifyorcalculate).

TheCodeRedWorm(2001)OnJuly19,2001,inaperiodof14hours,over350,000computersconnectedtotheInternetwereinfectedbytheCodeRedworm.Thecostestimateforhowmuchdamagethewormcaused(includingvariationsofthewormreleasedonlaterdates)exceeded$2.5billion.Thevulnerabilitywasabuffer-overflowconditioninMicrosoft’sIISwebservers,hadbeenknownforamonth.

TheSlammerWorm(2003)OnSaturday,January25,2003,theSlammerwormwasreleased.Itexploitedabuffer-overflowvulnerabilityincomputersrunningMicrosoftSQLServerorSQLServerDesktopEngine.LikethevulnerabilityinCodeRed,thisweaknesswasnotnewand,infact,hadbeendiscoveredandapatchreleasedinJulyof2002.Withinthefirst24hoursofSlammer’srelease,thewormhadinfectedatleast120,000hostsandcausednetwork

outagesandthedisruptionofairlineflights,elections,andATMs.Atitspeak,Slammer-infectedhostsweregeneratingareported1TBofworm-relatedtrafficeverysecond.Thewormdoubleditsnumberofinfectedhostsevery8seconds.Itisestimatedthatittooklessthan10minutestoreachglobalproportionsandinfect90percentofthepossiblehostsitcouldinfect.

WebsiteDefacements(2006)InMayof2006,aTurkishhackerusingthehandleiSKORPiTXsuccessfullyhackedover21,000websitesinasingleeffort.Therationaleforhisactionswasneverdetermined,andoverthenextfewyearshehackedhundredsofthousandsofwebsites,defacingtheircoverpagewithastatementofhishack.Anuisancetosome,thoseaffectedhadtocleanuptheirsystems,includingrepairingvulnerabilities,orhewouldstrikeagain.

Cyberwar?(2007)InMayof2007,thecountryofEstoniawascrippledbyamassivedenial-of-service(DoS)cyberattackagainstallofitsinfrastructure,firms(banks),andgovernmentoffices.ThisattackwastracedtoIPaddressesinRussia,butwasneverclearlyattributedtoagovernment-sanctionedeffort.

OperationBotRoast(2007)In2007,theFBIannouncedthatithadconductedOperationBotRoast,identifyingover1millionbotnetcrimevictims.Intheprocessofdismantlingthebotnets,theFBIarrestedseveralbotnetoperatorsacrosstheUnitedStates.Althoughseeminglyabigsuccess,thiseffortmadeonlyasmalldentinthevastvolumeofbotnetsinoperation.

Conficker(2008–2009)Inlate2008andearly2009,securityexpertsbecamealarmedwhenitwasdiscoveredthatmillionsofsystemsattachedtotheInternetwereinfectedwiththeDownadupworm.AlsoknownasConficker,thewormwas

believedtohaveoriginatedinUkraine.Infectedsystemswerenotinitiallydamagedbeyondhavingtheirantivirussolutionupdatesblocked.Whatalarmedexpertswasthefactthatinfectedsystemscouldbeusedinasecondaryattackonothersystemsornetworks.Eachoftheseinfectedsystemswaspartofwhatisknownasabotnetwork(orbotnet)andcouldbeusedtocauseaDoSattackonatargetorbeusedfortheforwardingofspame-mailtomillionsofusers.

U.S.ElectricPowerGrid(2009)InApril2009,HomelandSecuritySecretaryJanetNapolitanotoldreportersthattheUnitedStateswasawareofattemptsbybothRussiaandChinatobreakintotheU.S.electricpowergrid,mapitout,andplantdestructiveprogramsthatcouldbeactivatedatalaterdate.Sheindicatedthattheseattackswerenotnewandhadinfactbeengoingonforyears.OnearticleintheKansasCityStar,forexample,reportedthatin1997thelocalpowercompany,KansasCityPowerandLight,encounteredperhaps10,000attacksfortheentireyear.By2009thecompanyexperienced30–60millionattacks.

TryThis!SoftwarePatchesOneofthemosteffectivemeasuressecurityprofessionalscantaketoaddressattacksontheircomputersystemsandnetworksistoensurethatallsoftwareisuptodateintermsofvendor-releasedpatches.Manyoftheoutbreaksofvirusesandwormswouldhavebeenmuchlesssevereifeverybodyhadappliedsecurityupdatesandpatcheswhentheywerereleased.Fortheoperatingsystemthatyouuse,gotoyourfavoritewebbrowsertofindwhatpatchesexistfortheoperatingsystemandwhatvulnerabilitiesorissuesthepatcheswerecreatedtoaddress.

FiberCableCut(2009)OnApril9,2009,awidespreadphoneandInternetoutagehittheSanJoseareainCalifornia.Thisoutagewasnottheresultofagroupofdeterminedhackersgainingunauthorizedaccesstothecomputersthatoperatethese

networks,butinsteadoccurredasaresultofseveralintentionalcutsinthephysicalcablesthatcarrythesignals.Thecutsresultedinalossofalltelephone,cellphone,andInternetserviceforthousandsofusersintheSanJosearea.Emergencyservicessuchas911werealsoaffected,whichcouldhavehadsevereconsequences.

TheCurrentThreatEnvironmentThethreatsofthepastweresmaller,targeted,andinmanycasesonlyanuisance.Astimehasgoneon,moreorganizedelementsofcybercrimehaveenteredthepicturealongwithnation-states.From2009andbeyond,thecyberthreatlandscapebecameconsiderablymoredangerous,withnewadversariesouttoperformoneoftwofunctions:denyyoutheuseofyourcomputersystems,oruseyoursystemsforfinancialgainincludingtheftofintellectualpropertyorfinancialinformationincludingpersonallyidentifiableinformation.

AdvancedPersistentThreatsAlthoughtherearenumerousclaimsastowhenadvancedpersistentthreats(APTs)beganandwhofirstcoinedtheterm,theimportantissueistonotethatAPTsrepresentanewbreedofattackpattern.Althoughspecificdefinitionsvary,thethreewordsthatcomprisethetermprovidethekeyelements:advanced,persistent,andthreat.Advancedreferstotheuseofadvancedtechniques,suchasspearphishing,asavectorintoatarget.Persistentreferstotheattacker’sgoalofestablishingalong-term,hiddenpositiononasystem.ManyAPTscangoonforyearswithoutbeingnoticed.Threatreferstotheotherobjective:exploitation.IfanadversaryinveststheresourcestoachieveanAPTattack,theyaredoingitforsomeformoflong-termadvantage.APTsarenotaspecifictypeofattack,butratherthenewmeansbywhichhighlyresourcedadversariestargetsystems.

GhostNet(2009)

In2009,theDalaiLama’sofficecontactedsecurityexpertstodetermineifitwasbeingbugged.Theinvestigationrevealeditwas,andthespyringthatwasdiscoveredwaseventuallyshowntobespyingonover100countries’sensitivemissionsworldwide.ResearchersgavethisAPT-stylespynetworkthenameGhostNet,andalthoughtheeffortwastracedbacktoChina,fullattributionwasneverdetermined.

OperationAurora(2009)OperationAurorawasanAPTattackfirstreportedbyGoogle,butalsotargetingAdobe,Yahoo,JuniperNetworks,Rackspace,Symantec,andseveralmajorU.S.financialandindustrialfirms.ResearchanalysispointedtothePeople’sLiberationArmy(PLA)ofChinaasthesponsor.Theattackranformostof2009andoperatedonalargescale,withthegroupsbehindtheattackconsistingofhundredsofhackersworkingtogetheragainstthevictimfirms.

Stuxnet,Duqu,andFlame(2009–2012)Stuxnet,Duqu,andFlamerepresentexamplesofstate-sponsoredmalware.StuxnetwasamaliciouswormdesignedtoinfiltratetheIranianuraniumenrichmentprogram,tomodifytheequipmentandcausethesystemstofailinordertoachievedesiredresultsandinsomecasesevendestroytheequipment.StuxnetwasdesignedtoattackaspecificmodelofSiemensprogrammablelogiccontroller(PLC),whichwasoneofthecluespointingtoitsobjective,themodificationoftheuraniumcentrifuges.AlthoughneithertheUnitedStatesnorIsraelhasadmittedtoparticipatingintheattack,bothhavebeensuggestedtohavehadaroleinit.Duqu(2011)isapieceofmalwarethatappearstobeafollow-onof

Stuxnet,andhasmanyofthesametargets,butratherthanbeingdestructiveinnature,Duquisdesignedtostealinformation.Themalwareusescommandandcontrolserversacrosstheglobetocollectelementssuchaskeystrokesandsysteminformationfrommachinesanddeliverthemtounknownparties.

Flame(2012)isanotherpieceofmodularmalwarethatmaybeaderivativeofStuxnet.Flameisaninformationcollectionthreat,collectingkeystrokes,screenshots,andnetworktraffic.ItcanrecordSkypecallsandaudiosignalsonamachine.Flameisalargepieceofmalwarewithmanyspecificmodules,includingakillswitchandameansofevadingantivirusdetection.BecauseoftheopennatureofStuxnet—itssourcecodeiswidely

availableontheInternet—itisimpossibletoknowwhoisbehindDuquandFlame.Infact,althoughDuquandFlamewerediscoveredafterStuxnet,thereisgrowingevidencethattheywerepresentbeforeStuxnetandcollectedcriticalintelligenceneededtoconductthelaterattack.Therealstorybehindthesemalwareitemsisthattheydemonstratethepowerandcapabilityofnation-statemalware.

Sony(2011)ThehackergroupLulzSecreportedlyhackedSony,stealingover70millionuseraccounts.Theresultingoutagelasted23days,andcostSonyinexcessof$170million.OneofthebiggestissuesrelatedtotheattackwasSony’spoorresponse,takingmorethanaweektonotifypeopleoftheinitialattack,andthencommunicatingpoorlywithitsuserbaseduringtherecoveryperiod.AlsonotablewasthatalthoughthecreditcarddatawasencryptedonSony’sservers,therestofthedatastolenwasnot,makingiteasypickingsforthedisclosureofinformation.

SaudiAramco(Shamoon)(2012)InAugustof2012,30,000computerswereshutdowninresponsetoamalwareattack(namedShamoon)atSaudiAramco,anoilfirminSaudiArabia.Theattackhitthreeoutoffourmachinesinthefirm,andthedamageincludeddatawipingofmachinesandtheuploadingofsensitiveinformationtoPastebin.Ittook10daysforthefirmtocleanuptheinfectionandrestartitsbusinessnetwork.

DataBreaches(2013–present)Fromtheendof2013throughtothetimeofthiswriting,databreacheshavedominatedthesecuritylandscape.TargetCorporationannounceditsbreachinmid-December,2013,statingthatthehackbeganasearlyas“BlackFriday”(November29)andcontinuedthroughDecember15.Datathievescapturednames,addresses,anddebitandcreditcarddetails,includingnumbers,expirationdates,andCVVcodes.Intheendatotalof70millionaccountswereexposed.FollowingtheTargetbreach,HomeDepotsufferedabreachofover50milliondebitandcreditcardnumbersin2014.JPMorganChasealsohadamajordatabreachin2014,announcingthe

lossof77millionaccountholders’information.UnlikeTargetandHomeDepot,JPMorganChasedidnotloseaccountnumbersorothercrucialdataelements.JPMorganChasealsomountedamajorPRcampaigntoutingitssecurityprogramandspendinginordertosatisfycustomersandregulatorsofitsdiligence.Attheendof2014,SonyPicturesEntertainmentannouncedthatithad

beenhacked,withamassivereleaseofinternaldata.Atthetimeofthiswriting,hackershaveclaimedtohavestolenasmuchas100terabytesofdata,includinge-mails,financialdocuments,intellectualproperty,personaldata,HRinformation…inessence,almosteverything.AdditionalreportsindicatethedestructionofdatawithinSony;althoughtheextentofthedamageisnotknown,atleastoneoftheelementsofmalwareassociatedwiththeattackisknownfordestroyingtheMasterBootRecord(MBR)ofdrives.AttributionintheSonyattackisalsotricky,astheU.S.governmenthasaccusedNorthKorea,whileothergroupshaveclaimedresponsibility,andsomeinvestigatorsclaimitwasaninsidejob.Itmaytakeyearstodeterminecorrectattribution,ifitisevenpossible.

Nation-StateHacking(2013–present)Nation-stateshavebecomearecognizedissueinsecurity,fromtheGreatFirewallofChinatomodernmalwareattacksfromawiderangeof

governments.Threatintelligencebecamemorethanabuzzwordin2014asfirmssuchasCrowdStrikeexposedsophisticatedhackingactorsinChina,Russia,andothercountries.In2014CrowdStrikereportedon39differentthreatactors,includingcriminals,hactivists,state-sponsoredgroups,andnation-states.Learninghowtheseadversariesactprovidesvaluablecluestotheirdetectionintheenterprise.GroupssuchasChina’sHurricanePandarepresentarealsecuritythreat.HurricanePandafocusesonaerospacefirmsandInternetservicecompanies.NotallthreatsarefromChina.Russiaiscreditedwithitsownshareof

malware.Attributionisdifficult,andsometimestheonlyhintsareclues,suchasthetimelinesofcommandandcontrolserversforEnergeticBear,anattackontheenergyindustryinEuropefromtheDragonflygroup.TheReginplatform,acompletemalwareplatform,possiblyinoperationforoveradecade,hasbeenshowntoattacktelecomoperators,financialinstitutions,governmentagencies,andpoliticalbodies.Reginisinterestingbecauseofitsstealth,itscomplexity,anditsabilitytohideitscommandandcontrolnetworkfrominvestigators.Althoughhighlysuspectedtobedeployedbyanation-state,itsattributionremainsunsolved.In2015,databreachesandnation-statehackinghitnewhighswiththe

lossofover20millionsensitivepersonnelfilesfromthecomputersattheU.S.OfficeofPersonnelManagement(OPM).ThisOPMloss,reportedlytoChina,wasextremelydamaginginthatthedatalossconsistedofthecompletebackgroundinvestigationsonpeopleswhohadsubmittedsecurityclearances.Theserecordsdetailedextensivepersonalinformationontheapplicantsandtheirfamilymembers,providinganadversarywithdetailedintelligenceknowledge.InthesameyearitwasreportedthatemailsystemsintheDepartmentofState,theDepartmentofDefense,andtheWhiteHousehadbeencompromised,possiblybybothRussiaandChina.ThesensitivenuclearnegotiationsinSwitzerlandbetweentheU.S.,itsallies,andIranwerealsoreportedtohavebeensubjecttoelectroniceavesdroppingbypartiesyetunknown.

OperationNightDragonwasanamegiventoanintellectualpropertyattackexecutedagainstoil,gas,andpetrochemicalcompaniesintheUnitedStates.Usingasetofglobalservers,attackersfromChinaraidedglobalenergycompaniesforproprietaryandhighlyconfidentialinformationsuchasbiddingdataforleases.Theattackshednewlightonwhatconstitutescriticaldataandassociatedrisks.

ThreatstoSecurityTheincidentsdescribedintheprevioussectionsprovideaglimpseintothemanydifferentthreatsthatfaceadministratorsastheyattempttoprotecttheircomputersystemsandnetworks.Thereare,ofcourse,thenormalnaturaldisastersthatorganizationshavefacedforyears.Intoday’shighlynetworkedworld,however,newthreatshavedevelopedthatwedidnothavetoworryabout50yearsago.Thereareanumberofwaysthatwecanbreakdownthevariousthreats.

Onewaytocategorizethemistoseparatethreatsthatcomefromoutsideoftheorganizationfromthosethatareinternal.Anotheristolookatthevariouslevelsofsophisticationoftheattacks,fromthoseby“scriptkiddies”tothoseby“elitehackers.”Athirdistoexaminetheleveloforganizationofthevariousthreats,fromunstructuredthreatstohighlystructuredthreats.Allofthesearevalidapproaches,andtheyinfactoverlapeachother.Thefollowingsectionsexaminethreatsfromtheperspectiveofwheretheattackcomesfrom.

VirusesandWormsWhileyourorganizationmaybeexposedtovirusesandwormsasaresultofemployeesnotfollowingcertainpracticesorprocedures,generallyyouwillnothavetoworryaboutyouremployeeswritingorreleasingvirusesandworms.Itisimportanttodrawadistinctionbetweenthewritersofmalwareandthosewhoreleasemalware.Debatesovertheethicsofwritingvirusespermeatetheindustry,butcurrently,simplywritingthemis

notconsideredacriminalactivity.Avirusislikeabaseballbat;thebatitselfisnotevil,buttheinappropriateuseofthebat(suchastosmashacar’swindow)fallsintothecategoryofcriminalactivity.(Somemayarguethatthisisnotaverygoodanalogysinceabaseballbathasausefulpurpose—toplayball—butviruseshavenousefulpurpose.Ingeneral,thisistrue,butinsomelimitedenvironments,suchasinspecializedcomputersciencecourses,thestudyandcreationofvirusescanbeconsideredausefullearningexperience.)

CrossCheckMalwareVirusesandwormsarejusttwotypesofthreatsthatfallunderthegeneralheadingofmalware.Thetermmalwarecomesfrom“malicioussoftware,”whichdescribestheoverallpurposeofcodethatfallsintothiscategoryofthreat.Malwareissoftwarethathasanefariouspurpose,designedtocauseproblemstoyouasanindividual(forexample,identitytheft)oryoursystem.MoreinformationonthedifferenttypesofmalwareisprovidedinChapter15.

Bynumber,virusesandwormsarethemostcommonproblemthatanorganizationfacesbecauseliterallythousandsofthemhavebeencreatedandreleased.Fortunately,antivirussoftwareandsystempatchingcaneliminatethelargestportionofthisthreat.Virusesandwormsgenerallyarealsonondiscriminatingthreats;theyarereleasedontheInternetinageneralfashionandaren’ttargetedataspecificorganization.Theytypicallyarealsohighlyvisibleoncereleased,sotheyaren’tthebesttooltouseinhighlystructuredattackswheresecrecyisvital.

IntrudersTheactofdeliberatelyaccessingcomputersystemsandnetworkswithoutauthorizationisgenerallyreferredtoashacking,withindividualswhoconductthisactivitybeingreferredtoashackers.Thetermhackingalsoappliestotheactofexceedingone’sauthorityinasystem.Thiswouldincludeauthorizeduserswhoattempttogainaccesstofilestheyaren’t

permittedtoaccessorwhoattempttoobtainpermissionsthattheyhavenotbeengranted.Whiletheactofbreakingintocomputersystemsandnetworkshasbeenglorifiedinthemediaandmovies,thephysicalactdoesnotliveuptotheHollywoodhype.Intrudersare,ifnothingelse,extremelypatient,sincetheprocesstogainaccesstoasystemtakespersistenceanddoggeddetermination.Theattackerwillconductmanypre-attackactivitiesinordertoobtaintheinformationneededtodeterminewhichattackwillmostlikelybesuccessful.Typically,bythetimeanattackislaunched,theattackerwillhavegatheredenoughinformationtobeveryconfidentthattheattackwillsucceed.Generally,attacksbyanindividualorevenasmallgroupofattackers

fallintotheunstructuredthreatcategory.Attacksatthislevelgenerallyareconductedovershortperiodsoftime(lastingatmostafewmonths),donotinvolvealargenumberofindividuals,havelittlefinancialbacking,andareaccomplishedbyinsidersoroutsiderswhodonotseekcollusionwithinsiders.Intruders,orthosewhoareattemptingtoconductanintrusion,definitelycomeinmanydifferentvarietiesandhavevaryingdegreesofsophistication(seeFigure1.1).Atthelowendtechnicallyarewhataregenerallyreferredtoasscriptkiddies,individualswhodonothavethetechnicalexpertisetodevelopscriptsordiscovernewvulnerabilitiesinsoftwarebutwhohavejustenoughunderstandingofcomputersystemstobeabletodownloadandrunscriptsthatothershavedeveloped.Theseindividualsgenerallyarenotinterestedinattackingspecifictargets,butinsteadsimplywanttofindanyorganizationthatmaynothavepatchedanewlydiscoveredvulnerabilityforwhichthescriptkiddiehaslocatedascripttoexploitthevulnerability.Itishardtoestimatehowmanyoftheindividualsperformingactivitiessuchasprobingnetworksorscanningindividualsystemsarepartofthisgroup,butitisundoubtedlythefastestgrowinggroupandthevastmajorityofthe“unfriendly”activityoccurringontheInternetisprobablycarriedoutbytheseindividuals.

•Figure1.1Distributionofattackerskilllevels

Atthenextlevelarethosepeoplewhoarecapableofwritingscriptstoexploitknownvulnerabilities.Theseindividualsaremuchmoretechnicallycompetentthanscriptkiddiesandaccountforanestimated8to12percentofmaliciousInternetactivity.Atthetopendofthisspectrumarethosehighlytechnicalindividuals,oftenreferredtoaselitehackers,whonotonlyhavetheabilitytowritescriptsthatexploitvulnerabilitiesbutalsoarecapableofdiscoveringnewvulnerabilities.Thisgroupisthesmallestofthelot,however,andisresponsiblefor,atmost,only1to2percentofintrusiveactivity.

Insiders

Itisgenerallyacknowledgedbysecurityprofessionalsthatinsidersaremoredangerousinmanyrespectsthanoutsideintruders.Thereasonforthisissimple—insidershavetheaccessandknowledgenecessarytocauseimmediatedamagetoanorganization.Mostsecurityisdesignedtoprotectagainstoutsideintrudersandthusliesattheboundarybetweentheorganizationandtherestoftheworld.Insidersmayactuallyalreadyhavealltheaccesstheyneedtoperpetratecriminalactivitysuchasfraud.Inadditiontounprecedentedaccess,insidersalsofrequentlyhaveknowledgeofthesecuritysystemsinplaceandarebetterabletoavoiddetection.Attacksbyinsidersareoftentheresultofemployeeswhohavebecomedisgruntledwiththeirorganizationandarelookingforwaystodisruptoperations.Itisalsopossiblethatan“attack”byaninsidermaybeanaccidentandnotintendedasanattackatall.Anexampleofthismightbeanemployeewhodeletesacriticalfilewithoutunderstandingitscriticalnature.

TechTip

TheInsideThreatOneofthehardestthreatsthatsecurityprofessionalswillhavetoaddressisthatoftheinsider.Sinceemployeesalreadyhaveaccesstotheorganizationanditsassets,additionalmechanismsneedtobeinplacetodetectattacksbyinsidersandtolessentheabilityoftheseattackstosucceed.

Employeesarenottheonlyinsidersthatorganizationsneedtobeconcernedabout.Often,numerousotherindividualshavephysicalaccesstocompanyfacilities.Custodialcrewsfrequentlyhaveunescortedaccessthroughoutthefacility,oftenwhennobodyelseisaround.Otherindividuals,suchascontractorsorpartners,mayhavenotonlyphysicalaccesstotheorganization’sfacilitiesbutalsoaccesstocomputersystemsandnetworks.AcontractorinvolvedinU.S.Intelligencecomputing,EdwardSnowden,waschargedwithespionagein2013afterhereleasedawiderangeofdataillustratingthetechnicalcapabilitiesofU.S.

intelligencesurveillancesystems.Heistheultimateinsiderwithhisnamebecomingsynonymouswiththeinsiderthreatissue.

CriminalOrganizationsAsbusinessesbecameincreasinglyreliantuponcomputersystemsandnetworks,andastheamountoffinancialtransactionsconductedviatheInternetincreased,itwasinevitablethatcriminalorganizationswouldeventuallyturntotheelectronicworldasanewtargettoexploit.CriminalactivityontheInternetatitsmostbasicisnodifferentfromcriminalactivityinthephysicalworld.Fraud,extortion,theft,embezzlement,andforgeryalltakeplaceintheelectronicenvironment.Onedifferencebetweencriminalgroupsandthe“average”hackeristhe

leveloforganizationthatcriminalelementsemployintheirattack.Criminalgroupstypicallyhavemoremoneytospendonaccomplishingthecriminalactivityandarewillingtospendextratimeaccomplishingthetaskprovidedthelevelofrewardattheconclusionisgreatenough.WiththetremendousamountofmoneythatisexchangedviatheInternetonadailybasis,thelevelofrewardforasuccessfulattackishighenoughtointerestcriminalelements.Attacksbycriminalorganizationsusuallyfallintothestructuredthreatcategory,whichischaracterizedbyagreateramountofplanning,alongerperiodoftimetoconducttheactivity,morefinancialbackingtoaccomplishit,andpossiblycorruptionof,orcollusionwith,insiders.

Nation-States,Terrorists,andInformationWarfareAsnationshaveincreasinglybecomedependentoncomputersystemsandnetworks,thepossibilitythattheseessentialelementsofsocietymightbetargetedbyorganizationsornationsdeterminedtoadverselyaffectanothernationhasbecomeareality.Manynationstodayhavedevelopedtosomeextentthecapabilitytoconductinformationwarfare.Thereareseveraldefinitionsforinformationwarfare,butasimpleoneisthatitiswarfareconductedagainsttheinformationandinformationprocessingequipmentusedbyanadversary.Inpractice,thisisamuchmorecomplicatedsubject,

becauseinformationnotonlymaybethetargetofanadversary,butalsomaybeusedasaweapon.Whateverdefinitionyouuse,informationwarfarefallsintothehighlystructuredthreatcategory.Thistypeofthreatischaracterizedbyamuchlongerperiodofpreparation(yearsisnotuncommon),tremendousfinancialbacking,andalargeandorganizedgroupofattackers.Thethreatmayincludeattemptsnotonlytosubvertinsidersbutalsotoplantindividualsinsideofapotentialtargetinadvanceofaplannedattack.

TechTip

InformationWarfareOnceonlytheconcernofgovernmentsandthemilitary,informationwarfaretodaycaninvolvemanyotherindividuals.Withthepotentialtoattackthevariouscivilian-controlledcriticalinfrastructures,securityprofessionalsinnongovernmentalsectorstodaymustalsobeconcernedaboutdefendingtheirsystemsagainstattackbyagentsofforeigngovernments.

Aninterestingaspectofinformationwarfareisthelistofpossibletargetsavailable.Wehavegrownaccustomedtotheideathat,duringwar,militaryforceswilltargetopposingmilitaryforcesbutwillgenerallyattempttodestroyaslittlecivilianinfrastructureaspossible.Ininformationwarfare,militaryforcesarecertainlystillakeytarget,butmuchhasbeenwrittenaboutothertargets,suchasthevariousinfrastructuresthatanationreliesonforitsdailyexistence.Water,electricity,oilandgasrefineriesanddistribution,bankingandfinance,telecommunications—allfallintothecategoryofcriticalinfrastructuresforanation.Criticalinfrastructuresarethosewhoselosswouldhavesevererepercussionsonthenation.Withcountriesrelyingsoheavilyontheseinfrastructures,itisinevitablethattheywillbeviewedasvalidtargetsduringconflict.Givenhowdependenttheseinfrastructuresareoncomputersystemsandnetworks,itisalsoinevitablethatthesesamecomputersystemsandnetworkswillbetargetedforacyberattackinaninformationwar.

AsdemonstratedbytheStuxnetattacks,andthecyberattacksinEstonia,theriskofnation-stateattacksisreal.Therehavebeennumerousaccusationsofintellectualpropertytheftbeingsponsoredby,andinsomecasesevenperformedby,nation-stateactors.Inaworldwhereinformationdominatesgovernment,business,andeconomies,thecollectionofinformationisthekeytosuccess,andwithlargerewards,thelistofcharacterswillingtospendsignificantresourcesishigh.

SecurityTrendsThebiggestchangeaffectingcomputersecuritythathasoccurredoverthelast30yearshasbeenthetransformationofthecomputingenvironmentfromlargemainframestoahighlyinterconnectednetworkofsmallersystems.ThisinterconnectionofsystemsistheInternetanditnowtouchesvirtuallyallsystems.Whatthishasmeantforsecurityisaswitchfromaclosedoperatingenvironmentinwhicheverythingwasfairlycontainedtooneinwhichaccesstoacomputercanoccurfromalmostanywhereontheplanet.Thishas,forobviousreasons,greatlycomplicatedthejobofthesecurityprofessional.Thetypeofindividualwhoattacksacomputersystemornetworkhas

alsoevolvedoverthelast30years.Asillustratedbythesampleofattackslistedpreviously,theattackershavebecomemorefocusedongainovernotoriety.Todaycomputerattacksareusedtostealandcommitfraudandothercrimesinthepursuitofmonetaryenrichment.Computercrimesarebigbusinesstoday,notjustbecauseitishardtocatchtheperpetrators,butalsobecausethenumberoftargetsislargeandtherewardsgreaterthanrobbinglocalstores.Overthepastseveralyearsawiderangeofcomputerindustryfirms

havebegunissuingannualsecurityreports.AmongthesefirmsisVerizon,whichhasissueditsannualDataBreachInvestigationsReport(DBIR)since2008andislaudedbecauseofitsbreadthanddepth.The2015DBIRwasbasedonover2,100databreachesand79,790securityincidentsin61countries.PerhapsthemostvaluableaspectoftheDBIRisits

identificationofcommondetailsthatresultinadatabreach.TheVerizonDBIRsareavailableatwww.verizonenterprise.com/DBIR/

Intheearlydaysofcomputers,securitywasconsideredtobeabinaryconditioninwhichyoursystemwaseithersecureornotsecure.Securityeffortsweremadetoachieveastateofsecurity,meaningthatthesystemwassecure.Today,thefocushaschanged.Inlightoftherevelationthatapurestateofsecurityisnotachievableinthebinarysense,thefocushasshiftedtooneofriskmanagement.Today,thequestionishowmuchriskyoursystemisexposedto,andfromwhatsources.

TargetsandAttacksTherearetwogeneralreasonsaparticularcomputersystemisattacked:eitheritisspecificallytargetedbytheattacker,oritisanopportunistictarget.

SpecificTargetInthiscase,theattackerhaschosenthetargetnotbecauseofthehardwareorsoftwaretheorganizationisrunningbutforanotherreason,perhapsapoliticalreason.Anexampleofthistypeofattackwouldbeanindividualinonecountryattackingagovernmentsysteminanother.Alternatively,theattackermaybetargetingtheorganizationaspartofahacktivistattack.Forexample,anattackermaydefacethewebsiteofacompanythatsellsfurcoatsbecausetheattackerfeelsthatusinganimalsinthiswayisunethical.Perpetratingsomesortofelectronicfraudisanotherreasonaspecificsystemmightbetargeted.Whateverthereason,anattackofthisnatureisdecideduponbeforetheattackerknowswhathardwareandsoftwaretheorganizationhas.

Themotivebehindmostcomputerattacksfallsintooneoftwocategories:1.Todeprivesomeonetheuseoftheirsystem.2.Tousesomeoneelse’ssystemtoenrichoneself.Insomecases,theuseofadenial-of-serviceattack(item1)precedestheactualheist(item2).

OpportunisticTargetThesecondtypeofattack,anattackagainstatargetofopportunity,isconductedagainstasitethathassoftwarethatisvulnerabletoaspecificexploit.Theattackers,inthiscase,arenottargetingtheorganization;instead,theyhavelearnedofavulnerabilityandaresimplylookingforanorganizationwiththisvulnerabilitythattheycanexploit.Thisisnottosaythatanattackermightnotbetargetingagivensectorandlookingforatargetofopportunityinthatsector,however.Forexample,anattackermaydesiretoobtaincreditcardorotherpersonalinformationandmaysearchforanyexploitablecompanywithcreditcardinformationinordertocarryouttheattack.Targetedattacksaremoredifficultandtakemoretimethanattacksona

targetofopportunity.Thelattersimplyreliesonthefactthatwithanypieceofwidelydistributedsoftware,therewillalmostalwaysbesomebodywhohasnotpatchedthesystem(orhasnotpatcheditproperly)astheyshouldhave.

MinimizingPossibleAvenuesofAttackUnderstandingthestepsanattackerwilltakeenablesyoutolimittheexposureofyoursystemandminimizethoseavenuesanattackermightpossiblyexploit.Therearemultipleelementstoasolidcomputerdefense,buttwoofthekeyelementsinvolvelimitinganattacker’savenuesofattack.Thefirststepanadministratorcantaketoreducepossibleattacksistoensurethatallpatchesfortheoperatingsystemandapplicationsare

installed.Manysecurityproblemsthatwereadabout,suchasvirusesandworms,exploitknownvulnerabilitiesforwhichpatchesexist.Thereasonsuchmalwarecausedsomuchdamageinthepastwasthatadministratorsdidnottaketheappropriateactionstoprotecttheirsystems.Thesecondstepanadministratorcantakeissystemhardening,which

involveslimitingtheservicesthatarerunningonthesystem.Onlyusingthoseservicesthatareabsolutelyneededdoestwothings:itlimitsthepossibleavenuesofattack(thoseserviceswithvulnerabilitiesthatcanbeexploited),anditreducesthenumberofservicestheadministratorhastoworryaboutpatchinginthefirstplace.Thisisoneoftheimportantfirststepsanyadministratorshouldtaketosecureacomputersystem.SystemhardeningiscoveredindetailinChapter14.Whiletherearenoiron-claddefensesagainstattack,orguaranteesthat

anattackwon’tbesuccessful,youcantakestepstoreducetheriskofloss.Thisisthebasisforthechangeinstrategyfromadefense-basedonetoonebasedonriskmanagement.RiskmanagementiscoveredindetailinChapter20.

ApproachestoComputerSecurityWhilemuchofthediscussionofcomputersecurityfocusesonhowsystemsareattacked,itisequallyimportanttoconsiderthestructureofdefenses.Therearethreemajorconsiderationswhensecuringasystem:

CorrectnessEnsuringthatasystemisfullyuptodate,withallpatchesinstalledandpropersecuritycontrolsinplace;thisgoesalongwaytowardminimizingrisk.Correctnessbeginswithasecuredevelopmentlifecycle(coveredinChapter18),continuesthroughpatchingandhardening(Chapters14and21),andculminatesinoperations(Chapters3,4,19,and20).

IsolationProtectingasystemfromunauthorizeduse,bymeansofaccesscontrolandphysicalsecurity.Isolationbeginswith

infrastructure(coveredinChapters9and10),continueswithaccesscontrol(Chapters8,11,and12),andincludestheuseofcryptography(Chapters5,6,and7).

ObfuscationMakingitdifficultforanadversarytoknowwhentheyhavesucceeded.Whetheraccomplishedbyobscurity,randomization,orobfuscation,increasingtheworkloadofanattackermakesitmoredifficultforthemtosucceedintheirattack.Obfuscationoccursthroughoutalltopics,asitisabuilt-inelement,whetherintheformofrandomnumbersincryptooraddressspacerandomizations,stackguards,orpointerencryptionattheoperatingsystemlevel.

Eachoftheseapproacheshasitsinherentflaws,buttakentogether,theycanprovideastrongmeansofsystemdefense.

EthicsAnymeaningfuldiscussionaboutoperationalaspectsofinformationsecuritymustincludethetopicofethics.Ethicsiscommonlydefinedasasetofmoralprinciplesthatguidesanindividual’sorgroup’sbehavior.Becauseinformationsecurityeffortsfrequentlyinvolvetrustingpeopletokeepsecretsthatcouldcauseharmtotheorganizationifrevealed,trustisafoundationalelementinthepeoplesideofsecurity.Andtrustisbuiltuponacodeofethics,anormthatallowseveryonetounderstandexpectationsandresponsibilities.Thereareseveraldifferentethicalframeworksthatcanbeappliedtomakingadecision,andthesearecoveredindetailinChapter25.Ethicsisadifficulttopic;separatingrightfromwrongiseasyinmany

cases,butinothercasesitismoredifficult.Forexample,writingavirusthatdamagesasystemisclearlybadbehavior,butiswritingawormthatgoesoutandpatchessystems,withouttheusers’permission,rightorwrong?Doestheendsjustifythemeans?Suchquestionsarethebasisofethicaldiscussionsthatdefinethechallengesfacedbysecuritypersonnel

onaregularbasis.

AdditionalReferences1.http://en.wikipedia.org/wiki/Timeline_of_computer_security_hacker_history2.http://www.informationisbeautiful.net/visualizations/worlds-biggest-

data-breaches-hacks/www.verizonenterprise.com/DBIR/

Chapter1Review

ChapterSummaryAfterreadingthischapterandcompletingthequizzes,youshouldunderstandthefollowingregardingsecuritythreatsandtrends.

Definecomputersecurity

Computersecurityisdefinedbyoperatinginamannerwherethesystemdoeswhatitissupposedtodoandonlywhatitissupposedtodo.

Informationsecurityisdefinedbytheinformationbeingprotectedfromunauthorizedaccessoralterationandyetisavailabletoauthorizedindividualswhenrequired.

Discusscommonthreatsandrecentcomputercrimesthathavebeencommitted

Thereareanumberofdifferentthreatstosecurity,includingvirusesandworms,intruders,insiders,criminalorganizations,terrorists,andinformationwarfareconductedbyforeigncountries.

Therearetwogeneralreasonsaparticularcomputersystemisattacked:itisspecificallytargetedbytheattacker,oritisatargetofopportunity.

Targetedattacksaremoredifficultandtakemoretimethanattacksonatargetofopportunity.

Thedifferenttypesofelectroniccrimefallintotwomaincategories:crimesinwhichthecomputerwasthetargetoftheattack,andincidentsinwhichthecomputerwasameansofperpetratingacriminalact.

Onesignificanttrendobservedoverthelastseveralyearshasbeentheincreaseinthenumberofcomputerattacksandtheireffectiveness.

Listanddiscussrecenttrendsincomputersecurity

Therearemanydifferentwaystoattackcomputersandnetworkstotakeadvantageofwhathasmadeshopping,banking,investment,andleisurepursuitsasimplematterof“draggingandclicking”formanypeople.

Thebiggestchangethathasoccurredinsecurityoverthelast30yearshasbeenthetransformationofthecomputingenvironmentfromlargemainframestoahighlyinterconnectednetworkofmuchsmallersystems.

Describecommonavenuesofattacks

Anattackercanuseacommontechniqueagainstawiderangeoftargetsinanopportunisticattack,onlysucceedingwheretheattackisviable.

Anattackercanemployavarietyoftechniquesagainstaspecifictargetwhenitisdesiredtoobtainaccesstoaspecificsystem.

Describeapproachestocomputersecurity

Therearethreemainapproachesanenterprisecanemploy,onebasedoncorrectness,oneinvolvingisolation,andoneinvolvingobfuscation.

Theidealmethodistoemployallthreetogether.

Discusstherelevantethicalissuesassociatedwithcomputersecurity

Ethicsiscommonlydefinedasasetofmoralprinciplesthatguidesanindividual’sorgroup’sbehaviors.

Becauseinformationsecurityeffortsfrequentlyinvolvetrustingpeopletokeepsecretsthatcouldcauseharmtotheorganizationifrevealed,trustisafoundationalelementinthepeoplesideofsecurity.

KeyTermscomputersecurity(1)criticalinfrastructure(11)elitehacker(9)hacker(9)hacking(9)hacktivist(12)highlystructuredthreat(11)informationwarfare(10)scriptkiddie(9)structuredthreat(10)unstructuredthreat(9)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.A(n)_______________ischaracterizedbyagreateramountofplanning,alongerperiodoftimetoconducttheactivity,morefinancialbackingtoaccomplishit,andthepossiblecorruptionof,or

collusionwith,insiders.

2.Ahackerwhoseactivitiesaremotivatedbyapersonalcauseorpositionisknownasa(n)_______________.

3.A(n)_______________isonewhoselosswouldhaveaseveredetrimentalimpactonthenation.

4._______________isconductedagainsttheinformationandinformationprocessingequipmentusedbyanadversary.

5.Actorswhodeliberatelyaccesscomputersystemsandnetworkswithoutauthorizationarecalled_______________.

6.A(n)_______________generallyisshort-terminnature,doesnotinvolvealargegroupofindividuals,doesnothavelargefinancialbacking,anddoesnotincludecollusionwithinsiders.

7.A(n)_______________isahighlytechnicallycompetentindividualwhoconductsintrusiveactivityontheInternetandiscapableofnotonlyexploitingknownvulnerabilitiesbutalsofindingnewvulnerabilities.

8.Theactofdeliberatelyaccessingcomputersystemsandnetworkswithoutauthorizationisgenerallyreferredtoas_______________.

9.A(n)_______________isanindividualwhodoesnothavethetechnicalexpertisetodevelopscriptsordiscovernewvulnerabilitiesinsoftwarebutwhohasjustenoughunderstandingofcomputersystemstobeabletodownloadandrunscriptsthatothershavedeveloped.

10.A(n)_______________ischaracterizedbyamuchlongerperiodofpreparation(yearsisnotuncommon),tremendousfinancialbacking,andalargeandorganizedgroupofattackers.

Multiple-ChoiceQuiz

1.Whichthreatsarecharacterizedbypossiblylongperiodsofpreparation(yearsisnotuncommon),tremendousfinancialbacking,alargeandorganizedgroupofattackers,andattemptstosubvertinsidersortoplantindividualsinsideapotentialtargetinadvanceofaplannedattack?

A.Unstructuredthreats

B.Structuredthreats

C.Highlystructuredthreats

D.Nation-stateinformationwarfarethreats

2.Inwhichofthefollowingisanattackerlookingforanyorganizationvulnerabletoaspecificexploitratherthanattemptingtogainaccesstoaspecificorganization?

A.Targetofopportunityattack

B.Targetedattack

C.Vulnerabilityscanattack

D.Informationwarfareattack

3.Theriseofwhichofthefollowinghasgreatlyincreasedthenumberofindividualswhoprobeorganizationslookingforvulnerabilitiestoexploit?

A.Viruswriters

B.Scriptkiddies

C.Hackers

D.Elitehackers

4.Forwhatreason(s)dosomesecurityprofessionalsconsiderinsidersmoredangerousthanoutsideintruders?

A.Employees(insiders)areeasilycorruptedbycriminalandother

organizations.

B.Insidershavetheaccessandknowledgenecessarytocauseimmediatedamagetotheorganization.

C.Insidershaveknowledgeofthesecuritysystemsinplaceandarebetterabletoavoiddetection.

D.BothBandC

5.Theactofdeliberatelyaccessingcomputersystemsandnetworkswithoutauthorizationisgenerallyknownas:

A.Computerintrusion

B.Hacking

C.Cracking

D.Probing

6.Whatisthemostcommonproblem/threatanorganizationfaces?A.Viruses/worms

B.Scriptkiddies

C.Hackers

D.Hacktivists

7.Warfareconductedagainsttheinformationandinformationprocessingequipmentusedbyanadversaryisknownas:

A.Hacking

B.Cyberterrorism

C.Informationwarfare

D.Networkwarfare

8.Anattackerwhofeelsthatusinganimalstomakefurcoatsis

unethicalandthusdefacesthewebsiteofacompanythatsellsfurcoatsisanexampleof:

A.Informationwarfare

B.Hacktivisim

C.Cybercrusading

D.Elitehacking

9.Criminalorganizationswouldnormallybeclassifiedaswhattypeofthreat?

A.Unstructured

B.Unstructuredbuthostile

C.Structured

D.Highlystructured

10.Whichofthefollowingindividualshavetheabilitytonotonlywritescriptsthatexploitvulnerabilitiesbutalsodiscovernewvulnerabilities?

A.Elitehackers

B.Scriptkiddies

C.Hacktivists

D.Insiders

EssayQuiz1.Rereadthevariousexamplesofcomputercrimesatthebeginningof

thischapter.Categorizeeachaseitheracrimewherethecomputerwasthetargetofthecriminalactivityoracrimeinwhichthecomputerwasatoolinaccomplishingthecriminalactivity.

2.Afriendofyourshasjustbeenhiredbyanorganizationasitscomputersecurityofficer.Yourfriendisabitnervousaboutthisnewjobandhascometoyou,knowingthatyouaretakingacomputersecurityclass,toaskyouradviceonmeasuresthatcanbetakenthatmighthelppreventanintrusion.Whatthreethingscanyousuggestthataresimplebutcantremendouslyhelplimitthepossibilityofanattack?

3.Discussthemajordifferencebetweenatargetofopportunityattackandatargetedattack.Whichdoyoubelieveisthemorecommonone?

LabProject

•LabProject1.1Anumberofdifferentexamplesofcomputercrimeswerediscussedinthischapter.Similaractivitiesseemtohappendaily.DoasearchontheInternettoseewhatotherexamplesyoucanfind.Tryandobtainthemostrecentexamplespossible.

chapter2 GeneralSecurityConcepts

I

“Apeoplethatvaluesitsprivilegesaboveitsprinciplessoonlosesboth.”

—DWIGHTD.EISENHOWER

Inthischapter,youwilllearnhowto

Definebasictermsassociatedwithcomputerandinformationsecurity

Identifythebasicapproachestocomputerandinformationsecurity

Identifythebasicprinciplesofcomputerandinformationsecurity

Distinguishamongvariousmethodstoimplementaccesscontrols

Describemethodsusedtoverifytheidentityandauthenticityofanindividual

Recognizesomeofthebasicmodelsusedtoimplementsecurityinoperatingsystems

nChapter1,youlearnedaboutsomeofthevariousthreatsthatwe,assecurityprofessionals,faceonadailybasis.Inthischapter,youstartexploringthefieldofcomputersecurity.Computersecurityhasaseries

offundamentalconceptsthatsupportthediscipline.Inthischapterwewillbeginwithanexaminationofsecuritymodelsandconceptsandproceedtoseehowtheyareoperationallyemployed.

BasicSecurityTerminologyThetermhackinghasbeenusedfrequentlyinthemedia.Ahackerwasonceconsideredanindividualwhounderstoodthetechnicalaspectsofcomputeroperatingsystemsandnetworks.Hackerswereindividualsyouturnedtowhenyouhadaproblemandneededextremetechnicalexpertise.Today,primarilyasaresultofthemedia,thetermisusedmoreoftentorefertoindividualswhoattempttogainunauthorizedaccesstocomputersystemsornetworks.Whilesomewouldprefertousethetermscrackerandcrackingwhenreferringtothisnefarioustypeofactivity,theterminologygenerallyacceptedbythepublicisthatofhackerandhacking.Arelatedtermthatmaysometimesbeseenisphreaking,whichrefersto

the“hacking”ofthesystemsandcomputersusedbyatelephonecompanytooperateitstelephonenetwork.

Thefieldofcomputersecurityconstantlyevolves,introducingnewtermsfrequently,whichareoftencoinedbythemedia.Makesuretolearnthemeaningoftermssuchashacking,phreaking,vishing,phishing,pharming,andspearphishing.Someofthesehavebeenaroundformanyyears,suchashacking,whereasothershaveappearedonlyinthelastfewyears,suchasspearphishing.

SecurityBasicsComputersecurityitselfisatermthathasmanymeaningsandrelatedterms.Computersecurityentailsthemethodsusedtoensurethatasystemissecure.Subjectssuchasauthenticationandaccesscontrolsmustbeaddressedinbroadtermsofcomputersecurity.Seldomintoday’sworldarecomputersnotconnectedtoothercomputersinnetworks.Thisthenintroducesthetermnetworksecuritytorefertotheprotectionofthemultiplecomputersandotherdevicesthatareconnectedtogether.Relatedtothesetwotermsaretwoothers:informationsecurityandinformationassurance,whichplacethefocusofthesecurityprocessnotonthehardwareandsoftwarebeingusedbutonthedatathatisprocessedbythem.Assurancealsointroducesanotherconcept,thatoftheavailabilityofthesystemsandinformationwhenwewantthem.Thecommonpressandmanyprofessionalshavesettledoncybersecurityasthetermtodescribethefield.StillanothertermthatmaybeheardinthesecurityworldisCOMSEC,whichstandsforcommunicationssecurityanddealswiththesecurityoftelecommunicationsystems.Cybersecurityhasbecomeregularheadlinenewsthesedays,with

reportsofbreak-ins,databreaches,fraud,andahostofothercalamities.Thegeneralpublichasbecomeincreasinglyawareofitsdependenceoncomputersandnetworksandconsequentlyhasalsobecomeinterestedin

thesecurityofthesesamecomputersandnetworks.Asaresultofthisincreasedattentionbythepublic,severalnewtermshavebecomecommonplaceinconversationsandprint.Termssuchashacking,virus,TCP/IP,encryption,andfirewallsarenowfrequentlyencounteredinmainstreamnewsmediaandhavefoundtheirwayintocasualconversations.Whatwasoncethepurviewofscientistsandengineersisnowpartofoureverydaylife.Withourincreaseddailydependenceoncomputersandnetworksto

conducteverythingfrommakingpurchasesatourlocalgrocerystore,banking,tradingstocks,andreceivingmedicaltreatmenttodrivingourchildrentoschool,ensuringthatcomputersandnetworksaresecurehasbecomeofparamountimportance.Computersandtheinformationtheymanipulatehasbecomeapartofvirtuallyeveryaspectofourlives.

The“CIA”ofSecurityAlmostfromitsinception,thegoalofcomputersecurityhasbeenthreefold:confidentiality,integrity,andavailability—the“CIA”ofsecurity.Thepurposeofconfidentialityistoensurethatonlythoseindividualswhohavetheauthoritytoviewapieceofinformationmaydoso.Nounauthorizedindividualshouldeverbeabletoviewdatatheyarenotentitledtoaccess.Integrityisarelatedconceptbutdealswiththegenerationandmodificationofdata.Onlyauthorizedindividualsshouldeverbeabletocreateorchange(ordelete)information.Thegoalofavailabilityistoensurethatthedata,orthesystemitself,isavailableforusewhentheauthorizeduserwantsit.

TechTip

CIAofSecurityWhilethereisnouniversalagreementonauthentication,auditability,andnonrepudiationasadditionstotheoriginalCIAofsecurity,thereislittledebateoverwhetherconfidentiality,integrity,andavailabilityarebasicsecurityprinciples.Understandtheseprinciples,becauseoneormoreofthemarethereasonmostsecurityhardware,software,policies,and

proceduresexist.

Asaresultoftheincreaseduseofnetworksforcommerce,twoadditionalsecuritygoalshavebeenaddedtotheoriginalthreeintheCIAofsecurity.Authenticationattemptstoensurethatanindividualiswhotheyclaimtobe.Theneedforthisinanonlinetransactionisobvious.Relatedtothisisnonrepudiation,whichdealswiththeabilitytoverifythatamessagehasbeensentandreceivedandthatthesendercanbeidentifiedandverified.Therequirementforthiscapabilityinonlinetransactionsshouldalsobereadilyapparent.Recentemphasisonsystemsassurancehasraisedthepotentialinclusionofthetermauditability,whichreferstowhetheracontrolcanbeverifiedtobefunctioningproperly.Insecurity,itisimperativethatwecantrackactionstoensurewhathasorhasnotbeendone.

TheOperationalModelofComputerSecurityFormanyyears,thefocusofsecuritywasonprevention.Ifwecouldpreventeveryonewhodidnothaveauthorizationfromgainingaccesstoourcomputersystemsandnetworks,thenweassumedthatwehadachievedsecurity.Protectionwasthusequatedwithprevention.Whilethebasicpremiseofthisistrue,itfailstoacknowledgetherealitiesofthenetworkedenvironmentoursystemsarepartof.Nomatterhowwellweseemtodoinpreventiontechnology,somebodyalwaysseemstofindawayaroundoursafeguards.Whenthishappens,oursystemisleftunprotected.Thus,weneedmultiplepreventiontechniquesandalsotechnologytoalertuswhenpreventionhasfailedandtoprovidewaystoaddresstheproblem.Thisresultsinamodificationtoouroriginalsecurityequationwiththeadditionoftwonewelements—detectionandresponse.Oursecurityequationthusbecomes:

Protection=Prevention+(Detection+Response)Thisisknownastheoperationalmodelofcomputersecurity.Everysecuritytechniqueandtechnologyfallsintoatleastoneofthethree

elementsoftheequation.ExamplesofthetypesoftechnologyandtechniquesthatrepresenteacharedepictedinFigure2.1.

•Figure2.1Sampletechnologiesintheoperationalmodelofcomputersecurity

CybersecurityFrameworkModelIn2013,PresidentObamasignedanexecutiveorderdirectingtheU.S.NationalInstituteofScienceandTechnology(NIST)toworkwithindustryanddevelopacybersecurityframework.Thiswasinresponsetoseveralsignificantcybersecurityeventswherethevictimcompaniesappearedtobeunprepared.Theresultingframework,titledFrameworkforImprovingCriticalInfrastructureCybersecurity,wascreatedasavoluntarysystem,basedonexistingstandards,guidelines,andpractices,tofacilitateadoptionandacceptanceacrossawidearrayofindustries.

TechTip

CybersecurityFrameworkTheNISTCybersecurityFrameworkisarisk-basedapproachtoimplementationofcybersecurityactivitiesinanenterprise.Theframeworkprovidesacommontaxonomyofstandards,guidelines,andpracticesthatcanbeemployedtostrengthencybersecurityefforts.TheframeworkcanbeobtainedfromNIST:

www.nist.gov/cyberframework/upload/cybersecurity-framework-021214-final.pdf

TheCybersecurityFrameworkprovidesacommontaxonomyandmechanismtoassistinaligningmanagementpracticeswithexistingstandards,guidelines,andpractices.Itspurposeistocomplementandenhanceriskmanagementeffortsthrough

1.Determiningtheircurrentcybersecurityposture2.Documentingtheirdesiredtargetstatewithrespecttocybersecurity3.Determiningandprioritizingimprovementandcorrectiveactions4.Measuringandmonitoringprogresstowardgoals5.Creatingacommunicationmechanismforcoordinationamongstakeholders

Theframeworkiscomposedoffivecorefunctions,asillustratedinFigure2.2.Twoofthesecorefunctions,IdentifyandProtect,describeactionstakenbeforeanincident.Detectisthecorefunctionassociatedwithintrusiondetectionorthebeginningofanincidentresponse.Thelasttwo,RespondandRecover,detailactionsthattakeplaceduringthepost-incidentresponse.Examplesoftheitemsundereachfunctionareillustratedinthefigure.Inadditiontothefivefunctions,theframeworkhaslevelsofimplementationsreferredtoastiers.Thesetiersrepresenttheorganization’sabilityfromPartial(Tier1)toAdaptive(Tier4).

•Figure2.2CybersecurityFrameworkcorefunctions

SecurityTenetsInadditiontotheCIAelements,thereareadditionaltenetsthatformabasisforsystemsecurity.Thethreeoperationaltenetsfoundinsecuredeploymentsaresessionmanagement,exceptionmanagement,andconfigurationmanagement.

SessionManagementSessionmanagementisthesetofactivitiesemployedtoestablishacommunicationchannelbetweentwoparties,identifyingeachinamannerthatallowsfutureactivitywithoutrenewedauthentication.Sessionmanagementallowsanapplicationtoauthenticateonceandhavesubsequentactivitiesascribedtotheauthenticateduser.Sessionsarefrequentlyusedinwebapplicationstopreservestateanduserinformationbetweennormallystatelessclicks.SessionsaretypicallyidentifiedbyanIDthatisknowntobothsidesof

theconversation.ThisIDcanbeusedasatokenforfutureidentification.Ifconfidentialityisrequired,thenthechannelshouldbesecuredbyanappropriatelevelofcryptographicprotection.

TechTip

SessionManagementCheatSheetSessionmanagementisacommontaskforwebapplications,andtheOpenWebApplicationSecurityProject(OWASP)hasacheatsheettoassistinthecorrectimplementationofsessionmanagement.Seehttps://www.owasp.org/index.php/Session_Management_Cheat_Sheet.

Sessionmanagementincludesalltheactivitiesnecessarytomanagethesession,fromestablishment,duringuse,andatcompletionoftheconversation.Becausethesessionrepresentsthecontinuityofasecurity

conditionestablishedduringauthentication,thelevelofprotectionthatshouldbeaffordedtothesessionIDshouldbecommensuratewiththelevelofsecurityinitiallyestablished.

ExceptionManagementExceptionsaretheinvocationofconditionsthatfalloutsidethenormalsequenceofoperation.Whetherbyerrorormaliciousaction,exceptionsarechangestonormalprocessingandneedtobemanaged.Thespecialprocessingrequiredbyconditionsthatfalloutsidenormalparameterscanresultinerrorseitherlocallyorinfollow-onprocessesinasystem.Thehandlingofexceptions,referredtoasexceptionhandling,isanimportantconsiderationduringsoftwaredevelopment.Exceptionmanagementismorethanjustexceptionhandlinginsoftware

development.Whentheoperationofasystemencountersanexception,whetheritisinvokedbyaperson,process,technology,orcombination,thesystemmusteffectivelyhandlethecondition.Thiscanmeanmanydifferentthings,sometimesevenoperatingoutsidenormalpolicylimits.Exceptionmanagementcanalsobenontechnicalinnature:systemsorenvironmentsthatcannotfolloworganizationalsecuritypolicy,forexample,mustbedocumented,exceptionsmustbeapproved,andmitigationsmustbeputinplacetolowertheriskassociatedwithexceptionstopolicy.Thebottomlineissimple:eitherthesystemmusthandletheconditionandrecover,oritmustfailandberecoveredbyseparateaction.Designinginexceptionhandlingmakesasystemmoreresilient,becauseexceptionswillhappen,andhowtheyarehandledistheonlyunknownoutcome.

ConfigurationManagementConfigurationmanagementiskeytotheproperoperationofITsystems.ITsystemsarefirstandforemostsystems,groupsofelementsthatworktogethertoachieveadesiredresultantprocess.Theproperconfigurationandprovisioningofallofthecomponentsinasystemisessentialtotheproperoperationofthesystem.Thedesignandoperationoftheelements

toensuretheproperfunctionalenvironmentofasystemisreferredtoasconfigurationmanagement.ConfigurationmanagementisakeyoperationprincipleandisthoroughlycoveredinChapter21.

SecurityApproachesTherearemultipleapproachesanorganizationcantaketoaddresstheprotectionofitsnetworks:ignoresecurityissues,providehostsecurity,providenetwork-levelsecurity,orprovideacombinationofthelattertwo.Themiddletwo,hostsecurityandnetwork-levelsecurity,havepreventionaswellasdetectionandresponsecomponents.Ratherthanviewthesetwoapproachesasindependentsolutions,amatureorganizationusesbothinacomplementaryfashion.Ifanorganizationdecidestoignoresecurity,ithaschosentoutilizethe

minimalamountofsecuritythatisprovidedwithitsworkstations,servers,anddevices.Noadditionalsecuritymeasureswillbeimplemented.Each“outofthebox”systemhascertainsecuritysettingsthatcanbeconfigured,andtheyshouldbe.Toactuallyprotectanentirenetwork,however,requiresworkinadditiontothefewprotectionmechanismsthatcomewithsystemsbydefault.

TechTip

GotNetwork?AclassicblackT-shirtinthesecurityindustrysays“gotroot?”It’satakeoffonthesuccessfuladcampaign“gotmilk?”andindicatesthepowerofrootprivilege.Similarto“gotroot?”is“gotnetwork?”,forifyoutruly“own”thenetwork,thenyouhavesignificantcontroloverwhatpassesacrossitandcanresultininformationdisclosure.Toensureasecureposture,bothnetworkandhostaccesslevelsmustbecontrolled.

HostSecurityHostsecuritytakesagranularviewofsecuritybyfocusingonprotecting

eachcomputeranddeviceindividuallyinsteadofaddressingprotectionofthenetworkasawhole.Whenhostsecurityisused,eachcomputerisreliedupontoprotectitself.Ifanorganizationdecidestoimplementonlyhostsecurityanddoesnotincludenetworksecurity,thereisahighprobabilityofintroducingoroverlookingvulnerabilities.Mostenvironmentsarefilledwithdifferentoperatingsystems(Windows,UNIX,Linux,OSX),differentversionsofthoseoperatingsystems,anddifferenttypesofinstalledapplications.Eachoperatingsystemhassecurityconfigurationsthatdifferfromthoseofothersystems,anddifferentversionsofthesameoperatingsystemmayinfacthaveconfigurationvariationsbetweenthem.Hostsecurityisimportantandshouldalwaysbeaddressed.Security,

however,shouldnotstopthere,ashostsecurityisacomplementaryprocesstobecombinedwithnetworksecurity.Ifindividualhostcomputershavevulnerabilitiesembodiedwithinthem,thennetworksecuritycanprovideanotherlayerofprotectionthatwill,hopefully,stopanyintruderswhohavegottenthatfarintotheenvironment.

Alongtimediscussionhascenteredonwhetherhost-ornetwork-basedsecurityismoreimportant.Mostsecurityexpertsnowgenerallyagreethatacombinationofbothisneededtoadequatelyaddressthewiderangeofpossiblesecuritythreats.Certainattacksaremoreeasilyspottedandsomeattacksaremoreeasilypreventedusingtoolsdesignedforoneortheotheroftheseapproaches.

NetworkSecurityInsomesmallerenvironments,hostsecuritybyitselfmaybeanoption,butassystemsbecomeconnectedintonetworks,securityshouldincludetheactualnetworkitself.Innetworksecurity,anemphasisisplacedoncontrollingaccesstointernalcomputersfromexternalentities.Thiscontrolcanbethroughdevicessuchasrouters,firewalls,authenticationhardwareandsoftware,encryption,andintrusiondetectionsystems(IDSs).

Networkenvironmentstendtobeuniqueentitiesbecauseusuallynotwonetworkshaveexactlythesamenumberofcomputers,thesameapplicationsinstalled,thesamenumberofusers,theexactsameconfigurations,orthesameavailableservers.Theywillnotperformthesamefunctionsorhavethesameoverallarchitecture.Sincenetworkshavesomanyvariations,therearemanydifferentwaysinwhichtheycanbeprotectedandconfigured.Thischaptercoverssomefoundationalapproachestonetworkandhostsecurity.Eachapproachmaybeimplementedinamyriadofways,butbothnetworkandhostsecurityneedtobeaddressedforaneffectivetotalsecurityprogram.

TechTip

SecurityDesignPrinciplesTheeightdesignprinciplesfromSaltzerandSchroederarelistedandparaphrasedhere:

LeastprivilegeUseminimumprivilegesnecessarytoperformatask.

SeparationofprivilegeAccessshouldbebasedonmorethanoneitem.Fail-safedefaultsDenybydefault(implicitdeny)andonlygrantaccesswithexplicitpermission.

EconomyofmechanismMechanismsshouldbesmallandsimple.CompletemediationProtectionmechanismsshouldcovereveryaccesstoeveryobject.

OpendesignProtectionmechanismsshouldnotdependuponsecrecyofthemechanismitself.

LeastcommonmechanismProtectionmechanismsshouldbesharedtotheleastdegreepossibleamongusers.

PsychologicalacceptabilityProtectionmechanismsshouldnotimpactusers,oriftheydo,theimpactshouldbeminimal.

Ref:J.H.SaltzerandM.D.Schroeder,“TheProtectionofInformationinComputerSystems,”Proc.IEEE,vol.63,no.9,1975,pp.1278–1308.

SecurityPrinciples

Inthemid-1970s,twocomputerscientistsfromMIT,JeromeSaltzerandMichaelSchroeder,publishedapaperondesignprinciplesforasecurecomputersystem.TheSaltzerandSchroederpaper,titled“TheProtectionofInformationinComputerSystems,”hasbeenhailedasaseminalworkincomputersecurity,andtheeightdesignprinciplesareasrelevanttodayastheywerein1970s.Theseprinciplesareusefulinsecuresystemdesignandoperation.

LeastPrivilegeOneofthemostfundamentalprinciplesinsecurityisleastprivilege.Thisconceptisapplicabletomanyphysicalenvironmentsaswellasnetworkandhostsecurity.Leastprivilegemeansthatasubject(whichmaybeauser,application,orprocess)shouldhaveonlythenecessaryrightsandprivilegestoperformitstaskwithnoadditionalpermissions.Limitinganobject’sprivilegeslimitstheamountofharmthatcanbecaused,thuslimitinganorganization’sexposuretodamage.Usersmayhaveaccesstothefilesontheirworkstationsandaselectsetoffilesonafileserver,butnoaccesstocriticaldatathatisheldwithinthedatabase.Thisrulehelpsanorganizationprotectitsmostsensitiveresourcesandhelpsensurethatwhoeverisinteractingwiththeseresourceshasavalidreasontodoso.

TryThis!ExamplesoftheLeastPrivilegePrincipleThesecurityconceptofleastprivilegeisnotuniquetocomputersecurity.Ithasbeenpracticedbyorganizationssuchasfinancialinstitutionsandgovernmentsforcenturies.Basicallyitsimplymeansthatindividualsaregivenonlytheabsoluteminimumofprivilegesthatarerequiredtoaccomplishtheirassignedjob.Examinethesecuritypoliciesthatyourorganizationhasinplaceandseeifyoucanidentifyexamplesofwheretheprincipleofleastprivilegehasbeenused.

Theconceptofleastprivilegeappliestomorenetworksecurityissuesthanjustprovidinguserswithspecificrightsandpermissions.Whentrustrelationshipsarecreated,theyshouldnotbeimplementedinsuchaway

thateveryonetrustseachothersimplybecauseitiseasier.Onedomainshouldtrustanotherforveryspecificreasons,andtheimplementersshouldhaveafullunderstandingofwhatthetrustrelationshipallowsbetweentwodomains.Ifonedomaintrustsanother,doalloftheusersautomaticallybecometrusted,andcantheythuseasilyaccessanyandallresourcesontheotherdomain?Isthisagoodidea?Isthereamoresecurewayofprovidingthesamefunctionality?Ifatrustedrelationshipisimplementedsuchthatusersinonegroupcanaccessaplotterorprinterthatisavailableononlyonedomain,itmightmakesensetosimplypurchaseanotherplottersothatother,morevaluableorsensitiveresourcesarenotaccessiblebytheentiregroup.Anotherissuethatfallsundertheleastprivilegeconceptisthesecurity

contextinwhichanapplicationruns.Allapplications,scripts,andbatchfilesruninthesecuritycontextofaspecificuseronanoperatingsystem.Theyexecutewithspecificpermissionsasiftheywereauser.TheapplicationmaybeMicrosoftWordandruninthespaceofaregularuser,oritmaybeadiagnosticprogramthatneedsaccesstomoresensitivesystemfilesandsomustrununderanadministrativeuseraccount,oritmaybeaprogramthatperformsbackupsandsoshouldoperatewithinthesecuritycontextofabackupoperator.Thecruxofthisissueisthataprogramshouldexecuteonlyinthesecuritycontextthatisneededforthatprogramtoperformitsdutiessuccessfully.Inmanyenvironments,peopledonotreallyunderstandhowtomakeprogramsrununderdifferentsecuritycontexts,oritmayjustseemeasiertohaveallprogramsrunundertheadministratoraccount.Ifattackerscancompromiseaprogramorservicerunningundertheadministratoraccount,theyhaveeffectivelyelevatedtheiraccesslevelandhavemuchmorecontroloverthesystemandmanymorewaystocausedamage.

TryThis!ControlofResourcesBeingabletoapplytheappropriatesecuritycontroltofileandprintresourcesisanimportant

aspectoftheleastprivilegesecurityprinciple.Howthisisimplementedvariesdependingontheoperatingsystemthatthecomputerruns.Checkhowtheoperatingsystemthatyouuseprovidesfortheabilitytocontrolfileandprintresources.

SeparationofPrivilegeProtectionmechanismscanbeemployedtograntaccessbasedonavarietyoffactors.Oneofthekeyprinciplesistobasedecisionsonmorethanasinglepieceofinformation.Theprincipleofseparationofprivilegestatesthattheprotectionmechanismshouldbeconstructedsothatitusesmorethanonepieceofinformationtomakeaccessdecisions.Applyingthisprincipletothepeoplesideofthesecurityfunctionresultsintheconceptofseparationofduties.Theprincipleofseparationofprivilegeisapplicabletophysical

environmentsaswellasnetworkandhostsecurity.Whenappliedtopeople’sactions,separationofdutiesspecifiesthatforanygiventask,morethanoneindividualneedstobeinvolved.Thetaskisbrokenintodifferentduties,eachofwhichisaccomplishedbyaseparateindividual.Byimplementingataskinthismanner,nosingleindividualcanabusethesystemforhisorherowngain.Thisprinciplehasbeenimplementedinthebusinessworld,especiallyfinancialinstitutions,formanyyears.Asimpleexampleisasysteminwhichoneindividualisrequiredtoplaceanorderandaseparatepersonisneededtoauthorizethepurchase.Whileseparationofdutiesprovidesacertainlevelofchecksand

balances,itisnotwithoutitsowndrawbacks.Chiefamongtheseisthecostrequiredtoaccomplishthetask.Thiscostismanifestedinbothtimeandmoney.Morethanoneindividualisrequiredwhenasinglepersoncouldaccomplishthetask,thuspotentiallyincreasingthecostofthetask.Inaddition,withmorethanoneindividualinvolved,acertaindelaycanbeexpectedbecausethetaskmustproceedthroughitsvarioussteps.

Fail-SafeDefaultsToday,theInternetisnolongerthefriendlyplaygroundofresearchersthatitoncewas.Thishasresultedindifferentapproachesthatmightatfirst

seemlessthanfriendlybutthatarerequiredforsecuritypurposes.Fail-safedefaultsisaconceptthatwhensomethingfails,itshoulddosotoasafestate.Oneapproachisthataprotectionmechanismshoulddenyaccessbydefault,andgrantaccessonlywhenexplicitpermissionexists.Thisissometimescalleddefaultdeny,andthecommonoperationaltermforthisapproachisimplicitdeny.Frequentlyinthenetworkworld,administratorsmakemanydecisions

concerningnetworkaccess.Oftenaseriesofruleswillbeusedtodeterminewhetherornottoallowaccess(whichisthepurposeofanetworkfirewall).Ifaparticularsituationisnotcoveredbyanyoftheotherrules,theimplicitdenyapproachstatesthataccessshouldnotbegranted.Inotherwords,ifnorulewouldallowaccess,thenaccessshouldnotbegranted.Implicitdenyappliestosituationsinvolvingbothauthorizationandaccess.Thealternativetoimplicitdenyistoallowaccessunlessaspecificrule

forbidsit.Anotherexampleofthesetwoapproachesisinprogramsthatmonitorandblockaccesstocertainwebsites.Oneapproachistoprovidealistofspecificsitesthatauserisnotallowedtoaccess.Accesstoanysitenotonthelistwouldbeimplicitlyallowed.Theoppositeapproach(theimplicitdenyapproach)wouldblockallaccesstositesthatarenotspecificallyidentifiedasauthorized.Asyoucanimagine,dependingonthespecificapplication,oneortheotherapproachwillbemoreappropriate.Whichapproachyouchoosedependsonthesecurityobjectivesandpoliciesofyourorganization.

Implicitdenyisanotherfundamentalprincipleofsecurityandstudentsneedtobesurethattheyunderstandthisprinciple.Similartoleastprivilege,thisprinciplestatesthatifyouhaven’tspecificallybeenallowedaccess,thenitshouldbedenied.

EconomyofMechanism

Thetermssecurityandcomplexityareoftenatoddswitheachother,becausethemorecomplexsomethingis,theharderitistounderstand,andyoucannottrulysecuresomethingifyoudonotunderstandit.Anotherreasoncomplexityisaproblemwithinsecurityisthatitusuallyallowstoomanyopportunitiesforsomethingtogowrong.Ifanapplicationhas4000linesofcode,therearealotfewerplacesforbufferoverflows,forexample,thaninanapplicationoftwomillionlinesofcode.Theprincipleofeconomyofmechanismisdescribedasalwaysusingsimplesolutionswhenavailable.

Keepitsimple:Anothermethodoflookingattheprincipleofeconomyofmechanismisthattheprotectionmechanismshouldbesmallandsimple.

Anexampleoftheprincipleconcernsthenumberofservicesthatyouallowyoursystemtorun.Defaultinstallationsofcomputeroperatingsystemsoftenleavemanyservicesrunning.Thekeep-it-simpleprincipletellsustoeliminateordisablethoseservicesthatwedon’tneed.Thisisalsoagoodideafromasecuritystandpointbecauseitresultsinfewerapplicationsthatcanbeexploitedandfewerservicesthattheadministratorisresponsibleforsecuring.Thegeneralruleofthumbistoeliminateordisableallnonessentialservicesandprotocols.Thisofcourseleadstothequestion,howdoyoudeterminewhetheraserviceorprotocolisessentialornot?Ideally,youshouldknowwhatyourcomputersystemornetworkisbeingusedfor,andthusyoushouldbeabletoidentifyandactivateonlythoseelementsthatareessential.Foravarietyofreasons,thisisnotaseasyasitsounds.Alternatively,astringentsecurityapproachthatonecantakeistoassumethatnoserviceisnecessary(whichisobviouslyabsurd)andactivateservicesandportsonlyastheyarerequested.Whateverapproachistaken,thereisanever-endingstruggletotrytostrikeabalancebetweenprovidingfunctionalityandmaintainingsecurity.

CompleteMediationOneofthefundamentaltenetsofaprotectionsystemistocheckallaccessrequestsforpermission.Eachandeverytimeasubjectrequestsaccesstoanobject,thepermissionmustbechecked;otherwiseanattackermightgainunauthorizedaccesstoanobject.Completemediationreferstotheconceptthateachandeveryrequestshouldbeverified.Whenpermissionsareverifiedthefirsttime,andtheresultiscachedforsubsequentuse,performancemaybeincreased,butthisalsoopensthedoortopermissionerrors.Shouldapermissionchangesubsequenttothefirstuse,thischangewouldnotbeappliedtotheoperationsaftertheinitialcheck.Completemediationalsoreferstoensuringthatalloperationsgo

throughtheprotectionmechanism.Whensecuritycontrolsareaddedafterthefact,itisimportanttomakecertainthatallprocessflowsarecoveredbythecontrols,includingexceptionsandout-of-bandrequests.Ifanautomatedprocessischeckedinonemanner,butamanualpaperbackupprocesshasaseparatepath,itisimportanttoensureallchecksarestillinplace.Whenasystemundergoesdisasterrecoveryorbusinesscontinuityprocesses,orbackupand/orrestoreprocesses,thesetoorequirecompletemediation.

OpenDesignTheprincipleofopendesignholdsthattheprotectionofanobjectshouldnotrelyuponsecrecyoftheprotectionmechanismitself.Thisprinciplehasbeenlongprovenincryptographiccircles,wherehidingthealgorithmultimatelyfailsandthetrueprotectionreliesuponthesecrecyandcomplexityofthekeys.Theprincipledoesnotexcludetheideaofusingsecrecy,butmerelystatesthat,onthefaceofit,secrecyofmechanismisnotsufficientforprotection.Anotherconceptinsecuritythatshouldbediscussedinthiscontextis

theideaofsecuritythroughobscurity.Inthiscase,securityisconsideredeffectiveiftheenvironmentandprotectionmechanismsareconfusingorthoughttobenotgenerallyknown.Securitythroughobscurityusesthe

approachofprotectingsomethingbyhidingit.Noncomputerexamplesofthisconceptincludehidingyourbriefcaseorpurseifyouleaveitinthecarsothatitisnotinplainview,hidingahousekeyunderadoormatorinaplanter,orpushingyourfavoriteicecreamtothebackofthefreezersothateveryoneelsethinksitisallgone.Theideaisthatifsomethingisoutofsight,itisoutofmind.Thisapproach,however,doesnotprovideactualprotectionoftheobject.Someonecanstillstealthepursebybreakingintothecar,liftthedoormatandfindthekey,ordigthroughtheitemsinthefreezertofindyourfavoriteicecream.Securitythroughobscuritymaymakesomeoneworkalittlehardertoaccomplishatask,butitdoesnotpreventanyonefromeventuallysucceeding.

TechTip

SecurityThroughObscurityTheprincipleofopendesignandthepracticeofsecuritybyobscuritymayseematoddswitheachother,butinrealitytheyarenot.Theprincipleofopendesignstatesthatsecrecyitselfcannotberelieduponasameansofprotection.Thepracticeofsecuritythroughobscurityisaprovenmethodofincreasingtheworkfactorthatanadversarymustexpendtosuccessfullyattackasystem.Byitself,obscurityisnotgoodprotection,butitcancomplementothercontrolswhenbothareproperlyemployed.

Similarapproachesareseenincomputerandnetworksecuritywhenattemptingtohidecertainobjects.Anetworkadministratormay,forinstance,moveaservicefromitsdefaultporttoadifferentportsothatotherswillnotknowhowtoaccessitaseasily,orafirewallmaybeconfiguredtohidespecificinformationabouttheinternalnetworkinthehopethatpotentialattackerswillnotobtaintheinformationforuseinanattackonthenetwork.Inmostsecuritycircles,securitythroughobscurityisconsideredapoor

approach,especiallyifitistheonlyapproachtosecurity.Securitythroughobscuritysimplyattemptstohideanobject;itdoesn’timplementasecuritycontroltoprotectit.Anorganizationcanusesecuritythrough

obscuritymeasurestotrytohidecriticalassets,butothersecuritymeasuresshouldalsobeemployedtoprovideahigherlevelofprotection.Forexample,ifanadministratormovesaservicefromitsdefaultporttoamoreobscureport,anattackercanstillactuallyfindthisservice;thusafirewallshouldbeusedtorestrictaccesstotheservice.Mostpeopleknowthatevenifyoudoshoveyouricecreamtothebackofthefreezer,someonemayeventuallyfindit.

LeastCommonMechanismTheprincipleofleastcommonmechanismstatesthatmechanismsusedtoaccessresourcesshouldbededicatedandnotshared.Sharingofmechanismsallowsapotentialcross-overbetweenchannelsresultinginaprotectionfailuremode.Forexample,ifthereisamodulethatenablesemployeestochecktheirpayrollinformation,aseparatemoduleshouldbeemployedtochangetheinformation,lestausergainaccesstochangeversusreadaccess.Althoughsharingandreusearegoodinonesense,theycanrepresentasecurityriskinanother.Commonexamplesoftheleastcommonmechanismanditsisolation

principleaboundinordinarysystems.Sandboxingisameansofseparatingtheoperationofanapplicationfromtherestoftheoperatingsystem.Virtualmachinesperformthesametaskbetweenoperatingsystemsonasinglepieceofhardware.Instantiatingsharedlibraries,inwhichseparateinstantiationoflocalclassesenablesseparatebutequalcoding,isyetanother.Thekeyistoprovideameansofisolationbetweenprocessessoinformationcannotflowbetweenseparateusersunlessspecificallydesignedtodoso.

Itoftenamazessecurityprofessionalshowfrequentlyindividualsrelyonsecuritythroughobscurityastheirmainlineofdefense.Relyingonsomepieceofinformationremainingsecretisgenerallynotagoodidea.Thisisespeciallytrueinthisageofreverse-engineering,whereindividualsanalyzethebinariesforprogramstodiscoverembeddedpasswordsorcryptographickeys.Thebiggestproblemwithrelyingonsecuritythroughobscurityisthatifitfailsandthe

secretbecomesknown,thereoftenisnoeasywaytomodifythesecrettore-secureit.

PsychologicalAcceptabilityPsychologicalacceptabilityreferstotheusers’acceptanceofsecuritymeasures.Usersplayakeyroleintheoperationofasystem,andifsecuritymeasuresareperceivedtobeanimpedimenttotheworkauserisresponsiblefor,thenanaturalconsequencemaybethattheuserbypassesthecontrol.Althoughausermayunderstandthatthiscouldresultinasecurityproblem,theperceptionthatitdoesresultintheirperformancefailurewillpresentpressuretobypassit.Psychologicalacceptabilityisoftenoverlookedbysecurity

professionalsfocusedontechnicalissuesandhowtheyseethethreat.Theyarefocusedonthethreat,whichistheirprofessionalresponsibility,sothefocusonsecurityisnaturalanditalignswiththeirprofessionalresponsibilities.Thisalignmentbetweensecurityandprofessionalworkresponsibilitiesdoesnotalwaystranslatetootherpositionsinanorganization.Securityprofessionals,particularlythosedesigningthesecuritysystems,shouldnotonlybeawareofthisconcept,butpayparticularattentiontohowsecuritycontrolswillbeviewedbyworkersinthecontextoftheirworkresponsibility,notwithrespecttosecurityforitsownsake.

DefenseinDepthDefenseindepthisaprinciplethatischaracterizedbytheuseofmultiple,differentdefensemechanismswithagoalofimprovingthedefensiveresponsetoanattack.Anothertermfordefenseindepthislayeredsecurity.Singlepointsoffailurerepresentjustthat,anopportunitytofail.Byusingmultipledefensesthataredifferent,withdifferingpointsoffailure,asystembecomesstronger.Whileonedefensemechanismmaynotbe100percenteffective,theapplicationofaseconddefensemechanismtotheitemsthatsucceedinbypassingthefirstmechanismprovidesastrongerresponse.Thereareacoupleofdifferentmechanismsthatcanbe

employedinadefense-in-depthstrategy:layeredsecurityanddiversityofdefense.Togethertheseprovideadefense-in-depthstrategythatisstrongerthananysinglelayerofdefense.Abankdoesnotprotectthemoneythatitstoresonlybyusingavault.It

hasoneormoresecurityguardsasafirstdefensetowatchforsuspiciousactivitiesandtosecurethefacilitywhenthebankisclosed.Itmayhavemonitoringsystemsthatwatchvariousactivitiesthattakeplaceinthebank,whetherinvolvingcustomersoremployees.Thevaultisusuallylocatedinthecenterofthefacility,andthustherearelayersofroomsorwallsbeforearrivingatthevault.Thereisaccesscontrol,whichensuresthatthepeopleenteringthevaulthavetobegivenauthorizationbeforehand.Andthesystems,includingmanualswitches,areconnecteddirectlytothepolicestationincaseadeterminedbankrobbersuccessfullypenetratesanyoneoftheselayersofprotection.Networksshouldutilizethesametypeoflayeredsecurityarchitecture.

Thereisno100percentsecuresystem,andthereisnothingthatisfoolproof,soasinglespecificprotectionmechanismshouldneverbesolelyreliedupon.Itisimportantthateveryenvironmenthavemultiplelayersofsecurity.Theselayersmayemployavarietyofmethods,suchasrouters,firewalls,networksegments,IDSs,encryption,authenticationsoftware,physicalsecurity,andtrafficcontrol.Thelayersneedtoworktogetherinacoordinatedmannersothatonedoesnotimpedeanother’sfunctionalityandintroduceasecurityhole.Asanexample,considerthestepsanintrudermighthavetotaketo

accesscriticaldataheldwithinacompany’sback-enddatabase.TheintruderfirsthastopenetratethefirewallandusepacketsandmethodsthatwillnotbeidentifiedanddetectedbytheIDS(moreinformationonthesedevicescanbefoundinChapter13).Theattackernexthastocircumventaninternalrouterperformingpacketfiltering,andthenpossiblypenetrateanotherfirewallusedtoseparateoneinternalnetworkfromanother(seeFigure2.3).Fromthere,theintrudermustbreaktheaccesscontrolsthatareonthedatabase,whichmeanshavingtodoadictionaryorbrute-forceattacktobeabletoauthenticatetothedatabasesoftware.Oncetheintruder

hasgottenthisfar,thedatastillneedstobelocatedwithinthedatabase.Thismayinturnbecomplicatedbytheuseofaccesscontrollistsoutliningwhocanactuallyviewormodifythedata.Thatisalotofwork.

•Figure2.3Layeredsecurity

Thisexampleillustratesthedifferentlayersofsecuritymanyenvironmentsemploy.Itisimportanttoimplementseveraldifferentlayersbecauseifintruderssucceedatonelayer,youwanttobeabletostopthematthenext.Theredundancyofdifferentprotectionlayersassuresthatthereisnoonesinglepointoffailurepertainingtosecurity.Ifanetworkusedonlyafirewalltoprotectitsassets,anattackerabletopenetratethisdevicesuccessfullywouldfindtherestofthenetworkopenandvulnerable.Anexampleofhowdifferentsecuritymethodscanworkagainsteach

otherisexemplifiedwhenfirewallsencounterencryptednetworktraffic.Anorganizationmayutilizeencryptionsothatanoutsidecustomercommunicatingwithaspecificwebserverisassuredthatsensitivedatabeingexchangedisprotected.IfthisencrypteddataisencapsulatedwithinSecureSocketsLayer(SSL)orTransportLayerSecurity(TLS)packetsandthensentthroughafirewall,thefirewallmaynotbeabletoreadthepayloadinformationintheindividualpackets.Thelayersusuallyaredepictedstartingatthetop,withmoregeneral

typesofprotection,andprogressingdownwardthrougheachlayer,withincreasinggranularityateachlayerasyougetclosertotheactualresource,asyoucanseeinFigure2.4.Thisisbecausethetop-layerprotectionmechanismisresponsibleforlookingatanenormousamountoftraffic,anditwouldbeoverwhelmingandcausetoomuchofaperformancedegradationifeachaspectofthepacketwereinspected.Instead,eachlayerusuallydigsdeeperintothepacketandlooksforspecificitems.Layersthatareclosertotheresourcehavetodealwithonlyafractionofthetrafficthatthetop-layersecuritymechanismdoes,andthuslookingdeeperandatmoregranularaspectsofthetrafficwillnotcauseasmuchofaperformancehit.

•Figure2.4Variouslayersofsecurity

DiversityofDefenseDiversityofdefenseisaconceptthatcomplementstheideaofvariouslayersofsecurity.Itinvolvesmakingdifferentlayersofsecuritydissimilarsothatevenifattackersknowhowtogetthroughasystemthatcomprisesonelayer,theymaynotknowhowtogetthroughadifferenttypeoflayerthatemploysadifferentsystemforsecurity.Ifanenvironmenthastwofirewallsthatformademilitarizedzone

(DMZ),forexample,onefirewallmaybeplacedattheperimeteroftheInternetandtheDMZ.Thisfirewallanalyzesthetrafficthatisenteringthroughthatspecificaccesspointandenforcescertaintypesofrestrictions.TheotherfirewallmaythenbeplacedbetweentheDMZandtheinternalnetwork.Whenapplyingthediversity-of-defenseconcept,youshouldsetupthesetwofirewallstofilterfordifferenttypesoftrafficandprovide

differenttypesofrestrictions.Thefirstfirewall,forexample,maymakesurethatnoFTP,SNMP,orTelnettrafficentersthenetworkbutallowSMTP,SSH,HTTP,andSSLtrafficthrough.ThesecondfirewallmaynotallowSSLorSSHthroughandmayinterrogateSMTPandHTTPtraffictomakesurethatcertaintypesofattacksarenotpartofthattraffic.

AccessControlThetermaccesscontrolhasbeenusedtodescribeavarietyofprotectionschemes.Itsometimesreferstoallsecurityfeaturesusedtopreventunauthorizedaccesstoacomputersystemornetwork.Inthissense,itmaybeconfusedwithauthentication.Moreproperly,accesscontrolistheabilitytocontrolwhetherasubject(suchasanindividualoraprocessrunningonacomputersystem)caninteractwithanobject(suchasafileorhardwaredevice).Authentication,ontheotherhand,dealswithverifyingtheidentityofasubject.Tohelpunderstandthedifference,considertheexampleofanindividualattemptingtologintoacomputersystemornetwork.Authenticationistheprocessusedtoverifytothecomputersystemornetworkthattheindividualiswhotheyclaimtobe.ThemostcommonmethodtodothisisthroughtheuseofauserIDandpassword.Oncetheindividualhasverifiedtheiridentity,accesscontrolsregulatewhattheindividualcanactuallydoonthesystem.Justbecauseapersonisgrantedentrytothesystemdoesnotmeanthattheyshouldhaveaccesstoalldatathesystemcontains.

AuthenticationMechanismsAccesscontrolsdefinewhatactionsausercanperformorwhatobjectsausercanhaveaccessto.Thesecontrolsassumethattheidentityoftheuserhasbeenverified.Itisthejobofauthenticationmechanismstoensurethatonlyvalidusersareadmitted.Describedanotherway,authenticationisusingsomemechanismtoprovethatyouarewhoyouclaimtobe.Therearethreegeneralfactorscommonlyusedinauthentication.Inorderto

verifyyouridentity,youcanprovide

Somethingyouknow(knowledgefactor)

Somethingyouhave(possessionfactor)

Somethingaboutyou(somethingthatyouare;inherentfactor)

Themostcommonauthenticationmechanismistoprovidesomethingthatonlyyou,thevaliduser,shouldknow.ThemostfrequentlyusedexampleofthisisthecommonuserID(orusername)andpassword.Intheory,sinceyouarenotsupposedtoshareyourpasswordwithanybodyelse,onlyyoushouldknowyourpassword,andthusbyprovidingit,youareprovingtothesystemthatyouarewhoyouclaimtobe.Anothermechanismforauthenticationistoprovidesomethingthatyouhaveinyourpossession,suchasamagneticstripecardthatcontainsidentifyinginformation.Thethirdmechanismistousesomethingaboutyouforidentificationpurposes,suchasyourfingerprintorthegeometryofyourhand.Obviously,forthesecondandthirdmechanismstowork,additionalhardwaredevicesneedtobeused(toreadthecard,fingerprint,orhandgeometry).

AccessControlvs.AuthenticationItmayseemthataccesscontrolandauthenticationaretwowaystodescribethesameprotectionmechanism.This,however,isnotthecase.Authenticationprovidesawaytoverifytothecomputerwhotheuseris.Oncetheuserhasbeenauthenticated,theaccesscontrolsdecidewhatoperationstheusercanperform.Thetwogohand-in-handbuttheyarenotthesamething.

AuthenticationandAccessControlPoliciesPoliciesarestatementsofwhattheorganizationwantstoaccomplish.Theorganizationneedstoidentifygoalsandintentionsformanydifferentaspectsofsecurity.Eachaspectwillhaveassociatedpoliciesand

procedures.

GroupPolicyOperatingsystemssuchasWindowsandLinuxallowadministratorstoorganizeusersintogroups,tocreatecategoriesofusersforwhichsimilaraccesspoliciescanbeestablished.Usinggroupssavestheadministratortime,asaddinganewuserwillnotrequiretheadministratortocreateacompletelynewuserprofile;instead,theadministratorcandeterminetowhichgroupthenewuserbelongsandthenaddtheusertothatgroup.Agrouppolicydefinesforthegroupthingssuchastheapplicable

operatingsystemandapplicationsettingsandpermissions.Examplesofgroupscommonlyfoundincludeadministrator,user,andguest.Takecarewhencreatinggroupsandassigninguserstothemsothatyoudonotprovidemoreaccessthanisabsolutelyrequiredformembersofthatgroup.Itwouldbesimpletomakeeverybodyanadministrator—itwouldcutdownonthenumberofrequestsusersmakeofbeleagueredadministrators—butthisisnotawisechoice,asitalsoenablesuserstomodifythesysteminwaysthatcouldimpactsecurity.Establishingtherightslevelsofaccessforthevariousgroupsupfrontwillsaveyoutimeandeliminatepotentialproblemsthatmightbeencounteredlateron.MoreonthissubjectwillbecoveredinChapter14.

TechTip

GroupPolicyThetermgrouppolicyhasdifferentmeaningsinLinuxandWindowssystems.InLinux,grouppoliciestypicallyrefertogroup-levelpermissionsassociatedwithfilesystems.InWindows,grouppoliciesrefertoActiveDirectoryobjectsusedtoenforceconfigurationandpermissionsacrossadomain.

PasswordPolicy

Sincepasswordsarethemostcommonauthenticationmechanism,itisimperativethatorganizationshaveapolicythataddressesthem.Thepasswordpolicyshouldaddresstheproceduresusedforselectinguserpasswords(specifyingwhatisconsideredanacceptablycomplexpasswordintheorganizationintermsofthecharactersetandlength),thefrequencywithwhichpasswordsmustbechanged,andhowpasswordswillbedistributed.Proceduresforcreatingnewpasswordsshouldanemployeeforgetheroldpasswordalsoneedtobeaddressed,aswellastheacceptablehandlingofpasswords(forexample,theyshouldnotbesharedwithanybodyelse,theyshouldnotbewrittendown,andsoon).Itmightalsobeusefultohavethepolicyaddresstheissueofpasswordcrackingbyadministrators,toenablethemtodiscoverweakpasswordsselectedbyemployees.

Apasswordpolicyisoneofthemostbasicpoliciesthatanorganizationcanhave.Makesureyouunderstandthebasicsofwhatconstitutesagoodpasswordalongwiththeotherissuesthatsurroundpasswordcreation,expiration,sharing,anduse.

Notethatthedeveloperofthepasswordpolicyandassociatedprocedurescangooverboardandcreateanenvironmentthatnegativelyimpactsemployeeproductivityandleadstopoorersecurity,notbetter.If,forexample,thefrequencywithwhichpasswordsarechangedistoogreat,usersmightwritethemdownorforgetthem.Neitheroftheseisadesirableoutcome,astheformermakesitpossibleforanintrudertofindapasswordandgainaccesstothesystem,andthelatterleadstotoomanypeoplelosingproductivityastheywaitforanewpasswordtobecreatedtoallowthemaccessagain.MoreinformationonpasswordpoliciescanbefoundinChapter22.

SecurityModels

Animportantissuewhendesigningthesoftwarethatwilloperateandcontrolsecurecomputersystemsandnetworksisthesecuritymodelthatthesystemornetworkwillbebasedupon.Thesecuritymodelwillimplementthesecuritypolicythathasbeenchosenandenforcethosecharacteristicsdeemedmostimportantbythesystemdesigners.Forexample,ifconfidentialityisconsideredparamount,themodelshouldmakecertainnodataisdisclosedtounauthorizedindividuals.Amodelenforcingconfidentialitymayallowunauthorizedindividualstomodifyordeletedata,asthiswouldnotviolatethetenetsofthemodelbecausethetruevaluesforthedatawouldstillremainconfidential.Ofcourse,thismodelmaynotbeappropriateforallenvironments.Insomeinstances,theunauthorizedmodificationofdatamaybeconsideredamoreseriousissuethanitsunauthorizeddisclosure.Insuchcases,themodelwouldberesponsibleforenforcingtheintegrityofthedatainsteadofitsconfidentiality.Choosingthemodeltobasethedesignoniscriticalifyouwanttoensurethattheresultingsystemaccuratelyenforcesthesecuritypolicydesired.This,however,isonlythestartingpoint,anditdoesnotimplythatyouhavetomakeachoicebetweenconfidentialityanddataintegrity,asbothareimportant.

ConfidentialityModelsDataconfidentialityhasgenerallybeenthechiefconcernofthemilitary.Forinstance,theU.S.militaryencouragedthedevelopmentoftheBell-LaPadulasecuritymodeltoaddressdataconfidentialityincomputeroperatingsystems.Thismodelisespeciallyusefulindesigningmultilevelsecuritysystemsthatimplementthemilitary’shierarchicalsecurityscheme,whichincludeslevelsofclassificationsuchasUnclassified,Confidential,Secret,andTopSecret.Similarclassificationschemescanbeusedinindustry,whereclassificationsmightincludePubliclyReleasable,Proprietary,andCompanyConfidential.Asecondconfidentialitymodel,theBrewer-Nashsecuritymodel,is

onedefinedbycontrollingreadandwriteaccessbasedonconflictof

interestrules.ThismodelisalsoknownastheChineseWallmodel,aftertheconceptofseparatinggroupsthroughtheuseofanimpenetrablewall.

Bell-LaPadulaModelTheBell-LaPadulasecuritymodelemploysbothmandatoryanddiscretionaryaccesscontrolmechanismswhenimplementingitstwobasicsecurityprinciples.ThefirstoftheseprinciplesiscalledtheSimpleSecurityRule,whichstatesthatnosubject(suchasauseroraprogram)canreadinformationfromanobject(suchasafile)withasecurityclassificationhigherthanthatpossessedbythesubjectitself.ThismeansthatthesystemmustpreventauserwithonlyaSecretclearance,forexample,fromreadingadocumentlabeledTopSecret.Thisruleisoftenreferredtoasthe“no-read-up”rule.

TheSimpleSecurityRuleisjustthat:themostbasicofsecurityrules.Itessentiallystatesthatinorderforyoutoseesomething,youhavetobeauthorizedtoseeit.

ThesecondsecurityprincipleenforcedbytheBell-LaPadulasecuritymodelisknownasthe*-property(pronounced“starproperty”).Thisprinciplestatesthatasubjectcanwritetoanobjectonlyifthetarget’ssecurityclassificationisgreaterthanorequaltotheobject’ssecurityclassification.ThismeansthatauserwithaSecretclearancecanwritetoafilewithaSecretorTopSecretclassificationbutcannotwritetoafilewithonlyanUnclassifiedclassification.Thisatfirstmayappeartobeabitconfusing,sincethisprincipleallowsuserstowritetofilesthattheyarenotallowedtoview,thusenablingthemtoactuallydestroyfilesthattheydon’thavetheclassificationtosee.Thisistrue,butkeepinmindthattheBell-LaPadulamodelisdesignedtoenforceconfidentiality,notintegrity.Writingtoafilethatyoudon’thavetheclearancetoviewisnotconsideredaconfidentialityissue;itisanintegrityissue.Whereasthe*-propertyallowsausertowritetoafileofequalor

greatersecurityclassification,itdoesn’tallowausertowritetoafilewithalowersecurityclassification.This,too,maybeconfusingatfirst—afterall,shouldn’tauserwithaSecretclearance,whocanviewafilemarkedUnclassified,beallowedtowritetothatfile?Theanswertothis,fromasecurityperspective,is“no.”Thereasonagainrelatestowantingtoavoideitheraccidentalordeliberatesecuritydisclosures.Thesystemisdesignedtomakeitimpossible(hopefully)fordatatobedisclosedtothosewithouttheappropriateleveltoviewit.AsshowninFigure2.5,ifitwerepossibleforauserwithaTopSecretclearancetoeitherdeliberatelyoraccidentallywriteTopSecretinformationandplaceitinafilemarkedConfidential,auserwithonlyaConfidentialsecurityclearancecouldthenaccessthisfileandviewtheTopSecretinformation.Thus,datawouldhavebeendisclosedtoanindividualnotauthorizedtoviewit.Thisiswhatthesystemshouldprotectagainstandisthereasonforwhatisknownasthe“no-write-down”rule.

•Figure2.5Bell-LaPadulasecuritymodel

Notallenvironmentsaremoreconcernedwithconfidentialitythanintegrity.Inafinancialinstitution,forexample,viewingsomebody’sbankbalanceisanissue,butagreaterissuewouldbetheabilitytoactuallymodifythatbalance.Inenvironmentswhereintegrityismoreimportant,adifferentmodelthantheBell-LaPadulasecuritymodelisneeded.

Brewer-NashSecurityModelOneofthetenetsassociatedwithaccessisneedtoknow.Separategroupswithinanorganizationmayhavedifferingneedswithrespecttoaccesstoinformation.Asecuritymodelthattakesintoaccountuserconflict-of-interestaspectsistheBrewer-Nashsecuritymodel.Inthismodel,informationflowsaremodeledtopreventinformationfromflowingbetweensubjectsandobjectswhenaconflictofinterestwouldoccur.Aspreviouslynoted,thismodelisalsoknownasaChineseWallmodel,aftertheGreatWallofChina,astructuredesignedtoseparategroupsofpeople.AsshowninFigure2.6,separategroupsaredefinedandaccesscontrolsaredesignedtoenforcetheseparationofthegroups.

•Figure2.6Brewer-Nashsecuritymodel

IntegrityModels

TheBell-LaPadulamodelwasdevelopedintheearly1970sbutwasfoundtobeinsufficientforallenvironments.Asanalternative,KennethBibastudiedtheintegrityissueanddevelopedwhatiscalledtheBibasecuritymodelinthelate1970s.Additionalworkwasperformedinthe1980sthatledtotheClark-Wilsonsecuritymodel,whichalsoplacesitsemphasisonintegrityratherthanconfidentiality.

TheBibaSecurityModelIntheBibamodel(seeFigure2.7),insteadofsecurityclassifications,integritylevelsareused.Aprincipleofintegritylevelsisthatdatawithahigherintegritylevelisbelievedtobemoreaccurateorreliablethandatawithalowerintegritylevel.Integritylevelsindicatethelevelof“trust”thatcanbeplacedininformationatthedifferentlevels.Integritylevelsdifferfromsecuritylevelsinanotherway—theylimitthemodificationofinformationasopposedtotheflowofinformation.

•Figure2.7BibbSecurityModel

Aninitialattemptatimplementinganintegrity-basedmodelwascapturedinwhatisreferredtoastheLow-Water-Markpolicy.Thispolicyinmanywaysistheoppositeofthe*-propertyinthatitpreventssubjectsfromwritingtoobjectsofahigherintegritylevel.Thepolicyalsocontainsasecondrulethatstatestheintegritylevelofasubjectwillbeloweredifitreadsanobjectofalowerintegritylevel.Thereasonforthisisthatifthesubjectthenusesdatafromthatobject,thehighesttheintegritylevelcanbeforanewobjectcreatedfromitisthesamelevelofintegrityoftheoriginalobject.Inotherwords,theleveloftrustyoucan

placeindataformedfromdataataspecificintegritylevelcannotbehigherthantheleveloftrustyouhaveinthesubjectcreatingthenewdataobject,andtheleveloftrustyouhaveinthesubjectcanonlybeashighastheleveloftrustyouhadintheoriginaldata.ThefinalrulecontainedintheLow-Water-Markpolicystatesthatasubjectcanexecuteaprogramonlyiftheprogram’sintegritylevelisequaltoorlessthantheintegritylevelofthesubject.Thisensuresthatdatamodifiedbyaprogramonlyhastheleveloftrust(integritylevel)thatcanbeplacedintheindividualwhoexecutedtheprogram.WhiletheLow-Water-Markpolicycertainlypreventsunauthorized

modificationofdata,ithastheunfortunatesideeffectofeventuallyloweringtheintegritylevelsofallsubjectstothelowestlevelonthesystem(unlessthesubjectalwaysviewsfileswiththesamelevelofintegrity).Thisisbecauseofthesecondrule,whichlowerstheintegritylevelofthesubjectafteraccessinganobjectofalowerintegritylevel.Thereisnowayspecifiedinthepolicytoeverraisethesubject’sintegritylevelbacktoitsoriginalvalue.Asecondpolicy,knownastheRingpolicy,addressesthisissuebyallowinganysubjecttoreadanyobjectwithoutregardtotheobject’slevelofintegrityandwithoutloweringthesubject’sintegritylevel.This,unfortunately,canleadtoasituationwheredatacreatedbyasubjectafterreadingdataofalowerintegritylevelcouldenduphavingahigherleveloftrustplaceduponitthanitshould.TheBibasecuritymodelimplementsahybridoftheRingandLow-

Water-Markpolicies.Biba’smodelinmanyrespectsistheoppositeoftheBell-LaPadulamodelinthatwhatitenforcesare“no-read-down”and“no-write-up”policies.Italsoimplementsathirdrulethatpreventssubjectsfromexecutingprogramsofahigherlevel.TheBibasecuritymodelthusaddressestheproblemsmentionedwithboththeRingandLow-Water-Markpolicies.

TheClark-WilsonSecurityModelTheClark-WilsonsecuritymodeltakesanentirelydifferentapproachthantheBibaandBell-LaPadulamodels,usingtransactionsasthebasisfor

itsrules.Itdefinestwolevelsofintegrityonly:constraineddataitems(CDIs)andunconstraineddataitems(UDIs).CDIdataissubjecttointegritycontrolswhileUDIdataisnot.Themodelthendefinestwotypesofprocesses:integrityverificationprocesses(IVPs),whichensurethatCDIdatameetsintegrityconstraints(toensurethesystemisinavalidstate),andtransformationprocesses(TPs),whichchangethestateofdatafromonevalidstatetoanother.Datainthismodelcannotbemodifieddirectlybyauser;itmustbechangedbytrustedTPs,accesstowhichcanberestricted(thusrestrictingtheabilityofausertoperformcertainactivities).Itisusefultoreturntothepriorexampleofthebankingaccountbalance

todescribetheneedforintegrity-basedmodels.IntheClark-Wilsonmodel,theaccountbalancewouldbeaCDIbecauseitsintegrityisacriticalfunctionforthebank.Aclient’scolorpreferencefortheircheckbookisnotacriticalfunctionandwouldbeconsideredaUDI.Sincetheintegrityofaccountbalancesisofextremeimportance,changestoaperson’sbalancemustbeaccomplishedthroughtheuseofaTP.EnsuringthatthebalanceiscorrectwouldbethedutyofanIVP.Onlycertainemployeesofthebankshouldhavetheabilitytomodifyanindividual’saccount,whichcanbecontrolledbylimitingthenumberofindividualswhohavetheauthoritytoexecuteTPsthatresultinaccountmodification.CertainverycriticalfunctionsmayactuallybesplitintomultipleTPstoenforceanotherimportantprinciple,separationofduties(introducedearlierinthechapter).Thislimitstheauthorityanyoneindividualhassothatmultipleindividualswillberequiredtoexecutecertaincriticalfunctions.

Chapter2Review

ChapterSummary

Afterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingregardingthebasicsofsecurity,securityterminology,andsecuritymodels.

Definebasictermsassociatedwithcomputerandinformationsecurity

Informationassuranceandinformationsecurityplacethesecurityfocusontheinformationandnotonthehardwareorsoftwareusedtoprocessit.

Theoriginalgoalofcomputerandnetworksecuritywastoprovideconfidentiality,integrity,andavailability—the“CIA”ofsecurity.

Additionalelementsofsecuritycanincludeauthentication,authorization,auditability,andnonrepudiation.

Theoperationalmodelofcomputersecuritytellsusthatprotectionisprovidedbyprevention,detection,andresponse.

Identifythebasicapproachestocomputerandinformationsecurity

Hostsecurityfocusesonprotectingeachcomputeranddeviceindividually,whereasnetworksecurityfocusesonaddressingprotectionofthenetworkasawhole.

Formanyorganizations,acombinationofhostsecurityandnetworksecurityisneededtoadequatelyaddressthewiderangeofpossiblesecuritythreats.

Identifythebasicprinciplesofcomputerandinformationsecurity

Principleofleastprivilegeistousetheminimumprivilegesnecessarytoperformatask.

Principleofseparationofprivilegestatesthatcriticalitemsshouldrequiremultipleparties.

Principleoffail-safedefaultstatesthatdenybydefault(implicitdeny)andonlygrantaccesswithexplicitpermissionshouldbeemployedin

accessdecisions.

Principleofeconomyofmechanismstatesthatprotectionmechanismsshouldbesmallandsimple.

Principleofcompletemediationstatesthatprotectionmechanismsshouldcovereveryaccesstoeveryobjectandshouldneverbebypassed.

Principleofopendesignstatesthatprotectionmechanismsshouldnotdependuponsecrecyofthemechanismitself.

Principleofleastcommonmechanismstatesthattheprotectionmechanismsshouldbesharedtotheleastdegreepossibleamongusers.

Principleofpsychologicalacceptabilitystatesthatprotectionmechanismsshouldnotimpactusers,oriftheydo,theimpactshouldbeminimal.

Principleofdefenseindepth,orlayeredsecurity,isthatmultiplelayersofdiffering,overlappingcontrolsshouldbeemployed.

Diversityofdefenseisaconceptthatcomplementstheideaofvariouslayersofsecurity.Itmeanstomakethelayersdissimilarsothatifonelayerispenetrated,thenextlayercan’talsobepenetratedusingthesamemethod.

Distinguishamongvariousmethodstoimplementaccesscontrols

Accessistheabilityofasubjecttointeractwithanobject.Accesscontrolsarethosedevicesandmethodsusedtolimitwhichsubjectsmayinteractwithspecificobjects.

Anaccesscontrollist(ACL)isamechanismthatisusedtodefinewhetherauserhascertainaccessprivilegesforasystem.Othermethodsincludediscretionaryaccesscontrol(DAC),mandatoryaccesscontrol(MAC),role-basedaccesscontrol(RBAC),andrule-basedaccesscontrol.

Describemethodsusedtoverifytheidentityandauthenticityofanindividual

Authenticationmechanismsensurethatonlyvalidusersareprovidedaccesstothecomputersystemornetwork.

Thethreegeneralmethodscommonlyusedinauthenticationinvolveusersprovidingeithersomethingtheyknow,somethingtheyhave,orsomethinguniqueaboutthem(somethingtheyare).

Recognizesomeofthebasicmodelsusedtoimplementsecurityinoperatingsystems

Securitymodelsenforcethechosensecuritypolicy.

Therearetwobasiccategoriesofmodels:thosethatensureconfidentialityandthosethatensureintegrity.

Bell-LaPadulaisaconfidentialitysecuritymodelwhosedevelopmentwaspromptedbythedemandsoftheU.S.militaryanditssecurityclearancescheme.

TheBell-LaPadulasecuritymodelenforces“no-read-up”and“no-write-down”rulestoavoidthedeliberateoraccidentaldisclosureofinformationtoindividualsnotauthorizedtoreceiveit.

TheBrewer-Nashsecuritymodel(ChineseWallmodel)isaconfidentialitymodelthatseparatesusersbasedonconflictsofinterest.

TheBibasecuritymodelisanintegrity-basedmodelthat,inmanyrespects,implementstheoppositeofwhattheBell-LaPadulamodeldoes—thatis,“no-read-down”and“no-write-up”rules.

TheClark-Wilsonsecuritymodelisanintegrity-basedmodeldesignedtolimittheprocessesanindividualmayperformaswellasrequirethatcriticaldatabemodifiedonlythroughspecifictransformationprocesses.

KeyTerms*-property(34)accesscontrol(31)auditability(20)authentication(20)availability(20)Bell-LaPadulasecuritymodel(34)Bibasecuritymodel(35)Brewer-Nashsecuritymodel(34)Clark-Wilsonsecuritymodel(37)completemediation(27)confidentiality(20)defaultdeny(26)defenseindepth(29)diversityofdefense(31)economyofmechanism(27)fail-safedefaults(26)hacking(19)hostsecurity(23)implicitdeny(26)integrity(20)layeredsecurity(29)leastcommonmechanism(28)leastprivilege(24)Low-Water-Markpolicy(36)networksecurity(24)nonrepudiation(20)opendesign(27)operationalmodelofcomputersecurity(20)phreaking(19)

psychologicalacceptability(29)Ringpolicy(36)securitythroughobscurity(28)separationofduties(25)separationofprivilege(25)SimpleSecurityRule(34)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1._______________isatermusedtodescribetheconditionwhereausercannotdenythataneventhasoccurred.

2.The_______________isanintegrity-basedsecuritymodelthatbasesitssecurityoncontroloftheprocessesthatareallowedtomodifycriticaldata,referredtoasconstraineddataitems.

3.ThesecurityprincipleusedintheBell-LaPadulasecuritymodelthatstatesthatnosubjectcanreadfromanobjectwithahighersecurityclassificationiscalledthe_______________.

4.Theprinciplethatstatesasubjecthasonlythenecessaryrightsandprivilegestoperformitstask,withnoadditionalpermissions,iscalled_______________.

5._______________istheprincipleinsecuritywhereprotectionmechanismsshouldbekeptassimpleandassmallaspossible.

6._______________istheprinciplethatprotectionmechanismsshouldminimizeuser-levelimpact.

7._______________istheprocessusedtoensurethatanindividualiswhotheyclaimtobe.

8.Thearchitectureinwhichmultiplemethodsofsecuritydefenseare

appliedtopreventrealizationofthreat-basedrisksiscalled_______________.

9._______________istheprocessofcombiningseeminglyunimportantinformationwithotherpiecesofinformationtodivulgepotentiallysensitiveinformation.

10.Implicitdenyisanoperationalizationoftheprincipleof_______________.

Multiple-ChoiceQuiz1.Whichofthefollowingisnotaprincipleofsecurity?

A.Principleofleastprivilege

B.Principleofeconomyofmechanism

C.Principleofefficientaccess

D.Principleofopenaccess

2.TheCIAofsecurityincludes:A.Confidentiality,integrity,authentication

B.Confidentiality,integrity,availability

C.Certificates,integrity,availability

D.Confidentiality,inspection,authentication

3.ThesecurityprincipleusedintheBell-LaPadulasecuritymodelthatstatesthatnosubjectcanreadfromanobjectwithahighersecurityclassificationisthe:

A.SimpleSecurityRule

B.Ringpolicy

C.Mandatoryaccesscontrol

D.*-property

4.Whichofthefollowingconceptsrequiresusersandsystemprocessestousetheminimalamountofpermissionnecessarytofunction?

A.Layerdefense

B.Diversifieddefense

C.SimpleSecurityRule

D.Leastprivilege

5.Whichsecuritymodelseparatesusersbasedonconflict-of-interestissues?

A.Bell-LaPadula

B.Brewer-Nash

C.Biba

D.Clark-Wilson

6.TheBell-LaPadulasecuritymodelisanexampleofasecuritymodelthatisbasedon:

A.Theintegrityofthedata

B.Theavailabilityofthedata

C.Theconfidentialityofthedata

D.Theauthenticityofthedata

7.Thetermusedtodescribetherequirementthatdifferentportionsofacriticalprocessmustbeperformedbydifferentpeopleis:

A.Leastprivilege

B.Defenseindepth

C.Separationofduties

D.Jobrotation

8.Hidinginformationtopreventdisclosureisanexampleof:A.Securitythroughobscurity

B.Certificate-basedsecurity

C.Discretionarydatasecurity

D.Defenseindepth

9.TheproblemwiththeLow-Water-Markpolicyisthatit:A.Isaimedatensuringconfidentialityandnotintegrity

B.Couldultimatelyresultinallsubjectshavingtheintegrityleveloftheleast-trustedobjectonthesystem

C.Couldresultintheunauthorizedmodificationofdata

D.Doesnotadequatelypreventusersfromviewingfilestheyarenotentitledtoview

10.Theconceptofblockinganactionunlessitisspecificallyauthorizedis:

A.Implicitdeny

B.Leastprivilege

C.SimpleSecurityRule

D.Hierarchicaldefensemodel

EssayQuiz1.Yourcompanyhasdecidedtoincreasetheauthenticationsecurity

byrequiringremoteemployeestouseasecuritytokenaswellasa

passwordtologontothenetwork.Theemployeesaregrumblingaboutthenewrequirementsbecausetheydon’twanttohavetocarryaroundthetokenwiththemanddon’tunderstandwhyit’snecessary.Writeabriefmemotothestafftoeducatethemonthegeneralwaysthatauthenticationcanbeperformed.Thenexplainwhyyourcompanyhasdecidedtousesecuritytokensinadditiontopasswords.

2.ThenewCEOforyourcompanyjustretiredfromthemilitaryandwantstousesomeofthesamecomputersystemsandsecuritysoftwaresheusedwhilewiththemilitary.Explaintoherthereasonsthatconfidentiality-basedsecuritymodelsarenotadequateforallenvironments.Provideatleasttwoexamplesofenvironmentswhereaconfidentiality-basedsecuritymodelisnotsufficient.

3.Describewhytheconceptof“securitythroughobscurity”isgenerallyconsideredabadprincipletorelyon.Providesomereal-worldexamplesofwhereyouhaveseenthisprincipleused.

4.Writeabriefessaydescribingtheprincipleofleastprivilegeandhowitcanbeemployedtoenhancesecurity.Provideatleasttwoexamplesofenvironmentsinwhichitcanbeusedforsecuritypurposes.

LabProjects

•LabProject2.1Inanenvironmentfamiliartoyou(yourschoolorwhereyouwork,forexample),determinewhethertheprincipleofdiversityofdefensehasbeenemployedandlistthedifferentlayersofsecuritythatareemployed.Discusswhetheryouthinktheyaresufficientandwhethertheprincipleofdiversityofdefensehasalsobeenused.

•LabProject2.2

Pickanoperatingsystemthatenforcessomeformofaccesscontrolanddeterminehowitisimplementedinthatsystem.

chapter3 OperationalandOrganizationalSecurity

Wewillbankruptourselvesinthevainsearchforabsolutesecurity.

—DWIGHTDAVIDEISENHOWER

O

Inthischapter,youwilllearnhowto

Identifyvariousoperationalaspectstosecurityinyourorganization

Identifyvariouspoliciesandproceduresinyourorganization

Identifythesecurityawarenessandtrainingneedsofanorganization

Understandthedifferenttypesofagreementsemployedinnegotiatingsecurityrequirements

Describethephysicalsecuritycomponentsthatcanprotectyourcomputersandnetwork

Identifyenvironmentalfactorsthatcanaffectsecurity

Identifyfactorsthataffectthesecurityofthegrowingnumberofwirelesstechnologiesusedfordatatransmission

Preventdisclosurethroughelectronicemanations

rganizationsachieveoperationalsecuritythroughpoliciesandproceduresthatguideuser’sinteractionswithdataanddataprocessingsystems.Developingandaligningtheseeffortswiththegoalsofthe

businessisacrucialpartofdevelopingasuccessfulsecurityprogram.Onemethodofensuringcoverageistoaligneffortswiththeoperationalsecuritymodeldescribedinthelastchapter.Thisbreakseffortsintogroups;prevention,detection,andresponseelements.Preventiontechnologiesaredesignedtokeepindividualsfrombeing

abletogainaccesstosystemsordatatheyarenotauthorizedtouse.Originally,thiswasthesoleapproachtosecurity.Eventuallywelearnedthatinanoperationalenvironment,preventionisextremelydifficultandrelyingonpreventiontechnologiesaloneisnotsufficient.Thisledtotheriseoftechnologiestodetectandrespondtoeventsthatoccurwhenpreventionfails.Together,thepreventiontechnologiesandthedetectionandresponsetechnologiesformtheoperationalmodelforcomputersecurity.

Policies,Procedures,Standards,andGuidelinesAnimportantpartofanyorganization’sapproachtoimplementingsecurityarethepolicies,procedures,standards,andguidelinesthatareestablishedtodetailwhatusersandadministratorsshouldbedoingtomaintainthesecurityofthesystemsandnetwork.Collectively,thesedocumentsprovidetheguidanceneededtodeterminehowsecuritywillbeimplementedintheorganization.Giventhisguidance,thespecifictechnologyandsecuritymechanismsrequiredcanbeplannedfor.Policiesarehigh-level,broadstatementsofwhattheorganizationwants

toaccomplish.Theyaremadebymanagementwhenlayingouttheorganization’spositiononsomeissue.Proceduresarethestep-by-stepinstructionsonhowtoimplementpoliciesintheorganization.Theydescribeexactlyhowemployeesareexpectedtoactinagivensituationortoaccomplishaspecifictask.Standardsaremandatoryelementsregardingtheimplementationofapolicy.Theyareacceptedspecificationsthatprovidespecificdetailsonhowapolicyistobeenforced.Somestandardsareexternallydriven.Regulationsforbankingandfinancialinstitutions,forexample,requirecertainsecuritymeasuresbetakenbylaw.Otherstandardsmaybesetbytheorganizationtomeetitsownsecuritygoals.Guidelinesarerecommendationsrelatingtoapolicy.Thekeyterminthiscaseisrecommendations—guidelinesarenotmandatorysteps.

Thesedocumentsguidehowsecuritywillbeimplementedintheorganization:Policies High-level,broadstatementsofwhattheorganizationwantstoaccomplishProcedures Step-by-stepinstructionsonhowtoimplementthepoliciesStandards MandatoryelementsregardingtheimplementationofapolicyGuidelines Recommendationsrelatingtoapolicy

Justasthenetworkitselfconstantlychanges,thepolicies,procedures,standards,andguidelinesshouldbeincludedinlivingdocumentsthatare

periodicallyevaluatedandchangedasnecessary.Theconstantmonitoringofthenetworkandtheperiodicreviewoftherelevantdocumentsarepartoftheprocessthatistheoperationalmodel.Whenappliedtopolicies,thisprocessresultsinwhatisknownasthepolicylifecycle.Thisoperationalprocessandpolicylifecycleroughlyconsistoffourstepsinrelationtoyoursecuritypoliciesandsolutions:

1.Plan(adjust)forsecurityinyourorganization.2.Implementtheplans.3.Monitortheimplementation.4.Evaluatetheeffectiveness.

Inthefirststep,youdevelopthepolicies,procedures,andguidelinesthatwillbeimplementedanddesignthesecuritycomponentsthatwillprotectyournetwork.Thereareavarietyofgoverninginstruments,fromstandardstocompliancerulesthatwillprovideboundariesforthesedocuments.Oncethesedocumentsaredesignedanddeveloped,youcanimplementtheplans.Partoftheimplementationofanypolicy,procedure,orguidelineisaninstructionperiodduringwhichthosewhowillbeaffectedbythechangeorintroductionofthisnewdocumentlearnaboutitscontents.Next,youmonitortoensurethatboththehardwareandthesoftwareaswellasthepolicies,procedures,andguidelinesareeffectiveinsecuringyoursystems.Finally,youevaluatetheeffectivenessofthesecuritymeasuresyouhaveinplace.Thisstepmayincludeavulnerabilityassessment(anattempttoidentifyandprioritizethelistofvulnerabilitieswithinasystemornetwork)andapenetrationtest(amethodtocheckthesecurityofasystembysimulatinganattackbyamaliciousindividual)ofyoursystemtoensurethesecurityisadequate.Afterevaluatingyoursecurityposture,youbeginagainwithstepone,thistimeadjustingthesecuritymechanismsyouhaveinplace,andthencontinuewiththiscyclicalprocess.Regardingsecurity,everyorganizationshouldhaveseveralcommon

policiesinplace(inadditiontothosealreadydiscussedrelativetoaccesscontrolmethods).Theseinclude,butarenotlimitedto,securitypoliciesregardingchangemanagement,classificationofinformation,acceptableuse,duecareandduediligence,dueprocess,needtoknow,disposalanddestructionofdata,servicelevelagreements,humanresourcesissues,codesofethics,andpoliciesgoverningincidentresponse.

SecurityPoliciesInkeepingwiththehigh-levelnatureofpolicies,thesecuritypolicyisahigh-levelstatementproducedbyseniormanagementthatoutlinesbothwhatsecuritymeanstotheorganizationandtheorganization’sgoalsforsecurity.Themainsecuritypolicycanthenbebrokendownintoadditionalpoliciesthatcoverspecifictopics.Statementssuchas“thisorganizationwillexercisetheprincipleofleastaccessinitshandlingofclientinformation”wouldbeanexampleofasecuritypolicy.Thesecuritypolicycanalsodescribehowsecurityistobehandledfromanorganizationalpointofview(suchasdescribingwhichofficeandcorporateofficerormanageroverseestheorganization’ssecurityprogram).Inadditiontopoliciesrelatedtoaccesscontrol,theorganization’s

securitypolicyshouldincludethespecificpoliciesdescribedinthenextsections.Allpoliciesshouldbereviewedonaregularbasisandupdatedasneeded.Generally,policiesshouldbeupdatedlessfrequentlythantheproceduresthatimplementthem,sincethehigh-levelgoalswillnotchangeasoftenastheenvironmentinwhichtheymustbeimplemented.Allpoliciesshouldbereviewedbytheorganization’slegalcounsel,andaplanshouldbeoutlinedthatdescribeshowtheorganizationwillensurethatemployeeswillbemadeawareofthepolicies.Policiescanalsobemadestrongerbyincludingreferencestotheauthoritywhomadethepolicy(whetherthispolicycomesfromtheCEOorisadepartment-levelpolicy,forexample)andreferencestoanylawsorregulationsthatareapplicabletothespecificpolicyandenvironment.

ChangeManagementPolicyThepurposeofchangemanagementistoensureproperproceduresarefollowedwhenmodificationstotheITinfrastructurearemade.Thesemodificationscanbepromptedbyanumberofdifferentevents,includingnewlegislation,updatedversionsofsoftwareorhardware,implementationofnewsoftwareorhardware,orimprovementstotheinfrastructure.Theterm“management”impliesthatthisprocessshouldbecontrolledinsomesystematicway,andthatisindeedthepurpose.Changestotheinfrastructuremighthaveadetrimentalimpactonoperations.Newversionsofoperatingsystemsorapplicationsoftwaremightbeincompatiblewithothersoftwareorhardwaretheorganizationisusing.Withoutaprocesstomanagethechange,anorganizationmightsuddenlyfinditselfunabletoconductbusiness.Achangemanagementprocessshouldincludevariousstages,includingamethodtorequestachangetotheinfrastructure,areviewandapprovalprocessfortherequest,anexaminationoftheconsequencesofthechange,resolution(ormitigation)ofanydetrimentaleffectsthechangemightincur,implementationofthechange,anddocumentationoftheprocessasitrelatedtothechange.

DataPoliciesSystemintegrationwiththirdpartiesfrequentlyinvolvesthesharingofdata.Datacanbesharedforthepurposeofprocessingorstorage.Controloverdataisasignificantissueinthird-partyrelationships.Therearenumerousquestionsthatneedtobeaddressed.Thequestionofwhoownsthedata,boththedatasharedwiththirdpartiesandsubsequentdatadevelopedaspartoftherelationship,isanissuethatneedstobeestablished.

DataOwnershipDatarequiresadataowner.Dataownershiprolesforalldataelementsneedtobedefinedinthebusiness.Dataownershipisabusinessfunction,

wheretherequirementsforsecurity,privacy,retention,andotherbusinessfunctionsmustbeestablished.Notalldatarequiresthesamehandlingrestrictions,butalldatarequiresthesecharacteristicstobedefined.Thisistheresponsibilityofthedataowner.

UnauthorizedDataSharingUnauthorizeddatasharingcanbeasignificantissue,andintoday’sworld,datahasvalueandisfrequentlyusedforsecondarypurposes.Ensuringthatallpartiesintherelationshipunderstandthedata-sharingrequirementsisanimportantprerequisite.Equallyimportantisensuringthatallpartiesunderstandthesecurityrequirementsofshareddata.

DataBackupsDataownershiprequirementsincludebackupresponsibilities.Databackuprequirementsincludedeterminingthelevelofbackup,restoreobjectives,andlevelofprotectionrequirements.ThesecanbedefinedbythedataownerandthenexecutedbyoperationalITpersonnel.Determiningthebackupresponsibilitiesanddevelopingthenecessaryoperationalprocedurestoensurethatadequatebackupsoccurareimportantsecurityelements.

ClassificationofInformationAkeycomponentofITsecurityistheprotectionoftheinformationprocessedandstoredonthecomputersystemsandnetwork.Organizationsdealwithmanydifferenttypesofinformation,andtheyneedtorecognizethatnotallinformationisofequalimportanceorsensitivity.Thisrequiresclassificationofinformationintovariouscategories,eachwithitsownrequirementsforitshandling.Factorsthataffecttheclassificationofspecificinformationincludeitsvaluetotheorganization(whatwillbetheimpacttotheorganizationifitlosesthisinformation?),itsage,andlawsorregulationsthatgovernitsprotection.ThemostwidelyknownsystemofclassificationofinformationisthatimplementedbytheU.S.government

(includingthemilitary),whichclassifiesinformationintocategoriessuchasConfidential,Secret,andTopSecret.BusinesseshavesimilardesirestoprotectinformationandoftenusecategoriessuchasPubliclyReleasable,Proprietary,CompanyConfidential,andForInternalUseOnly.Eachpolicyfortheclassificationofinformationshoulddescribehowitshouldbeprotected,whomayhaveaccesstoit,whohastheauthoritytoreleaseitandhow,andhowitshouldbedestroyed.Allemployeesoftheorganizationshouldbetrainedintheproceduresforhandlingtheinformationthattheyareauthorizedtoaccess.Discretionaryandmandatoryaccesscontroltechniquesuseclassificationsasamethodtoidentifywhomayhaveaccesstowhatresources.

TechTip

DataClassificationInformationclassificationcategoriesyoushouldbeawareoffortheCompTIASecurity+examinclude:High,Medium,Low,Confidential,Private,andPublic.

DataLabeling,Handling,andDisposalEffectivedataclassificationprogramsincludedatalabeling,whichenablespersonnelworkingwiththedatatoknowwhetheritissensitiveandtounderstandthelevelsofprotectionrequired.Whenthedataisinsideaninformation-processingsystem,theprotectionsshouldbedesignedintothesystem.Butwhenthedataleavesthiscocoonofprotection,whetherbyprinting,downloading,orcopying,itbecomesnecessarytoensurecontinuedprotectionbyothermeans.Thisiswheredatalabelingassistsusersinfulfillingtheirresponsibilities.Trainingtoensurethatlabelingoccursandthatitisusedandfollowedisimportantforuserswhoserolescanbeimpactedbythismaterial.Trainingplaysanimportantroleinensuringproperdatahandlingand

disposal.Personnelareintimatelyinvolvedinseveralspecifictasks

associatedwithdatahandlinganddatadestruction/disposaland,ifproperlytrained,canactasasecuritycontrol.Untrainedorinadequatelytrainedpersonnelwillnotbeaproductivesecuritycontroland,infact,canbeasourceofpotentialcompromise.

NeedtoKnowAnothercommonsecurityprincipleisthatofneedtoknow,whichgoeshand-in-handwithleastprivilege.Theguidingfactorhereisthateachindividualintheorganizationissuppliedwithonlytheabsoluteminimumamountofinformationandprivilegesheorsheneedstoperformtheirworktasks.Toobtainaccesstoanypieceofinformation,theindividualmusthaveajustifiedneedtoknow.Apolicyspellingoutthesetwoprinciplesasguidingphilosophiesfortheorganizationshouldbecreated.Thepolicyshouldalsoaddresswhointheorganizationcangrantaccesstoinformationandwhocanassignprivilegestoemployees.

DisposalandDestructionPolicyManypotentialintrudershavelearnedthevalueofdumpsterdiving.Anorganizationmustbeconcernedaboutnotonlypapertrashanddiscardedobjects,butalsotheinformationstoredondiscardedobjectssuchascomputers.Severalgovernmentorganizationshavebeenembarrassedwhenoldcomputerssoldtosalvagersprovedtocontainsensitivedocumentsontheirharddrives.Itiscriticalforeveryorganizationtohaveastrongdisposalanddestructionpolicyandrelatedprocedures.Importantpapersshouldbeshredded,andimportantinthiscasemeans

anythingthatmightbeusefultoapotentialintruder.Itisamazingwhatintruderscandowithwhatappeartobeinnocentpiecesofinformation.Beforemagneticstoragemedia(suchasdisksortapes)isdiscardedin

thetrashorsoldforsalvage,itshouldhaveallfilesdeleted,andshouldbeoverwrittenatleastthreetimeswithall1’s,all0’s,andthenrandomcharacters.Commercialproductsareavailabletodestroyfilesusingthisprocess.Itisnotsufficientsimplytodeleteallfilesandleaveitatthat,

sincethedeletionprocessaffectsonlythepointerstowherethefilesarestoredanddoesn’tactuallygetridofallthebitsinthefile.Thisiswhyitispossibleto“undelete”filesandrecoverthemaftertheyhavebeendeleted.Asafermethodfordestroyingfilesfromastoragedeviceistodestroy

thedatamagnetically,usingastrongmagneticfieldtodegaussthemedia.Thiseffectivelydestroysalldataonthemedia.Severalcommercialdegaussersareavailableforthispurpose.Anothermethodthatcanbeusedonharddrivesistouseafileonthem(thesortoffileyou’dfindinahardwarestore)andactuallyfileoffthemagneticmaterialfromthesurfaceoftheplatter.Shreddingfloppymediaisnormallysufficient,butsimplycuttingafloppydiskintoafewpiecesisnotenough—datahasbeensuccessfullyrecoveredfromfloppiesthatwerecutintoonlyacoupleofpieces.CDsandDVDsalsoneedtobedisposedofappropriately.Manypapershreddersnowhavetheabilitytoshredtheseformsofstoragemedia.Insomehighlysecureenvironments,theonlyacceptablemethodofdisposingofharddrivesandotherstoragedevicesistheactualphysicaldestructionofthedevices.Matchingthesecurityactiontothelevelofriskisimportanttorecognizeinthisinstance.Destroyingharddrivesthatdonothavesensitiveinformationiswasteful;properfilescrubbingisprobablyappropriate.Fordriveswithultra-sensitiveinformation,physicaldestructionmakessense.Thereisnosingleanswer,butasinmostthingsassociatedwithinformationsecurity,thebestpracticeistomatchtheactiontothelevelofrisk.

HumanResourcesPoliciesIthasbeensaidthattheweakestlinksinthesecuritychainarethehumans.Consequently,itisimportantfororganizationstohavepoliciesinplacerelativetotheiremployees.Policiesthatrelatetothehiringofindividualsareprimarilyimportant.Theorganizationneedstomakesurethatithiresindividualswhocanbetrustedwiththeorganization’sdataandthatofitsclients.Onceemployeesarehired,theyshouldbekeptfromslippingintothecategoryof“disgruntledemployee.”Finally,policiesmustbe

developedtoaddresstheinevitablepointinthefuturewhenanemployeeleavestheorganization—eitheronhisorherownorwiththe“encouragement”oftheorganizationitself.Securityissuesmustbeconsideredateachofthesepoints.

ManyorganizationsoverlookthesecurityimplicationsthatdecisionsbyHumanResourcesmayhave.HumanResourcespersonnelandsecuritypersonnelshouldhaveacloseworkingrelationship.Decisionsonthehiringandfiringofpersonnelhavedirectsecurityimplicationsfortheorganization.Asaresult,proceduresshouldbeinplacethatspecifywhichactionsmustbetakenwhenanemployeeishired,isterminated,orretires.

CodeofEthicsNumerousprofessionalorganizationshaveestablishedcodesofethicsfortheirmembers.Eachofthesedescribestheexpectedbehavioroftheirmembersfromahigh-levelstandpoint.Organizationscanadoptthisideaaswell.Fororganizations,acodeofethicscansetthetoneforhowemployeeswillbeexpectedtoactandtoconductbusiness.Thecodeshoulddemandhonestyfromemployeesandrequirethattheyperformallactivitiesinaprofessionalmanner.Thecodecouldalsoaddressprinciplesofprivacyandconfidentialityandstatehowemployeesshouldtreatclientandorganizationaldata.Conflictsofinterestcanoftencauseproblems,sothiscouldalsobecoveredinthecodeofethics.Byoutliningacodeofethics,theorganizationcanencouragean

environmentthatisconducivetointegrityandhighethicalstandards.Foradditionalideasonpossiblecodesofethics,checkprofessionalorganizationssuchastheInstituteforElectricalandElectronicsEngineers(IEEE),theAssociationforComputingMachinery(ACM),ortheInformationSystemsSecurityAssociation(ISSA).

TechTip

HiringHackersHiringaskilledhackermaymakesensefromatechnicalskillspointofview,butanorganizationalsohastoconsiderthebroaderethicalandbusinessconsequencesandassociatedrisks.Isthehackercompletelyreformedornot?Howmuchtimeisneededtodeterminethis?Therealquestionisnot“Wouldyouhireahacker?”butrather“Canyoufireahackeroncehehashadaccesstoyoursystems?”Trustisanimportantissuewithemployeeswhohavesystemadministratoraccess,andthelong-termramificationsneedtobeconsidered.

JobRotationAninterestingapproachtoenhancesecuritythatisgainingincreasingattentionisjobrotation.Organizationsoftendiscussthebenefitsofrotatingindividualsthroughvariousjobsinanorganization’sITdepartment.Byrotatingthroughjobs,individualsgainabetterperspectiveonhowthevariouspartsofITcanenhance(orhinder)thebusiness.SincesecurityisoftenamisunderstoodaspectofIT,rotatingindividualsthroughsecuritypositionscanresultinamuchwiderunderstandingthroughouttheorganizationaboutpotentialsecurityproblems.Italsocanhavethesidebenefitofacompanynothavingtorelyonanyoneindividualtooheavilyforsecurityexpertise.Ifallsecuritytasksarethedomainofoneemployee,andthatindividualleavessuddenly,securityattheorganizationcouldsuffer.Ontheotherhand,ifsecuritytasksareunderstoodbymanydifferentindividuals,thelossofanyoneindividualhaslessofanimpactontheorganization.

EmployeeHiringandPromotionsItisbecomingcommonfororganizationstorunbackgroundchecksonprospectiveemployeesandtocheckthereferencesprospectiveemployeessupply.Frequently,organizationsrequiredrugtesting,checkforanypastcriminalactivity,verifyclaimededucationalcredentials,andconfirmreportedworkhistory.Forhighlysensitiveenvironments,specialsecuritybackgroundinvestigationscanalsoberequired.Makesurethatyourorganizationhiresthemostcapableandtrustworthyemployees,andthatyourpoliciesaredesignedtoensurethis.

Afteranindividualhasbeenhired,yourorganizationneedstominimizetheriskthattheemployeewillignorecompanyrulesandaffectsecurity.Periodicreviewsbysupervisorypersonnel,additionaldrugchecks,andmonitoringofactivityduringworkmayallbeconsideredbytheorganization.Iftheorganizationchoosestoimplementanyofthesereviews,thismustbespecifiedintheorganization’spolicies,andprospectiveemployeesshouldbemadeawareofthesepoliciesbeforebeinghired.Whatanorganizationcandointermsofmonitoringandrequiringdrugtests,forexample,canbeseverelyrestrictedifnotspelledoutinadvanceastermsofemployment.Newhiresshouldbemadeawareofallpertinentpolicies,especiallythoseapplyingtosecurity,andshouldbeaskedtosigndocumentsindicatingthattheyhavereadandunderstoodthem.

TechTip

AccountsofFormerEmployeesWhenconductingsecurityassessmentsoforganizations,securityprofessionalsfrequentlyfindactiveaccountsforindividualswhonolongerworkforthecompany.Thisisespeciallytrueforlargerorganizations,whichmaylackaclearprocessforthepersonnelofficetocommunicatewiththenetworkadministratorswhenanemployeeleavestheorganization.Theseoldaccounts,however,areaweakpointinthesecurityperimeterfortheorganizationandshouldbeeliminated.

Occasionallyanemployee’sstatuswillchangewithinthecompany.Ifthechangecanbeconstruedasanegativepersonnelaction(suchasademotion),supervisorsshouldbealertedtowatchforchangesinbehaviorthatmightindicatetheemployeeiscontemplatingorconductingunauthorizedactivity.Itislikelythattheemployeewillbeupset,andwhetherheactsonthistothedetrimentofthecompanyissomethingthatneedstobeguardedagainst.Inthecaseofademotion,theindividualmayalsolosecertainprivilegesoraccessrights,andthesechangesshouldbemadequicklysoastolessenthelikelihoodthattheemployeewilldestroy

previouslyaccessibledataifhebecomesdisgruntledanddecidestotakerevengeontheorganization.Ontheotherhand,iftheemployeeispromoted,privilegesmaystillchange,buttheneedtomakethechangetoaccessprivilegesmaynotbeasurgent,thoughitshouldstillbeaccomplishedasquicklyaspossible.Ifthemoveisalateralone,changesmayalsoneedtotakeplace,andagaintheyshouldbeaccomplishedasquicklyaspossible.

Retirement,Separation,orTerminationofanEmployeeAnemployeeleavinganorganizationcanbeeitherapositiveoranegativeaction.Employeeswhoareretiringbytheirownchoicemayannouncetheirplannedretirementweeksorevenmonthsinadvance.Limitingtheiraccesstosensitivedocumentsthemomenttheyannouncetheirintentionmaybethesafestthingtodo,butitmightnotbenecessary.Eachsituationshouldbeevaluatedindividually.Ifthesituationisaforcedretirement,theorganizationmustdeterminetherisktoitsdataiftheemployeebecomesdisgruntledasaresultoftheaction.Inthissituation,thewisestchoicemightbetocutofftheemployee’saccessquicklyandprovideherwithsomeadditionalvacationtime.Thismightseemlikeanexpensiveproposition,butthedangertothecompanyofhavingadisgruntledemployeemayjustifyit.Again,eachcaseshouldbeevaluatedindividually.

Itisbettertogiveapotentiallydisgruntledemployeeseveralweeksofpaidvacationthantohavehimtrashsensitivefilestowhichhehasaccess.Becauseemployeestypicallyknowthepatternofmanagementbehaviorwithrespecttotermination,doingtherightthingwillpaydividendsinthefutureforafirm.

Whenanemployeedecidestoleaveacompany,generallyasaresultofanewjoboffer,continuedaccesstosensitiveinformationshouldbecarefullyconsidered.Iftheemployeeisleavingasaresultofhardfeelingstowardthecompany,itmightbewisetoquicklyrevokeheraccess

privileges.Iftheemployeeisleavingtheorganizationbecauseheisbeing

terminated,youshouldassumethatheisorwillbecomedisgruntled.Whileitmaynotseemthefriendliestthingtodo,anemployeeinthissituationshouldimmediatelyhavehisaccessprivilegestosensitiveinformationandfacilitiesrevoked.Combinationsshouldalsobequicklychangedonceanemployeehas

beeninformedoftheirtermination.Accesscards,keys,andbadgesshouldbecollected;theemployeeshouldbeescortedtoherdeskandwatchedasshepackspersonalbelongings;andthensheshouldbeescortedfromthebuilding.

Organizationscommonlyneglecttohaveapolicythatmandatestheremovalofanindividual’scomputeraccessupontermination.Notonlyshouldsuchapolicyexist,butitshouldalsoincludetheprocedurestoreclaimand“clean”aterminatedemployee’scomputersystemandaccounts.

MandatoryVacationsOrganizationshaveprovidedvacationtimetotheiremployeesformanyyears.Few,however,forceemployeestotakethistimeiftheydon’twantto.Atsomecompanies,employeesaregiventhechoicetoeither“useorlose”theirvacationtime;iftheydonottakealloftheirvacationtime,theyloseatleastaportionofit.Fromasecuritystandpoint,anemployeewhonevertakestimeoffmightbeinvolvedinnefariousactivity,suchasfraudorembezzlement,andmightbeafraidthatifheleavesonvacation,theorganizationwilldiscoverhisillicitactivities.Asaresult,requiringemployeestousetheirvacationtimethroughapolicyofmandatoryvacationscanbeasecurityprotectionmechanism.Usingmandatoryvacationsasatooltodetectfraudwillrequirethatsomebodyelsealsobetrainedinthefunctionsoftheemployeewhoisonvacation.Havingasecondpersonfamiliarwithsecurityproceduresisalsoagoodpolicyin

casesomethinghappenstotheprimaryemployee.

On-boarding/Off-boardingBusinessPartnersJustasitisimportanttomanagetheon-andoff-boardingprocessesofcompanypersonnel,itisimportanttoconsiderthesametypesofelementswhenmakingarrangementswiththirdparties.Agreementswithbusinesspartnerstendtobefairlyspecificwithrespecttotermsassociatedwithmutualexpectationsassociatedwiththeprocessofthebusiness.Considerationsregardingtheon-boardingandoff-boardingprocessesareimportant,especiallytheoff-boarding.Whenacontractarrangementwithathirdpartycomestoanend,issuesastodataretentionanddestructionbythethirdpartyneedtobeaddressed.Theseconsiderationsneedtobemadepriortotheestablishmentoftherelationship,notaddedatthetimethatitiscomingtoanend.

On-boardingandoff-boardingbusinessproceduresshouldbewelldocumentedtoensurecompliancewithlegalrequirements.

SocialMediaNetworksTheriseofsocialmedianetworkshaschangedmanyaspectsofbusiness.Whetherusedformarketing,communications,customerrelations,orsomeotherpurpose,socialmedianetworkscanbeconsideredaformofthirdparty.Oneofthechallengesinworkingwithsocialmedianetworksand/orapplicationsistheirtermsofuse.Whilearelationshipwithatypicalthirdpartyinvolvesanegotiatedsetofagreementswithrespecttorequirements,thereisnonegotiationwithsocialmedianetworks.Theonlyoptionistoadopttheirtermsofservice,soitisimportanttounderstandtheimplicationsofthesetermswithrespecttothebusinessuseofthesocialnetwork.

AcceptableUsePolicyAnacceptableusepolicy(AUP)outlineswhattheorganizationconsiderstobetheappropriateuseofcompanyresources,suchascomputersystems,e-mail,Internetaccess,andnetworks.Organizationsshouldbeconcernedaboutpersonaluseoforganizationalassetsthatdoesnotbenefitthecompany.ThegoaloftheAUPistoensureemployeeproductivitywhilelimiting

organizationalliabilitythroughinappropriateuseoftheorganization’sassets.TheAUPshouldclearlydelineatewhatactivitiesarenotallowed.Itshouldaddressissuessuchastheuseofresourcestoconductpersonalbusiness,installationofhardwareorsoftware,remoteaccesstosystemsandnetworks,thecopyingofcompany-ownedsoftware,andtheresponsibilityofuserstoprotectcompanyassets,includingdata,software,andhardware.Statementsregardingpossiblepenaltiesforignoringanyofthepolicies(suchastermination)shouldalsobeincluded.Relatedtoappropriateuseoftheorganization’scomputersystemsand

networksbyemployeesistheappropriateusebytheorganization.Themostimportantofsuchissuesiswhethertheorganizationconsidersitappropriatetomonitortheemployees’useofthesystemsandnetwork.Ifmonitoringisconsideredappropriate,theorganizationshouldincludeastatementtothiseffectinthebannerthatappearsatlogin.Thisrepeatedlywarnsemployees,andpossibleintruders,thattheiractionsaresubjecttomonitoringandthatanymisuseofthesystemwillnotbetolerated.Shouldtheorganizationneedtouseinacivilorcriminalcaseanyinformationgatheredduringmonitoring,theissueofwhethertheemployeehadanexpectationofprivacy,orwhetheritwasevenlegalfortheorganizationtobemonitoring,issimplifiediftheorganizationcanpointtoastatementthatisalwaysdisplayedthatinstructsusersthatuseofthesystemconstitutesconsenttomonitoring.Beforeanymonitoringisconducted,ortheactualwordingonthewarningmessageiscreated,theorganization’slegalcounselshouldbeconsultedtodeterminetheappropriatewaytoaddressthisissueintheparticularjurisdiction.

Intoday’shighlyconnectedenvironment,everyorganizationshouldhaveanAUPthatspellsouttoallemployeeswhattheorganizationconsidersappropriateandinappropriateuseofitscomputingandnetworksresources.Havingthispolicymaybecriticalshouldtheorganizationneedtotakedisciplinaryactionsbasedonanabuseofitsresources.

InternetUsagePolicyIntoday’shighlyconnectedenvironment,employeeuseofaccesstotheInternetisofparticularconcern.ThegoaloftheInternetusagepolicyistoensuremaximumemployeeproductivityandtolimitpotentialliabilitytotheorganizationfrominappropriateuseoftheInternetinaworkplace.TheInternetprovidesatremendoustemptationforemployeestowastehoursastheysurftheWebforthescoresofgamesfromthepreviousnight,conductquickonlinestocktransactions,orreadthereviewofthelatestblockbustermovieeveryoneistalkingabout.Inaddition,allowingemployeestovisitsitesthatmaybeconsideredoffensivetoothers(suchaspornographicorhatesites)canopenthecompanytoaccusationsofcondoningahostileworkenvironmentandresultinlegalliability.TheInternetusagepolicyneedstoaddresswhatsitesemployeesare

allowedtovisitandwhatsitestheyarenotallowedtovisit.IfthecompanyallowsthemtosurftheWebduringnonworkhours,thepolicyneedstoclearlyspellouttheacceptableparameters,intermsofwhentheyareallowedtodothisandwhatsitestheyarestillprohibitedfromvisiting(suchaspotentiallyoffensivesites).Thepolicyshouldalsodescribeunderwhatcircumstancesanemployeewouldbeallowedtopostsomethingfromtheorganization’snetworkontheWeb(onablog,forexample).Anecessaryadditiontothispolicywouldbetheprocedureforanemployeetofollowtoobtainpermissiontoposttheobjectormessage.

E-MailUsagePolicyRelatedtotheInternetusagepolicyisthee-mailusagepolicy,whichdeals

withwhatthecompanywillallowemployeestosendin,orasattachmentsto,e-mailmessages.Thispolicyshouldspelloutwhethernonworke-mailtrafficisallowedatallorisatleastseverelyrestricted.Itneedstocoverthetypeofmessagethatwouldbeconsideredinappropriatetosendtootheremployees(forexample,nooffensivelanguage,nosex-relatedorethnicjokes,noharassment,andsoon).Thepolicyshouldalsospecifyanydisclaimersthatmustbeattachedtoanemployee’smessagesenttoanindividualoutsidethecompany.Thepolicyshouldremindemployeesoftherisksofclickingonlinksine-mails,oropeningattachments,asthesecanbesocialengineeringattacks.

CleanDeskPolicyPreventingaccesstoinformationisalsoimportantintheworkarea.Firmswithsensitiveinformationshouldhavea“cleandeskpolicy”specifyingthatsensitiveinformationmustnotbeleftunsecuredintheworkareawhentheworkerisnotpresenttoactascustodian.Evenleavingthedeskareaandgoingtothebathroomcanleaveinformationexposedandsubjecttocompromise.Thecleandeskpolicyshouldidentifyandprohibitthingsthatarenotobviousuponfirstglance,suchaspasswordsonstickynotesunderkeyboardsandmousepadsorinunsecureddeskdrawers.Alloftheseelementsthatdemonstratetheneedforacleandeskarelostifemployeesdonotmakethempersonal.Trainingforcleandeskactivitiesneedstomaketheissueapersonalone,whereconsequencesareunderstoodandtheworkplacereinforcesthepositiveactivity.

BringYourOwnDevice(BYOD)PolicyEveryoneseemstohaveasmartphone,atablet,orotherpersonalInternetdevicethattheyuseintheirpersonallives.Bringingthesetoworkisanaturalextensionofone’snormalactivities,butthisraisesthequestionofwhatpoliciesareappropriatebeforeafirmallowsthesedevicestoconnecttothecorporatenetworkandaccesscompanydata.Likeallotherpolicies,planningisneededtodefinetheappropriatepathwaytothecompanyobjectives.Personaldevicesoffercostsavingsandpositiveuser

acceptance,andinmanycasesthesefactorsmakeallowingBYODasensibledecision.TheprimarypurposeofaBYODpolicyistolowertheriskassociated

withconnectingawidearrayofpersonaldevicestoacompany’snetworkandaccessingsensitivedataonthem.Thisplacessecurity,intheformofriskmanagement,asacenterelementofaBYODpolicy.Devicesneedtobemaintainedinacurrent,up-to-datesoftwareposture,andwithcertainsecurityfeatures,suchasscreenlocksandpasswordsenabled.Remotewipeandotherfeaturesshouldbeenabled,andhighlysensitivedata,especiallyinaggregate,shouldnotbeallowedonthedevices.Usersshouldhavespecifictrainingastowhatisallowedandwhatisn’tandshouldbemadeawareoftheincreasedresponsibilityassociatedwithamobilemeansofaccessingcorporateresources.Insomecasesitmaybenecessarytodefineapolicyassociatedwith

personallyowneddevices.Thispolicywilldescribetherulesandregulationsassociatedwithuseofpersonallyowneddeviceswithrespecttocorporatedata,networkconnectivity,andsecurityrisks.

PrivacyPolicyCustomersplaceanenormousamountoftrustinorganizationstowhichtheyprovidepersonalinformation.Thesecustomersexpecttheirinformationtobekeptsecuresothatunauthorizedindividualswillnotgainaccesstoitandsothatauthorizeduserswillnotusetheinformationinunintendedways.Organizationsshouldhaveaprivacypolicythatexplainswhattheirguidingprincipleswillbeinguardingpersonaldatatowhichtheyaregivenaccess.Aspecialcategoryofprivateinformationthatisbecomingincreasingly

importanttodayispersonallyidentifiableinformation(PII).Thiscategoryofinformationincludesanydatathatcanbeusedtouniquelyidentifyanindividual.Thiswouldincludeanindividual’sname,address,driver’slicensenumber,andotherdetails.AnorganizationthatcollectsPIIonitsemployeesandcustomersmustmakesurethatittakesallnecessarymeasurestoprotectthedatafromcompromise.

CrossCheckPrivacyPrivacyisanimportantconsiderationintoday’scomputingenvironment.Assuch,ithasbeengivenitsownchapter,Chapter25.Additionaldetailsonprivacyissuescanbefoundthere.

TechTip

PrudentPersonPrincipleTheconceptsofduecareandduediligenceareconnected.Duecareaddresseswhethertheorganizationhasaminimalsetofpoliciesthatprovidesreasonableassuranceofsuccessinmaintainingsecurity.Duediligencerequiresthatmanagementactuallydosomethingtoensuresecurity,suchasimplementproceduresfortestingandreviewofauditrecords,internalsecuritycontrols,andpersonnelbehavior.Thestandardappliedisoneofa“prudentperson”;wouldaprudentpersonfindtheactionsappropriateandsincere?Toapplythisstandard,allonehastodoisaskthefollowingquestionfortheissueunderconsideration:“Whatwouldaprudentpersondotoprotectandensurethatthesecurityfeaturesandproceduresareworkingoradequate?”Failureofasecurityfeatureorproceduredoesn’tnecessarilymeanthepersonactedimprudently.

DueCareandDueDiligenceDuecareandduediligencearetermsusedinthelegalandbusinesscommunitytodefinereasonablebehavior.Basically,thelawrecognizestheresponsibilityofanindividualororganizationtoactreasonablyrelativetoanotherparty.IfpartyAallegesthattheactionsofpartyBhavecauseditlossorinjury,partyAmustprovethatpartyBfailedtoexerciseduecareorduediligenceandthatthisfailureresultedinthelossorinjury.Thesetermsoftenareusedsynonymously,butduecaregenerallyreferstothestandardofcareareasonablepersonisexpectedtoexerciseinallsituations,whereasduediligencegenerallyreferstothestandardofcareabusinessisexpectedtoexerciseinpreparationforabusinesstransaction.Anorganizationmusttakereasonableprecautionsbeforeenteringa

businesstransactionoritmightbefoundtohaveactedirresponsibly.Intermsofsecurity,organizationsareexpectedtotakereasonableprecautionstoprotecttheinformationthattheymaintainonindividuals.Shouldapersonsufferalossasaresultofnegligenceonthepartofanorganizationintermsofitssecurity,thatpersontypicallycanbringalegalsuitagainsttheorganization.Thestandardapplied—reasonableness—isextremelysubjectiveand

oftenisdeterminedbyajury.Theorganizationwillneedtoshowthatithadtakenreasonableprecautionstoprotecttheinformation,andthat,despitetheseprecautions,anunforeseensecurityeventoccurredthatcausedtheinjurytotheotherparty.Sincethisissosubjective,itishardtodescribewhatwouldbeconsideredreasonable,butmanysectorshaveasetof“securitybestpractices”fortheirindustry,whichprovidesabasisfororganizationsinthatsectortostartfrom.Iftheorganizationdecidesnottofollowanyofthebestpracticesacceptedbytheindustry,itneedstobepreparedtojustifyitsreasonsincourtshouldanincidentoccur.Ifthesectortheorganizationisinhasregulatoryrequirements,justifyingwhythemandatedsecuritypracticeswerenotfollowedwillbemuchmoredifficult(ifnotimpossible).

Duediligenceistheapplicationofaspecificstandardofcare.Duecareisthedegreeofcarethatanordinarypersonwouldexercise.

DueProcessDueprocessisconcernedwithguaranteeingfundamentalfairness,justice,andlibertyinrelationtoanindividual’slegalrights.IntheUnitedStates,dueprocessisconcernedwiththeguaranteeofanindividual’srightsasoutlinedbytheConstitutionandBillofRights.Proceduraldueprocessisbasedontheconceptofwhatis“fair.”Alsoofinterestistherecognitionbycourtsofaseriesofrightsthatarenotexplicitlyspecifiedbythe

ConstitutionbutthatthecourtshavedecidedareimplicitintheconceptsembodiedbytheConstitution.Anexampleofthisisanindividual’srighttoprivacy.Fromanorganization’spointofview,dueprocessmaycomeintoplayduringanadministrativeactionthatadverselyaffectsanemployee.Beforeanemployeeisterminated,forexample,werealloftheemployee’srightsprotected?Anactualexamplepertainstotherightsofprivacyregardingemployees’e-mailmessages.Asthenumberofcasesinvolvingemployersexaminingemployeee-mailsgrows,caselawcontinuestobeestablishedandthecourtseventuallywillsettleonwhatrightsanemployeecanexpect.ThebestthinganemployercandoiffacedwiththissortofsituationistoworkcloselywithHRstafftoensurethatappropriatepoliciesarefollowedandthatthosepoliciesareinkeepingwithcurrentlawsandregulations.

IncidentResponsePoliciesandProceduresNomatterhowcarefulanorganizationis,eventuallyasecurityincidentofsomesortwilloccur.Whenithappens,howeffectivelytheorganizationrespondstoitwilldependgreatlyonhowprepareditistohandleincidents.Anincidentresponsepolicyandassociatedproceduresshouldbedevelopedtooutlinehowtheorganizationwillprepareforsecurityincidentsandrespondtothemwhentheyoccur.Waitinguntilanincidenthappensisnottherighttimetoestablishyourpolicies—theyneedtobedesignedinadvance.Theincidentresponsepolicyshouldcoverfivephases:preparation,detection,containmentanderadication,recovery,andfollow-upactions.

CrossCheckIncidentResponseIncidentresponseiscoveredindetailinChapter22.Thissectionservesonlyasanintroductiontopolicyelementsassociatedwiththetopic.Forcompletedetailsonincidentresponse,pleaseexamineChapter22.

SecurityAwarenessandTrainingSecurityawarenessandtrainingprogramscanenhanceanorganization’ssecuritypostureintwodirectways.First,theyteachpersonnelhowtofollowthecorrectsetofactionstoperformtheirdutiesinasecuremanner.Second,theymakepersonnelawareoftheindicatorsandeffectsofsocialengineeringattacks.Therearemanytasksthatemployeesperformthatcanhaveinformation

securityramifications.Properlytrainedemployeesareabletoperformtheirdutiesinamoreeffectivemanner,includingtheirdutiesassociatedwithinformationsecurity.Theextentofinformationsecuritytrainingwillvarydependingontheorganization’senvironmentandthelevelofthreat,butinitialemployeesecuritytrainingatthetimeofbeinghiredisimportant,asisperiodicrefreshertraining.Astrongsecurityeducationandawarenesstrainingprogramcangoalongwaytowardreducingthechancethatasocialengineeringattackwillbesuccessful.Securityawarenessprogramsandcampaigns,whichmightincludeseminars,videos,posters,newsletters,andsimilarmaterials,arealsofairlyeasytoimplementandarenotverycostly.

SecurityPolicyTrainingandProceduresPersonnelcannotbeexpectedtoperformcomplextaskswithouttrainingwithrespecttothetasksandexpectations.Thisappliesbothtothesecuritypolicyandtooperationalsecuritydetails.Ifemployeesaregoingtobeexpectedtocomplywiththeorganization’ssecuritypolicy,theymustbeproperlytrainedinitspurpose,meaning,andobjectives.Trainingwithrespecttotheinformationsecuritypolicy,individualresponsibilities,andexpectationsissomethingthatrequiresperiodicreinforcementthroughrefreshertraining.Becausethesecuritypolicyisahigh-leveldirectivethatsetstheoverall

supportandexecutivedirectionwithrespecttosecurity,itisimportantthatthemeaningofthismessagebetranslatedandsupported.Second-level

policiessuchaspassword,access,informationhandling,andacceptableusepoliciesalsoneedtobecovered.Thecollectionofpoliciesshouldpaintapicturedescribingthedesiredsecuritycultureoftheorganization.Thetrainingshouldbedesignedtoensurethatpeopleseeandunderstandthewholepicture,notjusttheelements.

Role-basedTrainingFortrainingtobeeffective,itneedstobetargetedtotheuserwithregardtotheirroleinthesubjectofthetraining.Whileallemployeesmayneedgeneralsecurityawarenesstraining,theyalsoneedspecifictraininginareaswheretheyhaveindividualresponsibilities.Role-basedtrainingwithregardtoinformationsecurityresponsibilitiesisanimportantpartofinformationsecuritytraining.Ifapersonhasjobresponsibilitiesthatmayimpactinformationsecurity,

thenrole-specifictrainingisneededtoensurethattheindividualunderstandstheresponsibilitiesastheyrelatetoinformationsecurity.Someroles,suchassystemadministratorordeveloper,haveclearlydefinedinformationsecurityresponsibilities.Therolesofothers,suchasprojectmanagerorpurchasingmanager,haveinformationsecurityimpactsthatarelessobvious,buttheserolesrequiretrainingaswell.Infact,theless-obviousbutwider-impactrolesofmiddlemanagementcanhavealargeeffectontheinformationsecurityculture,andthusifaspecificoutcomeisdesired,itrequirestraining.Asinallpersonnel-relatedtraining,twoelementsneedattention.First,

retrainingovertimeisnecessarytoensurethatpersonnelkeepproperlevelsofknowledge.Second,aspeoplechangejobs,areassessmentoftherequiredtrainingbasisisneeded,andadditionaltrainingmayberequired.Maintainingaccuratetrainingrecordsofpersonnelistheonlywaythiscanbemanagedinanysignificantenterprise.

CompliancewithLaws,BestPractices,and

StandardsThereisawidearrayoflaws,regulations,contractualrequirements,standards,andbestpracticesassociatedwithinformationsecurity.Eachplacesitsownsetofrequirementsuponanorganizationanditspersonnel.Theonlyeffectivewayforanorganizationtoaddresstheserequirementsistobuildthemintotheirownpoliciesandprocedures.Trainingtoone’sownpoliciesandprocedureswouldthentranslateintocoverageoftheseexternalrequirements.Itisimportanttonotethatmanyoftheseexternalrequirementsimparta

specifictrainingandawarenesscomponentupontheorganization.OrganizationssubjecttotherequirementsofthePaymentCardIndustryDataSecurityStandard(PCIDSS),GrammLeachBlileyAct(GLBA),orHealthInsurancePortabilityAccountabilityAct(HIPAA)areamongthemanythatmustmaintainaspecificinformationsecuritytrainingprogram.Otherorganizationsshoulddosoasamatterofbestpractice.

UserHabitsIndividualuserresponsibilitiesvarybetweenorganizationsandthetypeofbusinesseachorganizationisinvolvedin,buttherearecertainverybasicresponsibilitiesthatallusersshouldbeinstructedtoadopt:

Lockthedoortoyourofficeorworkspace,includingdrawersandcabinets.

Donotleavesensitiveinformationinsideyourcarunprotected.

Securestoragemediacontainingsensitiveinformationinasecurestoragedevice.

Shredpapercontainingorganizationalinformationbeforediscardingit.

Donotdivulgesensitiveinformationtoindividuals(includingotheremployees)whodonothaveanauthorizedneedtoknowit.

Donotdiscusssensitiveinformationwithfamilymembers.(ThemostcommonviolationofthisruleoccursinregardtoHRinformation,asemployees,especiallysupervisors,maycomplaintotheirspouseorfriendsaboutotheremployeesoraboutproblemsthatareoccurringatwork.)

Protectlaptopsandothermobiledevicesthatcontainsensitiveorimportantorganizationinformationwhereverthedevicemaybestoredorleft.(It’sagoodideatoensurethatsensitiveinformationisencryptedonthelaptopormobiledevicesothat,shouldtheequipmentbelostorstolen,theinformationremainssafe.)

Beawareofwhoisaroundyouwhendiscussingsensitivecorporateinformation.Doeseverybodywithinearshothavetheneedtohearthisinformation?

Enforcecorporateaccesscontrolprocedures.Bealertto,anddonotallow,piggybacking,shouldersurfing,oraccesswithoutthepropercredentials.

Beawareofthecorrectprocedurestoreportsuspectedoractualviolationsofsecuritypolicies.

Followproceduresestablishedtoenforcegoodpasswordsecuritypractices.Passwordsaresuchacriticalelementthattheyarefrequentlytheultimatetargetofasocialengineeringattack.Thoughsuchpasswordproceduresmayseemtoooppressiveorstrict,theyareoftenthebestlineofdefense.

Userhabitsareafront-linesecuritytoolinengagingtheworkforcetoimprovetheoverallsecuritypostureofanorganization.

UserresponsibilitiesareeasytrainingtopicsaboutwhichtoaskquestionsontheCompTIASecurity+exam,socommittomemoryyourknowledgeofthepointslistedhere.

NewThreatsandSecurityTrends/AlertsAttheendoftheday,informationsecuritypracticesareaboutmanagingrisk,anditiswellknownthattheriskenvironmentisonemarkedbyconstantchange.Theever-evolvingthreatenvironmentfrequentlyencountersnewthreats,newsecurityissues,andnewformsofdefense.Trainingpeopletorecognizethenewthreatsnecessitatescontinualawarenessandtrainingrefresherevents.

NewVirusesNewformsofviruses,ormalware,arebeingcreatedeveryday.Someofthesenewformscanbehighlydestructiveandcostly,anditisincumbentuponalluserstobeonthelookoutforandtakeactionstoavoidexposure.Pooruserpracticesarecountedonbymalwareauthorstoassistinthespreadoftheirattacks.Onewayofexplainingproperactionstousersistouseananalogytocleanliness.Traininguserstopracticegoodhygieneintheiractionscangoalongwaytowardassistingtheenterpriseindefendingagainsttheseattackvectors.

PhishingAttacksThebestdefenseagainstphishingandothersocialengineeringattacksisaneducatedandawarebodyofemployees.Continualrefreshertrainingaboutthetopicofsocialengineeringandspecificsaboutcurrentattacktrendsareneededtokeepemployeesawareofandpreparedfornewtrendsinsocialengineeringattacks.Attackersrelyuponanuneducated,complacent,ordistractedworkforcetoenabletheirattackvector.Socialengineeringhasbecomethegatewayformanyofthemostdamagingattacksinplaytoday.SocialengineeringiscoveredextensivelyinChapter4.

SocialNetworkingandP2PWiththeriseinpopularityofpeer-to-peer(P2P)communicationsand

socialnetworkingsites—notablyFacebook,Twitter,andLinkedIn—manypeoplehavegottenintoahabitofsharingtoomuchinformation.Usingastatusof“ReturningfromsalescalltoXYZcompany”revealsinformationtopeoplewhohavenoneedtoknowthisinformation.Confusingsharingwithfriendsandsharingbusinessinformationwiththosewhodon’tneedtoknowisalinepeoplearecrossingonaregularbasis.Don’tbetheemployeewhomixesbusinessandpersonalinformationandreleasesinformationtopartieswhoshouldnothaveit,regardlessofhowinnocuousitmayseem.Usersneedtounderstandtheimportanceofnotusingcommonprograms

suchastorrentsandotherfilesharingintheworkplace,astheseprogramscanresultininfectionmechanismsanddata-losschannels.Theinformationsecuritytrainingandawarenessprogramshouldcovertheseissues.Iftheissuesareproperlyexplainedtoemployees,theirmotivationtocomplywon’tsimplybetoavoidadversepersonnelactionforviolatingapolicy;theywillwanttoassistinthesecurityoftheorganizationanditsmission.

TrainingMetricsandComplianceTrainingandawarenessprogramscanyieldmuchinthewayofaneducatedandknowledgeableworkforce.Manylaws,regulations,andbestpracticeshaverequirementsformaintainingatrainedworkforce.Havingarecord-keepingsystemtomeasurecompliancewithattendanceandtomeasuretheeffectivenessofthetrainingisanormalrequirement.Simplyconductingtrainingisnotsufficient.Followingupandgatheringtrainingmetricstovalidatecomplianceandsecuritypostureisanimportantaspectofsecuritytrainingmanagement.Anumberoffactorsdeserveattentionwhenmanagingsecuritytraining.

Becauseofthediversenatureofrole-basedrequirements,maintaininganactive,up-to-datelistingofindividualtrainingandretrainingrequirementsisonechallenge.Monitoringtheeffectivenessofthetrainingisyetanotherchallenge.Creatinganeffectivetrainingandawarenessprogramwhen

measuredbyactualimpactonemployeebehaviorisachallengingendeavor.Trainingneedstobecurrent,relevant,andinterestingtoengageemployeeattention.Simplerepetitionofthesametrainingmaterialhasnotproventobeeffective,soregularlyupdatingtheprogramisarequirementifitistoremaineffectiveovertime.

TechTip

SecurityTrainingRecordsRequirementsforbothperiodictrainingandretrainingdrivetheneedforgoodtrainingrecords.Maintainingproperinformationsecuritytrainingrecordsisarequirementofseverallawsandregulationsandshouldbeconsideredabestpractice.

InteroperabilityAgreementsManybusinessoperationsinvolveactionsbetweenmanydifferentparties—somewithinanorganization,andsomeindifferentorganizations.Theseactionsrequirecommunicationbetweentheparties,definingtheresponsibilitiesandexpectationsoftheparties,thebusinessobjectives,andtheenvironmentwithinwhichtheobjectiveswillbepursued.Toensureanagreementisunderstoodbetweentheparties,writtenagreementsareused.Numerousformsoflegalagreementsandcontractsareusedinbusiness,butwithrespecttosecurity,someofthemostcommononesaretheservicelevelagreement,businesspartnershipagreement,memorandumofunderstanding,andinterconnectionsecurityagreement.

ServiceLevelAgreementsServicelevelagreements(SLAs)arecontractualagreementsbetweenentitiesthatdescribespecifiedlevelsofservicethattheservicingentityagreestoguaranteeforthecustomer.SLAsessentiallysettherequisite

levelofperformanceofagivencontractualservice.SLAsaretypicallyincludedaspartofaservicecontractandsettheleveloftechnicalexpectations.AnSLAcandefinespecificservices,theperformancelevelassociatedwithaservice,issuemanagementandresolution,andsoon.SLAsarenegotiatedbetweencustomerandsupplierandrepresenttheagreed-uponterms.Anorganizationcontractingwithaserviceprovidershouldremembertoincludeintheagreementasectiondescribingtheserviceprovider’sresponsibilityintermsofbusinesscontinuityanddisasterrecovery.Theprovider’sbackupplansandprocessesforrestoringlostdatashouldalsobeclearlydescribed.Typically,agoodSLAwillsatisfytwosimplerules.First,itwill

describetheentiresetofproductorservicefunctionsinsufficientdetailthattheirrequirementwillbeunambiguous.Second,theSLAwillprovideaclearmeansofdeterminingwhetheraspecifiedfunctionorservicehasbeenprovidedattheagreed-uponlevelofperformance.

BusinessPartnershipAgreementAbusinesspartnershipagreement(BPA)isalegalagreementbetweenpartnersestablishingtheterms,conditions,andexpectationsoftherelationshipbetweenthepartners.Thesedetailscancoverawiderangeofissues,includingtypicalitemssuchasthesharingofprofitsandlosses,theresponsibilitiesofeachpartner,theadditionorremovalofpartners,andanyotherissues.TheUniformPartnershipAct(UPA),establishedbystatelawandconvention,laysoutauniformsetofrulesassociatedwithpartnershipstoresolveanypartnershipterms.ThetermsinaUPAaredesignedas“onesizefitsall”andarenottypicallyinthebestinterestofanyspecificpartnership.ToavoidundesiredoutcomesthatmayresultfromUPAterms,itisbestforpartnershipstospelloutspecificsinaBPA.

MemorandumofUnderstandingAmemorandumofunderstanding(MOU)isalegaldocumentusedto

describeabilateralagreementbetweenparties.Itisawrittenagreementexpressingasetofintendedactionsbetweenthepartieswithrespecttosomecommonpursuitorgoal.Itismoreformalanddetailedthanasimplehandshake,butitgenerallylacksthebindingpowersofacontract.ItisalsocommontofindMOUsbetweendifferentunitswithinanorganizationtodetailexpectationsassociatedwiththecommonbusinessinterest.

InterconnectionSecurityAgreementAninterconnectionsecurityagreement(ISA)isaspecializedagreementbetweenorganizationsthathaveinterconnectedITsystems,thepurposeofwhichistodocumentthesecurityrequirementsassociatedwiththeinterconnection.AnISAcanbeapartofanMOUdetailingthespecifictechnicalsecurityaspectsofadatainterconnection.

BesureyouunderstandthedifferencesbetweentheinteroperabilityagreementsSLA,BPA,MOU,andISA.Thedifferenceshingeuponthepurposeforeachdocument.

TheSecurityPerimeterThediscussiontothispointhasnotincludedanymentionofthespecifictechnologyusedtoenforceoperationalandorganizationalsecurityoradescriptionofthevariouscomponentsthatconstitutetheorganization’ssecurityperimeter.Iftheaverageadministratorwereaskedtodrawadiagramdepictingthevariouscomponentsoftheirnetwork,thediagramwouldprobablylooksomethinglikeFigure3.1.

•Figure3.1Basicdiagramofanorganization’snetwork

Thesecurityperimeter,withitsseverallayersofsecurity,alongwithadditionalsecuritymechanismsthatmaybeimplementedoneachsystem(suchasuserIDs/passwords),createswhatissometimesknownasdefense-in-depth.Thisimpliesthatsecurityisenhancedwhentherearemultiplelayersofsecurity(thedepth)throughwhichanattackerwouldhavetopenetratetoreachthedesiredgoal.

Thisdiagramincludesthemajorcomponentstypicallyfoundinanetwork.TheconnectiontotheInternetgenerallyhassomesortofprotectionattachedtoitsuchasafirewall.Anintrusiondetectionsystem(IDS),alsooftenpartofthesecurityperimeterfortheorganization,maybeeitherontheinsideortheoutsideofthefirewall,oritmayinfactbeonbothsides.Thespecificlocationdependsonthecompanyandwhatitis

moreconcernedaboutpreventing(thatis,insiderthreatsorexternalthreats).Theroutercanalsobethoughtofasasecuritydevice,asitcanbeusedtoenhancesecuritysuchasinthecaseofwirelessroutersthatcanbeusedtoenforceencryptionsettings.Beyondthissecurityperimeteristhecorporatenetwork.Figure3.1isobviouslyaverysimpledepiction—anactualnetworkcanhavenumeroussubnetsandextranetsaswellaswirelessaccesspoints—butthebasiccomponentsarepresent.Unfortunately,ifthiswerethediagramprovidedbytheadministratortoshowtheorganization’sbasicnetworkstructure,theadministratorwouldhavemissedaveryimportantcomponent.AmoreastuteadministratorwouldprovideadiagrammorelikeFigure3.2.

•Figure3.2Amorecompletediagramofanorganization’snetwork

Thisdiagramincludesotherpossibleaccesspointsintothenetwork,includingthepublicswitchedtelephonenetwork(PSTN)andwirelessaccesspoints.Theorganizationmayormaynothaveanyauthorizedmodemsorwirelessnetworks,butthesavvyadministratorwouldrealizethatthepotentialexistsforunauthorizedversionsofboth.Whenconsideringthepolicies,procedures,andguidelinesneededtoimplement

securityfortheorganization,bothnetworksneedtobeconsidered.AnotherdevelopmentthathasbroughtthetelephoneandcomputernetworkstogetheristheimplementationofvoiceoverIP(VoIP),whicheliminatesthetraditionallandlinesinanorganizationandreplacesthemwithspecialtelephonesthatconnecttotheIPdatanetwork.WhileFigure3.2providesamorecomprehensiveviewofthevarious

componentsthatneedtobeprotected,itisstillincomplete.Mostexpertswillagreethatthebiggestdangertoanyorganizationdoesnotcomefromexternalattacksbutratherfromtheinsider—adisgruntledemployeeorsomebodyelsewhohasphysicalaccesstothefacility.Givenphysicalaccesstoanoffice,theknowledgeableattackerwillquicklyfindtheinformationneededtogainaccesstotheorganization’scomputersystemsandnetwork.Consequently,everyorganizationalsoneedssecuritypolicies,procedures,andguidelinesthatcoverphysicalsecurity,andeverysecurityadministratorshouldbeconcernedwiththeseaswell.Whilephysicalsecurity(whichcanincludesuchthingsaslocks,cameras,guardsandentrypoints,alarmsystems,andphysicalbarriers)willprobablynotfallunderthepurviewofthesecurityadministrator,theoperationalstateoftheorganization’sphysicalsecuritymeasuresisjustasimportantasmanyoftheothernetwork-centricmeasures.

AnincreasingnumberoforganizationsareimplementingVoIPsolutionstobringthetelephoneandcomputernetworkstogether.Whiletherearesometremendousadvantagestodoingthisintermsofbothincreasedcapabilitiesandpotentialmonetarysavings,bringingthetwonetworkstogethermayalsointroduceadditionalsecurityconcerns.Anothercommonmethodtoaccessorganizationalnetworkstodayisthroughwirelessaccesspoints.Thesemaybeprovidedbytheorganizationitselftoenhanceproductivity,ortheymaybeattachedtothenetworkbyuserswithoutorganizationalapproval.Theimpactofalloftheseadditionalmethodsthatcanbeusedtoaccessanetworkistoincreasethecomplexityofthesecurityproblem.

PhysicalSecurity

Physicalsecurityconsistsofallmechanismsusedtoensurethatphysicalaccesstothecomputersystemsandnetworksisrestrictedtoonlyauthorizedusers.Additionalphysicalsecuritymechanismsmaybeusedtoprovideincreasedsecurityforespeciallysensitivesystemssuchasserversanddevicessuchasrouters,firewalls,andintrusiondetectionsystems.Whenconsideringphysicalsecurity,accessfromallsixsidesshouldbeconsidered—notonlyshouldthesecurityofobviouspointsofentrybeexamined,suchasdoorsandwindows,butthewallsthemselvesaswellasthefloorandceilingshouldalsobeconsidered.Questionssuchasthefollowingshouldbeaddressed:

Isthereafalseceilingwithtilesthatcanbeeasilyremoved?

Dothewallsextendtotheactualceilingoronlytoafalseceiling?

Istherearaisedfloor?

Dothewallsextendtotheactualfloor,ordotheystopataraisedfloor?

Howareimportantsystemssituated?

Dothemonitorsfaceawayfromwindows,orcouldtheactivityofsomebodyatasystembemonitored?

Whohasaccesstothefacility?

Whattypeofaccesscontrolisthere,andarethereanyguards?

Whoisallowedunsupervisedaccesstothefacility?

Isthereanalarmsystemorsecuritycamerathatcoversthearea?

Whatproceduresgovernthemonitoringofthealarmsystemorsecuritycameraandtheresponseshouldunauthorizedactivitybedetected?

Thesearejustsomeofthenumerousquestionsthatneedtobeaskedwhenexaminingthephysicalsecuritysurroundingasystem.

TechTip

PhysicalSecurityIsAlsoImportanttoComputerSecurityComputersecurityprofessionalsrecognizethattheycannotrelyonlyoncomputersecuritymechanismstokeeptheirsystemssafe.Physicalsecuritymustbemaintainedaswell,becauseinmanycases,ifanattackergainsphysicalaccess,hecanstealdataanddestroythesystem.

PhysicalAccessControlsThepurposeofphysicalaccesscontrolsisthesameasthatofcomputerandnetworkaccesscontrols—youwanttorestrictaccesstoonlythosewhoareauthorizedtohaveit.Physicalaccessisrestrictedbyrequiringtheindividualtosomehowauthenticatethattheyhavetherightorauthoritytohavethedesiredaccess.Asincomputerauthentication,accessinthephysicalworldcanbebasedonsomethingtheindividualhas,somethingtheyknow,orsomethingtheyare.Frequently,whendealingwiththephysicalworld,theterms“authentication”and“accesscontrol”areusedinterchangeably.Themostcommonphysicalaccesscontroldevice,whichhasbeen

aroundinsomeformforcenturies,isalock.Combinationlocksrepresentanaccesscontroldevicethatdependsonsomethingtheindividualknows(thecombination).Lockswithkeysdependonsomethingtheindividualhas(thekey).Eachofthesehascertainadvantagesanddisadvantages.Combinationsdon’trequireanyextrahardware,buttheymustberemembered(whichmeansindividualsmaywritethemdown—asecurityvulnerabilityinitself)andarehardtocontrol.Anybodywhoknowsthecombinationmayprovideittosomebodyelse.Keylocksaresimpleandeasytouse,butthekeymaybelost,whichmeansanotherkeyhastobemadeorthelockhastoberekeyed.Keysmayalsobecopied,andtheirdisseminationcanbehardtocontrol.Newerlocksreplacethetraditionalkeywithacardthatmustbepassedthroughareaderorplacedagainstit.Theindividualmayalsohavetoprovideapersonalaccesscode,thus

makingthisformofaccessbothasomething-you-knowandsomething-you-havemethod.

TechTip

PhysicalandInformationSecurityConvergenceInhigh-securitysites,physicalaccesscontrolsandelectronicaccesscontrolstoinformationareinterlocked.Thismeansthatbeforedatacanbeaccessedfromaparticularmachine,thephysicalaccesscontrolsystemmustagreewiththefindingthattheauthorizedpartyispresent.

Inadditiontolocksondoors,othercommonphysicalsecuritydevicesincludevideosurveillanceandevensimpleaccesscontrollogs(sign-inlogs).Whilesign-inlogsdon’tprovideanactualbarrier,theydoprovidearecordofaccessand,whenusedinconjunctionwithaguardwhoverifiesanindividual’sidentity,candissuadepotentialadversariesfromattemptingtogainaccesstoafacility.Asmentioned,anothercommonaccesscontrolmechanismisahumansecurityguard.Manyorganizationsemployaguardtoprovideanextralevelofexaminationofindividualswhowanttogainaccesstoafacility.Otherdevicesarelimitedtotheirdesignedfunction.Ahumanguardcanapplycommonsensetosituationsthatmighthavebeenunexpected.Havingsecurityguardsalsoaddressesthecommonpracticeofpiggybacking(akatailgating),whereanindividualfollowsanotherpersoncloselytoavoidhavingtogothroughtheaccesscontrolprocedures.

BiometricsAccesscontrolsthatutilizesomethingyouknow(forexample,combinations)orsomethingyouhave(suchaskeys)arenottheonlymethodstolimitfacilityaccesstoauthorizedindividuals.Athirdapproachistoutilizesomethinguniqueabouttheindividual—theirfingerprints,forexample—toidentifythem.Unliketheothertwomethods,thesomething-you-aremethod,knownasbiometrics,doesnotrelyontheindividualto

eitherremembersomethingortohavesomethingintheirpossession.Biometricsisamoresophisticatedaccesscontrolapproachandcanbemoreexpensive.Biometricsalsosufferfromfalsepositivesandfalsenegatives,makingthemlessthan100percenteffective.Forthisreasontheyarefrequentlyusedinconjunctionwithanotherformofauthentication.Theadvantageistheuseralwayshasthem(cannotleaveathomeorshare)andtheytendtohavebetterentropythanpasswords.Othermethodstoaccomplishbiometricsincludehandwritinganalysis,retinalscans,irisscans,voiceprints,handgeometry,andfacialgeometry.

Therearemanysimilaritiesbetweenauthenticationandaccesscontrolsincomputersandinthephysicalworld.Rememberthethreecommontechniquesforverifyingaperson’sidentityandaccessprivileges:somethingyouknow,somethingyouhave,andsomethingaboutyou.

Bothaccesstocomputersystemsandnetworksandphysicalaccesstorestrictedareascanbecontrolledwithbiometrics.However,biometricmethodsforcontrollingphysicalaccessaregenerallynotthesameasthoseemployedforrestrictingaccesstocomputersystemsandnetworks.Handgeometry,forexample,requiresafairlylargedevice.Thiscaneasilybeplacedoutsideofadoortocontrolaccesstotheroombutwouldnotbeasconvenienttocontrolaccesstoacomputersystem,sinceareaderwouldneedtobeplacedwitheachcomputeroratleastwithgroupsofcomputers.Inamobileenvironmentwherelaptopsarebeingused,adevicesuchasahandgeometryreaderwouldbeunrealistic.

TechTip

BiometricDevicesOnceonlyseeninspyorsciencefictionmovies,biometricssuchashandandfingerprintreaders,eye-scanningtechnology,andvoiceprintdevicesarenowbecomingmorecommonintherealworld.Theaccuracyofthesedeviceshasimprovedandthecostshavedropped,

makingthemrealisticsolutionstomanyaccesscontrolsituations.

PhysicalBarriersAnevenmorecommonsecurityfeaturethanlocksisaphysicalbarrier.Physicalbarriershelpimplementthephysical-worldequivalentoflayeredsecurity.Theoutermostlayerofphysicalsecurityshouldcontainthemorepubliclyvisibleactivities.Aguardatagateinafence,forexample,wouldbevisiblebyallwhohappentopassby.Asyouprogressthroughthelayers,thebarriersandsecuritymechanismsshouldbecomelesspubliclyvisibletomakedeterminingwhatmechanismsareinplacemoredifficultforobservers.Signsarealsoanimportantelementinsecurity,astheyannouncetothepublicwhichareasarepublicandwhichareprivate.Amantrapcanalsobeusedinthislayeredapproach.Itgenerallyconsistsofasmallspacethatislargeenoughforonlyonepersonatatime,withtwolockingdoors.Anindividualhastoenterthefirstdoor,closethefirstdoor,thenattempttoopentheseconddoor.Ifunsuccessful,perhapsbecausetheydonothavetheproperaccesscode,thepersoncanbecaughtinsidethissmalllocationuntilsecuritypersonnelshowup.Inadditiontowallsandfences,openspacecanalsoserveasabarrier.

Whilethismayatfirstseemtobeanoddstatement,considertheuseoflargeareasofopenspacearoundafacility.Foranintrudertocrossthisopenspacetakestime—timeinwhichtheyarevulnerableandtheirpresencemaybediscovered.Intoday’senvironmentinwhichterroristattackshavebecomemorecommon,additionalprecautionsshouldbetakenforareasthatmaybeconsideredapossibletargetforterroristactivity.Inadditiontoopenspace,whichisnecessarytolessentheeffectofexplosions,concretebarriersthatstopvehiclesfromgettingtooclosetofacilitiesshouldalsobeused.Itisnotnecessaryforthesetobeunsightlyconcretewalls;manyfacilitieshaveplacedlarge,roundconcretecircles,filledthemwithdirt,andthenplantedflowersandotherplantstoconstructalarge,immovableplanter.

TechTip

SignsSignscanbeaneffectivecontrol,warningunauthorizedpersonnelnottoenter,locatingcriticalelementsforfirstresponders,andprovidingpathstoexitsinemergencies.Propersignageisanimportantaspectofphysicalsecuritycontrols.

EnvironmentalIssuesEnvironmentalissuesmaynotatfirstseemtoberelatedtosecurity,butwhenconsideringtheavailabilityofacomputersystemornetwork,theymustbetakenintoconsideration.Environmentalissuesincludeitemssuchasheating,ventilation,andairconditioning(HVAC)systems,electricalpower,andthe“environmentsofnature.”HVACsystemsareusedtomaintainthecomfortofanofficeenvironment.Afewyearsback,theywerealsocriticalforthesmoothoperationofcomputersystemsthathadlowtolerancesforhumidityandheat.Today’sdesktopsystemsaremuchmoretolerant,andthelimitingfactorisnowoftenthehumanuser.TheexceptiontothisHVAClimitationiswhenlargequantitiesofequipmentareco-located,inserverroomsandnetworkequipmentclosets.Intheseheat-denseareas,HVACisneededtokeepequipmenttemperatureswithinreasonableranges.OftencertainsecuritydevicessuchasfirewallsandintrusiondetectionsystemsarelocatedinthesesameequipmentclosetsandthelossofHVACsystemscancausethesecriticalsystemstofail.OneinterestingaspectofHVACsystemsisthattheythemselvesareoftencomputercontrolledandfrequentlyprovideremoteaccessviatelephoneornetworkconnections.Theseconnectionsshouldbeprotectedinasimilarmannertocomputermodems,orelseattackersmaylocatethemandchangetheHVACsettingsforanofficeorbuilding.

HVACsystemsforserverroomsandnetworkequipmentclosetsareimportantbecausethedenseequipmentenvironmentcangeneratesignificantamountsofheat.HVACoutagescanresultintemperaturesthatareoutsideequipmentoperatingranges,forcingshutdowns.

Electricalpowerisobviouslyanessentialrequirementforcomputersystemsandnetworks.Electricalpowerissubjecttomomentarysurgesanddisruption.Surgeprotectorsareneededtoprotectsensitiveelectronicequipmentfromfluctuationsinvoltage.Anuninterruptiblepowersupply(UPS)shouldbeconsideredforcriticalsystemssothatalossofpowerwillnothaltprocessing.ThesizeofthebatteriesassociatedwithaUPSwilldeterminetheamountoftimethatitcanoperatebeforeittoolosespower.Manysitesensuresufficientpowertoprovideadministratorstheopportunitytocleanlybringthesystemornetworkdown.Forinstallationsthatrequirecontinuousoperations,evenintheeventofapoweroutage,electricgeneratorsthatautomaticallystartwhenalossofpowerisdetectedcanbeinstalled.Thesesystemsmaytakeafewsecondstostartbeforetheyreachfulloperation,soaUPSshouldalsobeconsideredtosmooththetransitionbetweennormalandbackuppower.

FireSuppressionFiresareacommondisasterthatcanaffectorganizationsandtheircomputingequipment.Firedetectionandfiresuppressiondevicesaretwoapproachestoaddressingthisthreat.Detectorscanbeusefulbecausesomemaybeabletodetectafireinitsveryearlystagesbeforeafiresuppressionsystemisactivated,andtheycanpotentiallysoundawarning.Thiswarningcouldprovideemployeeswiththeopportunitytodealwiththefirebeforeitbecomesseriousenoughforthefiresuppressionequipmenttokickin.Suppressionsystemscomeinseveralvarieties,includingsprinkler-basedsystemsandgas-basedsystems.Standardsprinkler-basedsystemsarenotoptimalfordatacentersbecausewaterwill

ruinlargeelectricalinfrastructuresandmostintegratedcircuit–baseddevices—suchascomputers.Gas-basedsystemsareagoodalternative,thoughtheyalsocarryspecialconcerns.MoreextensivecoverageoffiredetectionandsuppressionisprovidedinChapter8.

WirelessWhensomeonetalksaboutwirelesscommunication,theygenerallyarereferringtocellulartelephones(“cellphones”).Thesedeviceshavebecomeubiquitousintoday’smodernofficeenvironment.Acellphonenetworkconsistsofthephonesthemselves,thecellswiththeiraccompanyingbasestationsthattheyareusedin,andthehardwareandsoftwarethatallowthemtocommunicate.Thebasestationsaremadeupofantennas,receivers,transmitters,andamplifiers.Thebasestationscommunicatewiththosecellphonesthatarecurrentlyinthegeographicalareathatisservicedbythatstation.Asapersontravelsacrosstown,theymayexitandentermultiplecells.Thestationsmustconductahandofftoensurecontinuousoperationforthecellphone.Astheindividualmovestowardtheedgeofacell,amobileswitchingcenternoticesthepowerofthesignalbeginningtodrop,checkswhetheranothercellhasastrongersignalforthephone(cellsfrequentlyoverlap),and,ifso,switchesoperationtothisnewcellandbasestation.Allofthisisdonewithouttheusereverknowingthattheyhavemovedfromonecelltoanother.Wirelesstechnologycanalsobeusedfornetworking.Therearetwo

mainstandardsforwirelessnetworktechnology.Bluetoothisdesignedasashort-range(approximatelytenmeters)personalareanetwork(PAN)cable-replacementtechnologythatcanbebuiltintoavarietyofdevices,suchasmobilephones,tablets,andlaptopcomputers.Theideaistocreatelow-costwirelesstechnologysothatmanydifferentdevicescancommunicatewitheachother.Bluetoothisalsointerestingbecause,unlikeotherwirelesstechnology,itisdesignedsothatdevicescantalkdirectlywitheachotherwithouthavingtogothroughacentraldevice(suchasthebasestationdescribedpreviously).Thisisknownaspeer-to-peer

communication.

TechTip

WirelessNetworkSecurityIssuesDuetoanumberofadvantages,suchastheabilitytotakeyourlaptopwithyouasyoumovearoundyourbuildingandstillstayconnected,wirelessnetworkshavegrowninpopularity.Theyalsoeliminatetheneedtostringnetworkcablesallovertheoffice.Atthesametime,however,theycanbeasecuritynightmareifnotadequatelyprotected.Thesignalforyournetworkdoesn’tstopatyourofficedoororwalljustbecauseitisthere.Itwillcontinuepropagatingtoareasthatmaybeopentoanybody.Thisprovidestheopportunityforotherstoaccessyournetwork.Toavoidthis,youmusttakestepssuchasencryptingtransmissionssothatyourwirelessnetworkdoesn’tbecometheweaklinkinyoursecuritychain.

TheothermajorwirelessstandardistheIEEE802.11setofstandards,whichiswellsuitedforthelocalareanetwork(LAN)environment.802.11networkscanoperateeitherinanadhocpeer-to-peerfashionorininfrastructuremode,whichismorecommon.Ininfrastructuremode,computerswith802.11networkcardscommunicatewithawirelessaccesspoint.Thisaccesspointconnectstothenetworksothatthecomputerscommunicatingwithitareessentiallyalsoconnectedtothenetwork.Whilewirelessnetworksareveryusefulintoday’smodernoffice(and

home),theyarenotwithouttheirsecurityproblems.Accesspointsaregenerallyplacedthroughoutabuildingsothatallemployeescanaccessthecorporatenetwork.Thetransmissionandreceptionareascoveredbyaccesspointsarenoteasilycontrolled.Consequently,manypubliclyaccessibleareasmightfallintotherangeofoneoftheorganization’saccesspoints,oritsBluetooth-enabledsystems,andthusthecorporatenetworkmaybecomevulnerabletoattack.Wirelessnetworksaredesignedtoincorporatesomesecuritymeasures,butalltoooftenthenetworksaresetupwithoutsecurityenabled,andserioussecurityflawsexistinthe802.11design.

CrossCheckWirelessNetworksWirelessnetworksecurityisdiscussedinthischapterinrelationshiptophysicalissuessuchastheplacementofwirelessaccesspoints.Thereare,however,numerousotherissueswithwirelesssecurity,whicharediscussedinChapter12.Makesuretounderstandhowthephysicallocationofwirelessaccesspointsaffectstheotherwirelesssecurityissues.

ElectromagneticEavesdroppingIn1985,apaperbyWimvanEckoftheNetherlandsdescribedwhatbecameknownasthevanEckphenomenon.InthepapervanEckdescribedhoweavesdroppingonwhatwasbeingdisplayedonmonitorscouldbeaccomplishedbypickingupandthendecodingtheelectromagneticinterferenceproducedbythemonitors.Withtheappropriateequipment,theexactimageofwhatisbeingdisplayedcanbere-createdsomedistanceaway.Whiletheoriginalpaperdiscussedemanationsastheyappliedtovideodisplayunits(monitors),thesamephenomenonappliestootherdevicessuchasprintersandcomputers.Thisphenomenonhadactuallybeenknownaboutforquitesometime

beforevanEckpublishedhispaper.TheU.S.DepartmentofDefenseusedthetermTEMPEST(referredtobysomeastheTransientElectroMagneticPulseEmanationSTandard)todescribebothaprograminthemilitarytocontroltheseelectronicemanationsfromelectricalequipmentandtheactualprocessforcontrollingtheemanations.Therearethreebasicwaystopreventtheseemanationsfrombeingpickedupbyanattacker:

Puttheequipmentbeyondthepointthattheemanationscanbepickedup.

Provideshieldingfortheequipmentitself.

Provideashieldedenclosure(suchasaroom)toputtheequipmentin.

Oneofthesimplestwaystoprotectagainstequipmentbeingmonitoredinthisfashionistoputenoughdistancebetweenthetargetandtheattacker.Theemanationscanbepickedupfromonlyalimiteddistance.Ifthephysicalsecurityforthefacilityissufficienttoputenoughspacebetweentheequipmentandpubliclyaccessibleareasthatthesignalscannotbepickedup,thentheorganizationdoesn’thavetotakeanyadditionalmeasurestoensuresecurity.Distanceisnottheonlywaytoprotectagainsteavesdroppingon

electronicemanations.Devicescanbeshieldedsotheiremanationsareblocked.Acquiringenoughpropertytoprovidethenecessarydistanceneededtoprotectagainstaneavesdroppermaybepossibleifthefacilityisinthecountrywithlotsofavailablelandsurroundingit.Indeed,forsmallerorganizationsthatoccupyonlyafewofficesorfloorsinalargeofficebuilding,itwouldbeimpossibletoacquireenoughspace.Inthiscase,theorganizationmayresorttopurchasingshieldedequipment.A“TEMPESTapproved”computerwillcostsignificantlymorethanwhatanormalcomputerwouldcost.Shieldingaroom(inwhatisknownasaFaradaycage)isalsoanextremelyexpensiveendeavor.

Oneofthechallengesinsecurityisdetermininghowmuchtospendonsecuritywithoutspendingtoomuch.Securityspendingshouldbebasedonlikelythreatstoyoursystemsandnetwork.Whileelectronicemanationscanbemonitored,thelikelihoodofthistakingplaceinmostsituationsisremote,whichmakesspendingonitemstoprotectagainstitatbestalowpriority.

Anaturalquestiontoaskis,howprevalentisthisformofattack?Theequipmentneededtoperformelectromagneticeavesdroppingisnotreadilyavailable,butitwouldnotcostaninordinateamountofmoneytoproduceit.Thecostcouldcertainlybeaffordedbyanylargecorporation,andindustrialespionageusingsuchadeviceisapossibility.Whiletherearenopublicrecordsofthissortofactivitybeingconducted,itisreasonabletoassumethatitdoestakeplaceinlargecorporationsandthegovernment,especiallyinforeigncountries.

ModernEavesdroppingNotjustelectromagneticinformationcanbeusedtocarryinformationoutofasystemtoanadversary.Recentadvanceshavedemonstratedthefeasibilityofusingthewebcamsandmicrophonesonsystemstospyonusers,recordingkeystrokesandotheractivities.Thereareevendevicesbuilttointerceptthewirelesssignalsbetweenwirelesskeyboardsandmiceandtransmitthemoveranotherchanneltoanadversary.USB-basedkeyloggerscanbeplacedinthebackofmachines,asinmanycasesthebackofamachineisunguardedorfacingthepublic(watchforthisthenexttimeyouseeareceptionist’smachine).

Chapter3Review

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingregardingoperationalandorganizationalsecurity.

Identifyvariousoperationalaspectstosecurityinyourorganization

Preventiontechnologiesaredesignedtokeepindividualsfrombeingabletogainaccesstosystemsordatatheyarenotauthorizedtouse.

Previouslyinoperationalenvironments,preventionwasextremelydifficultandrelyingonpreventiontechnologiesalonewasnotsufficient.Thisledtotheriseoftechnologiestodetectandrespondtoeventsthatoccurwhenpreventionfails.

Animportantpartofanyorganization’sapproachtoimplementingsecurityistoestablishpolicies,procedures,standards,andguidelinestodetailwhatusersandadministratorsshouldbedoingtomaintainthe

securityofthesystemsandnetwork.

Identifyvariouspoliciesandproceduresinyourorganization

Policies,procedures,standards,andguidelinesareimportantinestablishingasecurityprogramwithinanorganization.

Thesecuritypolicyandsupportingpoliciesplayanimportantroleinestablishingandmanagingsystemrisk.

PoliciesandproceduresassociatedwithHumanResourcesfunctionalityincludejobrotation,mandatoryvacations,andhiringandterminationpolicies.

Identifythesecurityawarenessandtrainingneedsofanorganization

Securitytrainingandawarenesseffortsarevitalinengagingtheworkforcetoactwithinthedesiredrangeofconductwithrespecttosecurity.

Securityawarenessandtrainingisimportantinachievingcomplianceobjectives.

Securityawarenessandtrainingshouldbemeasuredandmanagedaspartofacomprehensivesecurityprogram.

Understandthedifferenttypesofagreementsemployedinnegotiatingsecurityrequirements

Thedifferentinteroperabilityagreements,includingSLA,BPA,MOUandISA,areusedtoestablishsecurityexpectationsbetweenvariousparties.

Describethephysicalsecuritycomponentsthatcanprotectyourcomputersandnetwork

Physicalsecurityconsistsofallmechanismsusedtoensurethatphysicalaccesstothecomputersystemsandnetworksisrestrictedto

onlyauthorizedusers.

Thepurposeofphysicalaccesscontrolsisthesameasthatofcomputerandnetworkaccesscontrols—torestrictaccesstoonlythosewhoareauthorizedtohaveit.

Thecarefulplacementofequipmentcanprovidesecurityforknownsecurityproblemsexhibitedbywirelessdevicesandthatariseduetoelectronicemanations.

Identifyenvironmentalfactorsthatcanaffectsecurity

Environmentalissuesareimportanttosecuritybecausetheycanaffecttheavailabilityofacomputersystemornetwork.

LossofHVACsystemscanleadtooverheatingproblemsthatcanaffectelectronicequipment,includingsecurity-relateddevices.

Thefrequencyofnaturaldisastersisacontributingfactorthatmustbeconsideredwhenmakingcontingencyprocessingplansforaninstallation.

Firesareacommonproblemfororganizations.Twogeneralapproachestoaddressingthisproblemarefiredetectionandfiresuppression.

Identifyfactorsthataffectthesecurityofthegrowingnumberofwirelesstechnologiesusedfordatatransmission

Wirelessnetworkshavemanysecurityissues,includingthetransmissionandreceptionareascoveredbyaccesspoints,whicharenoteasilycontrolledandcanthusprovideeasynetworkaccessforintruders.

Preventdisclosurethroughelectronicemanations

Withtheappropriateequipment,theexactimageofwhatisbeingdisplayedonacomputermonitorcanbere-createdsomedistance

away,allowingeavesdropperstoviewwhatyouaredoing.

Providingalotofdistancebetweenthesystemyouwishtoprotectandtheclosestplaceaneavesdroppercouldbeisonewaytoprotectagainsteavesdroppingonelectronicemanations.Devicescanalsobeshieldedsothattheiremanationsareblocked.

KeyTermsacceptableusepolicy(AUP)(50)biometrics(62)Bluetooth(65)businesspartnershipagreement(BPA)(59)duecare(53)duediligence(53)guidelines(43)heating,ventilation,andairconditioning(HVAC)(63)IEEE802.11(65)incidentresponsepolicy(54)interconnectionsecurityagreement(ISA)(59)memorandumofunderstanding(MOU)(59)physicalsecurity(61)policies(43)procedures(43)securitypolicy(44)servicelevelagreement(SLA)(59)standards(43)TEMPEST(66)uninterruptiblepowersupply(UPS)(64)userhabits(57)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1._______________arehigh-levelstatementsmadebymanagementthatlayouttheorganization’spositiononsomeissue.

2.Thecollectivetermusedtorefertothesystemsthatareusedtomaintainthecomfortofanofficeenvironmentandthatareoftencontrolledbycomputersystemsis_______________.

3.A(n)_______________isadevicedesignedtoprovidepowertoessentialequipmentforaperiodoftimewhennormalpowerislost.

4._______________areafoundationalsecuritytoolinengagingtheworkforcetoimprovetheoverallsecuritypostureofanorganization.

5._______________areacceptedspecificationsprovidingspecificdetailsonhowapolicyistobeenforced.

6._______________isawirelesstechnologydesignedasashort-range(approximatelytenmeters)personalareanetwork(PAN)cable-replacementtechnologythatmaybebuiltintoavarietyofdevicessuchasmobilephones,tablets,andlaptopcomputers.

7.A(n)_______________isalegaldocumentusedtodescribeabilateralagreementbetweenparties.

8._______________arestep-by-stepinstructionsthatdescribeexactlyhowemployeesareexpectedtoactinagivensituationortoaccomplishaspecifictask.

9.ThesetofstandardsforwirelessnetworksthatiswellsuitedfortheLANenvironmentandwhosenormalmodeistohavecomputerswithnetworkcardscommunicatingwithawirelessaccesspointis_______________.

10.A(n)_______________isalegalagreementbetweenorganizationsestablishingtheterms,conditions,andexpectationsoftherelationshipbetweenthem.

Multiple-ChoiceQuiz1.Whichofthefollowingisaphysicalsecuritythreat?

A.Cleaningcrewsareallowedunsupervisedaccessbecausetheyhaveacontract.

B.Employeesundergobackgroundcriminalchecksbeforebeinghired.

C.Alldataisencryptedbeforebeingbackedup.

D.Alltheabove.

2.Thebenefitoffiredetectionequipmentoverfiresuppressiondevicesis:

A.Firedetectionequipmentisregulated,whereasfiresuppressionequipmentisnot.

B.Firedetectionequipmentwilloftencatchfiresatamuchearlierstage,meaningthatthefirecanbeaddressedbeforesignificantdamagecanoccur.

C.Firedetectionequipmentismuchmorereliablethanfiresuppressionequipment.

D.Thereisnoadvantageoffiredetectionoverfiresuppressionotherthanthecostoffiredetectionequipmentismuchlessthanthecostoffiresuppressionequipment.

3.Whichofthefollowingisacontractualagreementbetweenentitiesthatdescribesspecifiedlevelsofservicethattheservicingentityagreestoguaranteeforthecustomer?

A.Servicelevelagreement

B.Supportlevelagreement

C.Memorandumofunderstanding

D.Businessserviceagreement

4.Duringwhichstepofthepolicylifecycledoestrainingofuserstakeplace?

A.Planforsecurity.

B.Implementtheplans.

C.Monitortheimplementation.

D.Evaluateforeffectiveness.

5.Biometricaccesscontrolsaretypicallyusedinconjunctionwithanotherformofaccesscontrolbecause:

A.Biometricsarestillexpensive.

B.Biometricscannotbecopied.

C.Biometricsarenotalwaysconvenienttouse.

D.Biometricsarenot100percentaccurate,havingsomelevelofmisidentifications.

6.Procedurescanbedescribedas:A.High-level,broadstatementsofwhattheorganizationwantsto

accomplish

B.Step-by-stepinstructionsonhowtoimplementthepolicies

C.Mandatoryelementsregardingtheimplementationofapolicy

D.Recommendationsrelatingtoapolicy

7.Whattechniquecanbeusedtoprotectagainstelectromagnetic

eavesdropping(knownasthevanEckphenomenon)?

A.Providesufficientdistancebetweenthepotentialtargetandthenearestlocationanattackercouldbe.

B.Puttheequipmentthatyouaretryingtoprotectinsideashieldedroom.

C.Purchase“TEMPESTapproved”equipment.

D.Alloftheabove.

8.Keyuserhabitsthatcanimprovesecurityeffortsinclude:A.Donotdiscussbusinessissuesoutsideoftheoffice.

B.Neverleavelaptopsortabletsinsideyourcarunattended.

C.Bealertofpeopleviolatingphysicalaccessrules(piggybackingthroughdoors).

D.ItemsBandC.

9.Whenshouldahumansecurityguardbeusedforphysicalaccesscontrol?

A.Whenotherelectronicaccesscontrolmechanismswillnotbeacceptedbyemployees

B.Whennecessarytoavoidissuessuchaspiggybacking,whichcanoccurwithelectronicaccesscontrols

C.Whenotheraccesscontrolsaretooexpensivetoimplement

D.Whentheorganizationwantstoenhanceitsimage

10.Whatdeviceshouldbeusedbyorganizationstoprotectsensitiveequipmentfromfluctuationsinvoltage?

A.Asurgeprotector

B.Anuninterruptiblepowersupply

C.Abackuppowergenerator

D.Aredundantarrayofinlinebatteries(RAIB)

EssayQuiz1.Describethedifferencebetweenfiresuppressionandfiredetection

systems.

2.Discusswhyphysicalsecurityisalsoimportanttocomputersecurityprofessionals.

3.WhyshouldwebeconcernedaboutHVACsystemswhendiscussingsecurity?

4.Outlinethevariouscomponentsthatmakeup(orshouldmakeup)anorganization’ssecurityperimeter.Whichofthesecanbefoundinyourorganization(orschool)?

LabProjects

•LabProject3.1Takeatourofyourbuildingoncampusoratwork.Whatissecuredatnightwhenworkersareabsent?Recordthelocationandtypeofphysicalaccesscontroldevices.Howdotheseaccesscontrolschangeatnightwhenworkersareabsent?Howwelltraineddoguardsandotheremployeesappeartobe?Dotheyallow“piggybacking”(somebodyslippingintoafacilitybehindanauthorizedindividualwithoutbeingchallenged)?Whatarethepoliciesforvisitorsandcontractors?Howdoesthisallimpactphysicalsecurity?

•LabProject3.2Describethefourstepsofthepolicylifecycle.Obtainapolicyfromyourorganization(suchasanacceptableusepolicyorInternetusagepolicy).Howareusersinformedofthispolicy?Howoftenisitreviewed?Howwouldchangestoitbesuggestedandwhowouldmakedecisionsonwhetherthechangeswereaccepted?

chapter4 TheRoleofPeopleinSecurity

Youarethewayyouarebecausethat’sthewayyouwanttobe.Ifyoureallywantedtobeanydifferent,youwouldbeintheprocessofchangingrightnow.

T

—FREDSMITH

Inthischapter,youwilllearnhowto

Definebasicterminologyassociatedwithsocialengineering

Describestepsorganizationscantaketoimprovetheirsecurity

Describecommonuseractionsthatmayputanorganization’sinformationatrisk

Recognizemethodsattackersmayusetogaininformationaboutanorganization

Determinewaysinwhichuserscanaidinsteadofdetractfromsecurity

Recognizetheroletrainingandawarenessplaysinassistingthepeoplesideofsecurity

heoperationalmodelofcomputersecuritydiscussedinthepreviouschapteracknowledgesthatabsoluteprotectionofcomputersystemsandnetworksisnotpossibleandthatweneedtobepreparedtodetect

andrespondtoattacksthatareabletocircumventoursecuritymechanisms.Anotherverybasicfactthatshouldberecognizedisthattechnologyalonewillnotsolvethesecurityproblem.Nomatterhowadvancedthetechnologyis,itwillultimatelybedeployedinanenvironmentwherehumansexist.Itisthehumanelementthatposesthebiggestsecuritychallenge.Itishardtocompensateforallofthepossiblewaysthathumanscandeliberatelyoraccidentallycausesecurityproblemsorcircumventoursecuritymechanisms.Despiteallofthetechnology,despiteallofthesecurityprocedureswehaveinplace,anddespiteallofthesecuritytrainingwemayprovide,somebodywillinvariablyfailtodowhattheyaresupposedtodo,ordosomethingtheyarenotsupposedtodo,andcreateavulnerabilityintheorganization’ssecurityposture.Thischapterdiscussesthehumanelementandtherolethatpeopleplayinsecurity—boththeuserpracticesthatcanaidinsecuringanorganizationandthevulnerabilitiesorholesinsecuritythatuserscanintroduce.

People—ASecurityProblem

Theoperationalmodelofcomputersecurityacknowledgesthatpreventiontechnologiesarenotsufficienttoprotectourcomputersystemsandnetworks.Thereareanumberofexplanationsforwhythisistrue,someofthemtechnical,butoneofthebiggestreasonsthatpreventiontechnologiesarenotsufficientisthateverynetworkandcomputersystemhasatleastonehumanuser,andhumansarepronetomakemistakesandareofteneasilymisledorfooled.

SocialEngineeringSocialengineering,ifyourecallfromChapter2,istheprocessofconvincinganauthorizedindividualtoprovideconfidentialinformationoraccesstoanunauthorizedindividual.Itisatechniqueinwhichtheattackerusesvariousdeceptivepracticestoconvincethetargetedpersontodivulgeinformationtheynormallywouldnotdivulgeortoconvincethetargetoftheattacktodosomethingtheynormallywouldn’tdo.Socialengineeringisverysuccessfulfortwogeneralreasons.Thefirstisthebasicdesireofmostpeopletobehelpful.Whensomebodyasksaquestionforwhichweknowtheanswer,ournormalresponseisnottobesuspiciousbutrathertoanswerthequestion.Theproblemwiththisisthatseeminglyinnocuousinformationcanbeusedeitherdirectlyinanattackorindirectlytobuildabiggerpicturethatanattackercanusetocreateanauraofauthenticityduringanattack—themoreinformationanindividualhasaboutanorganization,theeasieritwillbetoconvinceothersthatheispartoftheorganizationandhasarighttoevensensitiveinformation.Anattackerwhoisattemptingtoexploitthenaturaltendencyofpeopletobehelpfulmaytakeoneofseveralapproaches:

TechTip

SocialEngineeringWorks!Skilledsocialengineerssetupscenarioswherethevictimisboxedinbyvarioussocial/work

issuesandthenmakesanexceptionthatenablesthesocialengineertogainsomeformofaccess.Theattackercanpretendtobeanimportantpartyandintimidatealower-levelemployee,orcreateasenseofemergency,scarcity,orurgencythatmovesthevictimtoactinamannertoreducetheconflict.Theattackercanbecomea“victim,”creatingasenseoffellowshipwiththetarget,creatingafalsesenseoffamiliarity,andthenusingthattodriveanaction.SocialengineerscansellicetoEskimosandmakethemproudoftheirpurchase,sotheyaremastersatpsychologicalmanipulation.

Theattackermaysimplyaskaquestion,hopingtoimmediatelyobtainthedesiredinformation.Forbasicinformationthatisnotconsideredsensitive,thisapproachgenerallyworks.Asanexample,anattackermightcallandaskwhotheITmanageris.

Theattackermayfirstattempttoengagethetargetinconversationandtrytoevokesympathysothatthetargetfeelssorryfortheindividualandismorepronetoprovidetheinformation.Forinformationthatisevenslightlysensitiveinnature,therequestofwhichcouldpossiblyarousesuspicion,thistechniquemaybetried.Asanexample,anattackermightcallandclaimtobeundersomedeadlinefromasupervisorwhoisupsetforsomereason.Thetarget,feelingsorryforanallegedfellowworker,maygiveuptheinformation,thinkingtheyarehelpingthemavoidtroublewiththesupervisor.

Theattackermayappealtoanindividual’sego.Asanexample,anattackermightcalltheITdepartment,claimingtohavesomesortofproblem,andpraisingthemforworktheysupposedlydidtohelpanotherworker.Afterbeingtoldhowgreattheyareandhowmuchtheyhelpedsomebodyelse,theywilloftenbetemptedtodemonstratethattheycansupplythesamelevelofhelptoanotherindividual.Thistechniquemaybeusedtoobtainsensitiveinformation,suchashavingthetarget’spasswordreset.

Thesecondreasonthatsocialengineeringissuccessfulisthatindividualsnormallyseektoavoidconfrontationandtrouble.Iftheattackerattemptstointimidatethetarget,threateningtocallthetarget’s

supervisorbecauseofalackofhelp,thetargetmaygiveinandprovidetheinformationtoavoidconfrontation.Thisvariationontheattackisoftensuccessfulinorganizationsthathaveastricthierarchicalstructure.Inthemilitary,forexample,alower-rankingindividualmaybecoercedintoprovidinginformationtoanindividualclaimingtobeofhigherrankortobeworkingforanotherindividualhigherupinthechainofcommand.Socialengineeringmayalsobeaccomplishedusingothermeansbesides

directcontactbetweenthetargetandtheattacker.Forexample,anattackermightsendaforgede-mailwithalinktoaboguswebsitethathasbeensetuptoobtaininformationfromthetargetorconvincethetargettoperformsomeaction.Again,thegoalinsocialengineeringistoconvincethetargettoprovideinformationthattheynormallywouldn’tdivulgeortoperformsomeactthattheynormallywouldnotdo.Anexampleofaslightlydifferentattackthatisgenerallystillconsideredasocialengineeringattackisoneinwhichanattackerreplacestheblankdepositslipsinabank’slobbywithonescontaininghisorherownaccountnumberbutnoname.Whenanunsuspectingcustomerusesoneoftheslips,atellerwhoisnotobservantmayendupcreditingtheattacker’saccountwiththedeposit.

CrossCheckTypesofSocialEngineeringChapters1and2bothdiscussedsocialengineering.Electronicversionsofsocialengineeringhavebecomeverycommon.Whatarethedifferenttypesofsocialengineering(especiallyelectronicversions)thatwehavediscussed?

ObtainingInsiderInformationAnexcellentexampleofsocialengineeringoccurredin1978whenStanleyMarkRifkin,fromCarlsbad,California,stole$10.2millionfromtheSecurityPacificBankinLosAngeles.Detailsofthestoryvary,asRifkinhasneverpubliclydetailedhisactions,butanumberoffactsareknown.Atthetimeoftheattack,Rifkinwasworkingasacomputerconsultantfor

thebank.Whileworkingthere,helearneddetailsonhowmoneycouldeasilybetransferredtoaccountsanywhereintheUnitedStates.Theproblemwouldbetoactuallyobtainthemoneyinthefirstplace.Inordertodothis,heneededtohaveaccesstotheelectronicfundstransfer(EFT)codeusedbythebanktotransfermoneytootherbanks.Usingtheexcuseofcheckingonthecomputerequipmentinsideoftheroomfromwhichthebankmadeitstransfers,Rifkinwasabletoobservethecodeforthatday.Afterleavingtheroom,heusedthisinformationtoimpersonateabankofficerandorderedthetransferofthe$10.2million.Sincehehadknowledgeofthesupposedlysecretcode,thetransferwasmadewithlittlefanfare(thisamountwaswellbelowanylevelthatwouldtriggeranysuspicion).EarlierRifkinhadsetupabogusaccountinaNewYorkbank,usingafalsename,andhedepositedthemoneyintothataccount.HelatertransferredthemoneyagaintoanotheraccountinSwitzerlandunderadifferentname.Hethenusedthemoneytopurchasemillionsofdollarsindiamonds,whichhethensmuggledbackintotheUnitedStates.Thecrimemighthavegoneundetectedifhehadnotboastedofhisexploitstoanindividualwhowasmorethanhappytoturnhimin.In1979,Rifkinwassentencedtoeightyearsinprison.Athistrialheattemptedtoconvincethejudgethatheshouldbereleasedsohecouldteachothershowtoprotecttheirsystemsagainstthetypeofactivityheperpetrated.Thejudgedeniedthisrequest.Thediamondswereultimatelyturnedovertothebank,whichtriedtorecoveritslossbysellingthem.

Uptothispoint,socialengineeringhasbeendiscussedinthecontextofanoutsiderattemptingtogaininformationabouttheorganization.Thisdoesnothavetobethecase.Insidersmayalsoattempttogaininformationtheyarenotauthorizedtohave.Inmanycases,theinsidermaybemuchmoresuccessfulsincetheywillalreadyhaveacertainlevelofinformationregardingtheorganizationandcanthereforebetterspinastorythatmaybebelievabletootheremployees.

PhishingPhishing(pronounced“fishing”)isatypeofsocialengineeringinwhich

anattackerattemptstoobtainsensitiveinformationfromauserbymasqueradingasatrustedentityinane-mailorinstantmessagesenttoalargegroupofoftenrandomusers.Theattackerattemptstoobtaininformationsuchasusernames,passwords,creditcardnumbers,anddetailsabouttheuser’sbankaccounts.ThemessagesentoftenencouragestheusertogotoawebsitethatappearstobeforareputableentitysuchasPayPaloreBay,bothofwhichhavefrequentlybeenusedinphishingattempts.Thewebsitetheuseractuallyvisitsisnotownedbythereputableorganization,however,andaskstheusertosupplyinformationthatcanbeusedinalaterattack.Oftenthemessagesenttotheuserwillstatethattheuser’saccounthasbeencompromisedandwillrequest,forsecuritypurposes,theusertoentertheiraccountinformationtoverifythedetails.Inanotherverycommonexampleofphishing,theattackersendsabulk

e-mail,supposedlyfromabank,tellingtherecipientsthatasecuritybreachhasoccurredandinstructingthemtoclickalinktoverifythattheiraccounthasnotbeentamperedwith.Iftheindividualactuallyclicksthelink,theyaretakentoasitethatappearstobeownedbythebankbutisactuallycontrolledbytheattacker.Whentheysupplytheiraccountandpasswordfor“verification”purposes,theyareactuallygivingittotheattacker.

Phishingisnowthemostcommonformofsocialengineeringattackrelatedtocomputersecurity.Thetargetmaybeacomputersystemandaccesstotheinformationfoundonit(suchasisthecasewhenthephishingattemptasksforauserIDandpassword)orthetargetmaybepersonalinformation,generallyfinancial,aboutanindividual(inthecaseofphishingattemptsthataskforanindividual’sbankinginformation).

Thee-mailsandwebsitesgeneratedbytheattackersoftenappeartobelegitimate.Afewclues,however,cantipofftheuserthatthee-mailmightnotbewhatitclaimstobe.Thee-mailmaycontaingrammaticalandtypographicalerrors,forexample.Organizationsthatareusedinthese

phishingattempts(suchaseBayandPayPal)arecarefulabouttheirimagesandwillnotsendasecurity-relatede-mailtouserscontainingobviouserrors.Inaddition,almostunanimously,organizationstelltheirusersthattheywillneveraskforsensitiveinformation(suchasapasswordoraccountnumber)viaane-mail.TheURLofthewebsitethattheusersaretakentomayalsoprovideacluethatthesiteisnotwhatitappearstobe.Despitetheincreasingmediacoverageconcerningphishingattempts,someInternetusersstillfallforthem,whichresultsinattackerscontinuingtousethisrelativelycheapmethodtogaintheinformationtheyareseeking.

Anotherspecializedversionofphishingiscloselyrelatedtospearphishing.Again,specificindividualsaretargeted,butinthiscasetheindividualsareimportantindividualshighupinanorganizationsuchasthecorporateofficers.Thegoalistogoafterthese“biggertargets,”andthusthetermthatisusedtorefertothisformofattackiswhaling.

Arecentdevelopmenthasbeentheintroductionofamodificationtotheoriginalphishingattack.Spearphishingisthetermthathasbeencreatedtorefertothespecialtargetingofgroupswithsomethingincommonwhenlaunchingaphishingattack.Bytargetingspecificgroups,theratioofsuccessfulattacks(thatis,thenumberofresponsesreceived)tothetotalnumberofe-mailsormessagessentusuallyincreasesbecauseatargetedattackwillseemmoreplausiblethanamessagesenttousersrandomly.Pharmingconsistsofmisdirectinguserstofakewebsitesmadetolook

official.Usingphishing,individualsaretargetedonebyonebysendingoute-mails.Tobecomeavictim,therecipientmusttakeanaction(forexample,respondbyprovidingpersonalinformation).Inpharming,theuserwillbedirectedtothefakewebsiteasaresultofactivitysuchasDNSpoisoning(anattackthatchangesURLsinaserver’sdomainnametable)ormodificationoflocalhostfiles,whichareusedtoconvertURLstotheappropriateIPaddress.Onceatthefakesite,theusermaysupplypersonalinformation,believingthattheyareconnectedtothelegitimatesite.

VishingVishingisavariationofphishingthatusesvoicecommunicationtechnologytoobtaintheinformationtheattackerisseeking.Vishingtakesadvantageofthetrustthatsomepeopleplaceinthetelephonenetwork.Usersareunawarethatattackerscanspoof(simulate)callsfromlegitimateentitiesusingVoiceoverIP(VoIP)technology.Voicemessagingcanalsobecompromisedandusedintheseattempts.Generally,theattackersarehopingtoobtaincreditcardnumbersorotherinformationthatcanbeusedinidentitytheft.Theusermayreceiveane-mailaskinghimorhertocallanumberthatisansweredbyapotentiallycompromisedvoicemessagesystem.Usersmayalsoreceivearecordedmessagethatappearstocomefromalegitimateentity.Inbothcases,theuserwillbeencouragedtorespondquicklyandprovidethesensitiveinformationsothataccesstotheiraccountisnotblocked.Ifausereverreceivesamessagethatclaimstobefromareputableentityandasksforsensitiveinformation,theusershouldnotprovideitbutinsteadshouldusetheInternetorexaminealegitimateaccountstatementtofindaphonenumberthatcanbeusedtocontacttheentity.Theusercanthenverifythatthemessagereceivedwaslegitimateorreportthevishingattempt.

TechTip

BewareofVishingVishing(phishingconductedusingvoicesystems)isgenerallysuccessfulbecauseofthetrustthatindividualsplaceinthetelephonesystem.WithcallerID,peoplebelievetheycanidentifywhoitisthatiscallingthem.Theydonotunderstandthat,justlikemanyprotocolsintheTCP/IPprotocolsuite,callerIDcanbespoofed.

SPAMThoughnotgenerallyconsideredasocialengineeringissue,norasecurityissueforthatmatter,SPAMcan,however,beasecurityconcern.SPAM,

asjustabouteverybodyknows,isbulkunsolicitede-mail.Itcanbelegitimateinthesensethatithasbeensentbyacompanyadvertisingaproductorservice,butitcanalsobemaliciousandcouldincludeanattachmentthatcontainsmalicioussoftwaredesignedtoharmyoursystem,oralinktoamaliciouswebsitethatmayattempttoobtainpersonalinformationfromyou.Thoughnotaswellknown,avariationonSPAMisSPIM,whichisbasicallySPAMdeliveredviaaninstantmessagingapplicationsuchasYahoo!MessengerorAIM.ThepurposeofhostileSPIMisthesameasthatofSPAM—thedeliveryofmaliciouscontentorlinks.

ShoulderSurfingShouldersurfingdoesnotnecessarilyinvolvedirectcontactwiththetarget,butinsteadinvolvestheattackerdirectlyobservingtheindividualenteringsensitiveinformationonaform,keypad,orkeyboard.Theattackermaysimplylookovertheshoulderoftheuseratwork,forexample,ormaysetupacameraorusebinocularstoviewtheuserenteringsensitivedata.Theattackercanattempttoobtaininformationsuchasapersonalidentificationnumber(PIN)atanautomatedtellermachine(ATM),anaccesscontrolentrycodeatasecuregateordoor,oracallingcardorcreditcardnumber.Manylocationsnowuseasmallshieldtosurroundakeypadsothatitisdifficulttoobservesomebodyenteringinformation.Moresophisticatedsystemscanactuallyscramblethelocationofthenumberssothatthetoprowatonetimeincludesthenumbers1,2,and3andthenexttime4,8,and0.Whilethismakesitabitslowerfortheusertoenterinformation,itthwartsanattacker’sattempttoobservewhatnumbersarepressedandenterthesamebuttons/pattern,sincethelocationofthenumbersconstantlychanges.

Arelated,somewhatobvioussecurityprecautionisthatapersonshouldnotusethesamePINforalloftheirdifferentaccounts,gatecodes,andsoon,sinceanattackerwholearnsthePINforone

typeofaccesscouldthenuseitforalloftheothertypesofaccess.

Althoughmethodssuchasaddingshieldstoblockthevieworhavingthepad“scramble”thenumberscanhelpmakeshouldersurfingmoredifficult,thebestdefenseisforuserstobeawareoftheirsurroundingsandtonotallowindividualstogetintoapositionfromwhichtheycanobservewhattheuserisentering.Theattackermayattempttoincreasethechanceofsuccessfully

observingthetargetenteringthedatabystartingaconversationwiththetarget.Thisprovidesanexcusefortheattackertobephysicallyclosertothetarget.Otherwise,thetargetmaybesuspiciousiftheattackerisstandingtooclose.Inthissense,shouldersurfingcanbeconsideredasocialengineeringattack.

ReverseSocialEngineeringAslightlydifferentapproachtosocialengineeringiscalledreversesocialengineering.Inthistechnique,theattackerhopestoconvincethetargettoinitiatethecontact.Thisobviouslydiffersfromthetraditionalapproach,wherethetargetistheonethatiscontacted.Thereasonthisattackmaybesuccessfulisthat,sincethetargetistheoneinitiatingthecontact,attackersmaynothavetoconvincethetargetoftheirauthenticity.Thetrickypartofthisattackis,ofcourse,convincingthetargettomakethatinitialcontact.Possiblemethodstoaccomplishthismightincludesendingoutaspoofede-mail(fakee-maildesignedtoappearauthentic)thatclaimstobefromareputablesourceandprovidesanothere-mailaddressorphonenumbertocallfor“techsupport,”orpostinganoticeorcreatingaboguswebsiteforalegitimatecompanythatalsoclaimstoprovide“techsupport.”Thismaybeespeciallysuccessfuliftimedtocoincidewithacompany’sdeploymentofanewsoftwareorhardwareplatform.Anotherpotentialtimetotargetanorganizationwiththissortofattackiswhenthereisasignificantchangeintheorganizationitself,suchaswhentwocompaniesmergeorasmallercompanyisacquiredbyalargerone.Duringthesetimes,employeesarenotfamiliarwiththeneworganizationoritsprocedures,

andamidsttheconfusion,itiseasytoconducteitherasocialengineeringorreversesocialengineeringattack.

TechTip

BeAwareofReverseSocialEngineeringReversesocialengineeringisnotnearlyaswidelyunderstoodassocialengineeringandisabittrickiertoexecute.Iftheattackerissuccessfulinconvincinganindividualtomaketheinitialcontact,however,theprocessofconvincingthemoftheauthenticityoftheattackerisgenerallymucheasierthaninasocialengineeringattack.

HoaxesAtfirstglance,itmightseemthatahoaxrelatedtosecuritywouldbeconsideredanuisanceandnotarealsecurityissue.Thismightbethecaseforsomehoaxes,especiallythoseoftheurbanlegendtype,buttherealityofthesituationisthatahoaxcanbeverydamagingifitcausesuserstotakesomesortofactionthatweakenssecurity.Onerealhoax,forexample,describedanew,highlydestructivepieceofmalicioussoftware.Itinstructeduserstocheckfortheexistenceofacertainfileandtodeleteitifthefilewasfound.Inreality,thefilementionedwasanimportantfileusedbytheoperatingsystem,anddeletingitcausedproblemsthenexttimethesystemwasbooted.Thedamagecausedbyusersmodifyingsecuritysettingscanbeserious.Aswithotherformsofsocialengineering,trainingandawarenessarethebestandfirstlineofdefenseforbothusersandadministrators.Usersshouldbetrainedtobesuspiciousofunusuale-mailsandstoriesandshouldknowwhotocontactintheorganizationtoverifytheirvalidityiftheyarereceived.Hoaxesoftenalsoadvisetheusertosendittotheirfriendssotheyknowabouttheissueaswell—andbydoingso,theyhelpspreadthehoax.Usersneedtobesuspiciousofanye-mailtellingthemto“spreadtheword.”

PoorSecurityPracticesAsignificantportionofhuman-createdsecurityproblemsresultsfrompoorsecuritypractices.Thesepoorpracticesmaybethoseofanindividualuserwhoisnotfollowingestablishedsecuritypoliciesorprocesses,ortheymaybecausedbyalackofsecuritypolicies,procedures,ortrainingwithintheuser’sorganization.

PasswordSelectionFormanyyears,computerintrudershavereliedonusers’poorselectionofpasswordstohelptheintrudersintheirattemptstogainunauthorizedaccesstoasystemornetwork.Ifattackerscouldobtainalistoftheusers’names,chancesweregoodtheycouldeventuallyaccessthesystem.Userstendtopickpasswordsthatareeasyforthemtoremember,andwhateasierpasswordcouldtherebethanthesamesequenceofcharactersthattheyusefortheiruserID?Ifasystemhasanaccountwiththeusernamejdoe,anattacker’sreasonablefirstguessoftheaccount’spasswordwouldbejdoe.Ifthisdoesn’twork,theattackerwouldtryvariationsonthesame,suchasdoej,johndoe,johnd,andeodj,allofwhichwouldbereasonablepossibilities.

Poorpasswordselectionisoneofthemostcommonofpoorsecuritypractices,andoneofthemostdangerous.Numerousstudiesthathavebeenconductedonpasswordselectionhavefoundthat,whileoverallmoreusersarelearningtoselectgoodpasswords,asignificantpercentageofusersstillmakepoorchoices.Theproblemwiththis,ofcourse,isthatapoorpasswordchoicecanenableanattackertocompromiseacomputersystemornetworkmoreeasily.Evenwhenusershavegoodpasswords,theyoftenresorttoanotherpoorsecuritypractice—writingthepassworddowninaneasilylocatedplace,whichcanalsoleadtosystemcompromiseifanattackergainsphysicalaccesstothearea.

Iftheattacker’sattempttousevariationsontheusernamedoesnotyieldthecorrectpassword,theymightsimplyneedmoreinformation.Usersalsofrequentlypicknamesoffamilymembers,pets,orfavoritesportsteam.If

theuserlivesinSanAntonio,Texas,forexample,apossiblepasswordmightbegospursgoinhonorofthecity’sprofessionalbasketballteam.Iftheseattemptsdon’tworkfortheattacker,thentheattackermightnexttryhobbiesoftheuser,thenameoftheuser’sfavoritemakeormodelofcar,orsimilarpiecesofinformation.Thekeyisthattheuseroftenpickssomethingeasyforthemtoremember,whichmeansthatthemoretheattackerknowsabouttheuser,thebetterthechanceofdiscoveringtheuser’spassword.Inanattempttocomplicatetheattacker’sjob,organizationshave

encouragedtheiruserstomixupper-andlowercasecharactersandtoincludenumbersandspecialcharactersintheirpassword.Whilethisdoesmakethepasswordhardertoguess,thebasicproblemstillremains:userswillpicksomethingthatiseasyforthemtoremember.Thus,ouruserinSanAntoniomayselectthepasswordG0*Spurs*G0,capitalizingthreeoftheletters,insertingaspecialcharactertwice,andsubstitutingthenumberzerofortheletterO.Thismakesthepasswordhardertocrack,butthereareafinitenumberofvariationsonthebasicgospursgopassword,so,whiletheattacker’sjobhasbeenmademoredifficult,itisstillpossibletoguessthepassword.Organizationshavealsoinstitutedadditionalpoliciesandrulesrelating

topasswordselectiontofurthercomplicateanattacker’sefforts.Organizations,forexample,mayrequireuserstofrequentlychangetheirpassword.Thismeansthatifanattackerisabletoguessapassword,itisonlyvalidforalimitedperiodoftimebeforeanewpasswordisselected,afterwhichtheattackerislockedout.Allisnotlostfortheattacker,however,since,again,userswillselectpasswordstheycanremember.Forexample,passwordchangesoftenresultinanewpasswordthatsimplyincorporatesanumberattheendoftheoldone.Thus,ourSanAntoniousermightselectG0*Spurs*G1asthenewpassword,inwhichcasethebenefitofforcingpasswordchangesonaperiodic,orevenfrequent,basishasbeentotallylost.ItisagoodbetthatthenextpasswordchosenwillbeG0*Spurs*G2,followedbyG0Spurs*G3,andsoforth.

TechTip

HeartbleedVulnerabilityIn2014,avulnerabilityintheOpenSSLcryptographywasdiscoveredandgiventhenameHeartbleedbecauseitoriginatedintheheartbeatsignalemployedbythesystem.Thisvulnerabilityresultedinthepotentiallossofpasswordsandothersensitivedataacrossmultipleplatformsanduptoamillionwebserversandrelatedsystems.Heartbleedresultedinrandomdatalossfromservers,as64Kblocksofmemorywereexfiltratedfromthesystem.AmongtheitemsthatmaybelostinHeartbleedattacksareusercredentials,userIDs,andpasswords.ThediscoveryofthisvulnerabilityprompteduserstochangeamassivenumberofpasswordsacrosstheWeb,asusershadnoknowledgeastothestatusoftheircredentials.Oneofthecommonpiecesofadvicetouserswastonotreusepasswordsbetweensystems.Thisadviceisuniversallygoodadvice,notjustforHeartbleed,butforallsystems,allthetime.

Anotherpolicyorrulegoverningpasswordselectionoftenadoptedbyorganizationsisthatpasswordsmustnotbewrittendown.This,ofcourse,isdifficulttoenforce,andthususerswillfrequentlywritethemdown,oftenasaresultofwhatisreferredtoasthe“passworddilemma.”Themoredifficultwemakeitforattackerstoguessourpasswords,andthemorefrequentlyweforcepasswordchanges,themoredifficultthepasswordsareforauthorizeduserstorememberandthemorelikelytheyaretowritethemdown.Writingthemdownandputtingtheminasecureplaceisonething,butalltoooftenuserswillwritethemonaslipofpaperandkeepthemintheircalendar,wallet,orpurse.Mostsecurityconsultantsgenerallyagreethatiftheyaregivenphysicalaccesstoanoffice,theywillbeabletofindapasswordsomewhere—thetopdrawerofadesk,insideofadeskcalendar,attachedtotheundersideofthekeyboard,orevensimplyonayellow“stickynote”attachedtothemonitor.Withtheproliferationofcomputers,networks,andusers,thepassword

dilemmahasgottenworse.Today,theaverageInternetuserprobablyhasatleastahalfdozendifferentaccountsandpasswordstoremember.Selectingadifferentpasswordforeachaccount,followingtheguidelinesmentionedpreviouslyregardingcharacterselectionandfrequencyof

changes,onlyaggravatestheproblemofrememberingthepasswords.Thisresultsinusersalltoofrequentlyusingthesamepasswordforallaccounts.Ifauserdoesthis,andthenoneoftheaccountsisbroken,allotheraccountsaresubsequentlyalsovulnerabletoattack.

Knowtherulesforgoodpasswordselection.Generally,thesearetouseeightormorecharactersinyourpassword,includeacombinationofupper-andlowercaseletters,includeatleastonenumberandonespecialcharacter,donotuseacommonword,phrase,orname,andchooseapasswordthatyoucanremembersothatyoudonotneedtowriteitdown.

Theneedforgoodpasswordselectionandtheprotectionofpasswordsalsoappliestoanothercommonfeatureoftoday’selectronicworld,PINs.MostpeoplehaveatleastonePINassociatedwiththingssuchastheirATMcardorasecuritycodetogainphysicalaccesstoaroom.Again,userswillinvariablyselectnumbersthatareeasytoremember.Specificnumbers,suchastheindividual’sbirthdate,theirspouse’sbirthdate,orthedateofsomeothersignificantevent,areallcommonnumberstoselect.Otherpeoplewillpickpatternsthatareeasytoremember—2580,forexample,usesallofthecenternumbersonastandardnumericpadonatelephone.Attackersknowthis,andguessingPINsfollowsthesamesortofprocessthatguessingapassworddoes.Passwordselectionisanindividualactivity,andensuringthat

individualsaremakinggoodselectionsistherealmoftheentity’spasswordpolicy.Toensureusersmakeappropriatechoices,theyneedtobeawareoftheissueandtheirpersonalroleinsecuringaccounts.Aneffectivepasswordpolicyconveysboththeuserroleandresponsibilityassociatedwithpasswordusageanddoessoinasimpleenoughmannerthatitcanbeconveyedviascreennotesduringmandatedpasswordchangeevents.

ShoulderSurfing

Asdiscussedearlier,shouldersurfingdoesnotinvolvedirectcontactwiththeuser,butinsteadinvolvestheattackerdirectlyobservingthetargetenteringsensitiveinformationonaform,keypad,orkeyboard.Theattackermaysimplylookovertheshoulderoftheuseratwork,watchingasacoworkerenterstheirpassword.Althoughdefensivemethodscanhelpmakeshouldersurfingmoredifficult,thebestdefenseisforausertobeawareoftheirsurroundingsandtonotallowindividualstogetintoapositionfromwhichtheycanobservewhattheuserisentering.Arelatedsecuritycommentcanbemadeatthispoint:apersonshouldnotusethesamePINforalloftheirdifferentaccounts,gatecodes,andsoon,sinceanattackerwholearnsthePINforonecouldthenuseitforalltheothers.

PiggybackingPeopleareofteninahurryandwillfrequentlynotfollowgoodphysicalsecuritypracticesandprocedures.Attackersknowthisandmayattempttoexploitthischaracteristicinhumanbehavior.TailgatingorpiggybackingisthesimpletacticoffollowingcloselybehindapersonwhohasjustusedtheirownaccesscardorPINtogainphysicalaccesstoaroomorbuilding.Anattackercanthusgainaccesstothefacilitywithouthavingtoknowtheaccesscodeorhavingtoacquireanaccesscard.Itissimilartoshouldersurfinginthatitreliesontheattackertakingadvantageofanauthorizedusernotfollowingsecurityprocedures.Frequentlytheattackermayevenstartaconversationwiththetargetbeforereachingthedoorsothattheusermaybemorecomfortablewithallowingtheindividualinwithoutchallengingthem.Inthissensepiggybackingisrelatedtosocialengineeringattacks.Boththepiggybackingandshouldersurfingattacktechniquescanbeeasilycounteredbyusingsimpleprocedurestoensurenobodyfollowsyoutoocloselyorisinapositiontoobserveyouractions.Bothtechniquesrelyonthepoorsecuritypracticesofanauthorizedusertobesuccessful.Amoresophisticatedcountermeasuretopiggybackingisa“mantrap,”whichutilizestwodoorstogainaccesstothefacility.Theseconddoordoesnotopenuntilthefirstoneisclosedandisspacedcloseenoughtothefirstthatanenclosureisformedthatonlyallowsone

individualthroughatatime.

DumpsterDivingAsmentionedearlier,attackersneedacertainamountofinformationbeforelaunchingtheirattack.Onecommonplacetofindthisinformation,iftheattackerisinthevicinityofthetarget,isthetarget’strash.Theattackermightfindlittlebitsofinformationthatcouldbeusefulforanattack.Thisprocessofgoingthroughatarget’strashinhopesoffindingvaluableinformationthatmightbeusedinapenetrationattemptisknowninthecomputercommunityasdumpsterdiving.Thetacticisnot,however,uniquetothecomputercommunity;ithasbeenusedformanyyearsbyothers,suchasidentitythieves,privateinvestigators,andlawenforcementpersonnel,toobtaininformationaboutanindividualororganization.Iftheattackersareverylucky,andthetarget’ssecurityproceduresareverypoor,theymayactuallyfinduserIDsandpasswords.Asmentionedinthediscussiononpasswords,userssometimeswritetheirpassworddown.If,whenthepasswordischanged,theydiscardthepapertheoldpasswordwaswrittenonwithoutshreddingit,theluckydumpsterdivercangainavaluableclue.Eveniftheattackerisn’tluckyenoughtoobtainapassworddirectly,heundoubtedlywillfindemployeenames,fromwhichit’snothardtodetermineuserIDs,asdiscussedearlier.Finally,theattackermaygatheravarietyofinformationthatcanbeusefulinasocialengineeringattack.Inmostlocations,trashisnolongerconsideredprivatepropertyafterithasbeendiscarded(andevenwheredumpsterdivingisillegal,littleenforcementoccurs).Anorganizationshouldhavepoliciesaboutdiscardingmaterials.Sensitiveinformationshouldbeshreddedandtheorganizationshouldconsidersecuringthetrashreceptaclesothatindividualscan’tforagethroughit.Peopleshouldalsoconsidershreddingpersonalorsensitiveinformationthattheywishtodiscardintheirowntrash.Areasonablequalityshredderisinexpensiveandwellworththepricewhencomparedwiththepotentiallossthatcouldoccurasaresultofidentitytheft.

TryThis!DivingintoYourDumpsterTheamountofusefulinformationthatusersthrowawayinunsecuredtrashreceptaclesoftenamazessecurityprofessionals.Hackersknowthattheycanoftenfindmanuals,networkdiagrams,andevenuserIDsandpasswordsbyrummagingthroughdumpsters.Aftercoordinatingthiswithyoursecurityoffice,tryseeingwhatyoucanfindthatindividualsinyourorganizationhavediscarded(assumingthatthereisnoshreddingpolicy)byeithergoingthroughyourorganization’sdumpstersorjustthroughtheofficetrashreceptacles.Whatusefulinformationdidyoufind?Isthereanobvioussuggestionthatyoumightmaketoenhancethesecurityofyourorganization?

InstallingUnauthorizedHardwareandSoftwareOrganizationsshouldhaveapolicythatrestrictstheabilityofnormaluserstoinstallsoftwareandnewhardwareontheirsystems.Acommonexampleisauserinstallingunauthorizedcommunicationsoftwareandamodemtoallowthemtoconnecttotheirmachineatworkviaamodemfromtheirhome.Anothercommonexampleisauserinstallingawirelessaccesspointsothattheycanaccesstheorganization’snetworkfrommanydifferentareas.Intheseexamples,theuserhassetupabackdoorintothenetwork,circumventingalltheothersecuritymechanismsinplace.Theterm“roguemodem”or“rogueaccesspoint”maybeusedtodescribethesetwocases.Abackdoorisanavenuethatcanbeusedtoaccessasystemwhilecircumventingnormalsecuritymechanismsandcanoftenbeusedtoinstalladditionalexecutablefilesthatcanleadtomorewaystoaccessthecompromisedsystem.Securityprofessionalscanusewidelyavailabletoolstoscantheirownsystemsperiodicallyforeitheroftheseroguedevicestoensurethatusershaven’tcreatedabackdoor.

Ithasalreadybeenmentionedthatgainingphysicalaccesstoacomputersystemornetworkoftenguaranteesanattackersuccessinpenetratingthesystemorthenetworkitisconnectedto.Atthesametime,theremaybeanumberofindividualswhohaveaccesstoafacilitybutarenot

authorizedtoaccesstheinformationthesystemsstoreandprocess.Webecomecomplacenttotheaccesstheseindividualshavebecausetheyoftenquietlygoabouttheirjobsoastonotdrawattentiontothemselvesandtominimizetheimpactontheoperationoftheorganization.Theymayalsobeoverlookedbecausetheirjobdoesnotimpactthecorefunctionoftheorganization.Aprimeexampleofthisisthecustodialstaff.Becomingcomplacentabouttheseindividualsandnotpayingattentiontowhattheymayhaveaccessto,however,couldbeabigmistake,andusersshouldnotbelievethateverybodywhohasphysicalaccesstotheorganizationhasthesamelevelofconcernfororinterestinthewelfareoftheorganization.

Anothercommonexampleofunauthorizedsoftwarethatusersinstallontheirsystemsisgames.Unfortunately,notallgamescomeinshrink-wrappedpackages.NumeroussmallgamescanbedownloadedfromtheInternet.Theproblemwiththisisthatusersdon’talwaysknowwherethesoftwareoriginallycamefromandwhatmaybehiddeninsideit.Manyindividualshaveunwittinglyinstalledwhatseemedtobeaninnocuousgame,onlytohavedownloadedapieceofmaliciouscodecapableofmanythings,includingopeningabackdoorthatallowsattackerstoconnectto,andcontrol,thesystemfromacrosstheInternet.Becauseofthesepotentialhazards,manyorganizationsdonotallow

theiruserstoloadsoftwareorinstallnewhardwarewithouttheknowledgeandassistanceofadministrators.Manyorganizationsalsoscreen,andoccasionallyintercept,e-mailmessageswithlinksorattachmentsthataresenttousers.Thishelpspreventusersfrom,say,unwittinglyexecutingahostileprogramthatwassentaspartofawormorvirus.Consequently,manyorganizationshavetheirmailserversstripoffexecutableattachmentstoe-mailsothatuserscan’taccidentallycauseasecurityproblem.

DataHandlingUnderstandingtheresponsibilitiesofproperdatahandlingassociatedwithone’sjobisanimportanttrainingtopic.Informationcanbedeceptiveinthatitisnotdirectlytangible,andpeopletendtodevelopbadhabitsaroundotherjobmeasures…attheexpenseofsecurity.Employeesrequiretraininginhowtorecognizethedataclassificationandhandlingrequirementsofthedatatheyareusing,andtheyneedtolearnhowto

followtheproperhandlingprocesses.Ifcertaindataelementsrequirespecialhandlingbecauseofcontracts,laws,orregulations,thereistypicallyatrainingclauseassociatedwiththisrequirement.Personnelassignedtothesetasksshouldbespecificallytrainedwithregardtothesecurityrequirements.Thespiritofthetrainingclauseisyougetwhatyoutrain,andifsecurityoverspecificdatatypesisarequirement,thenitshouldbetrained.Thissameprincipleholdsforcorporatedata-handlingresponsibilities;yougetthebehaviorsyoutrainandreward.

PhysicalAccessbyNon-EmployeesAshasbeenmentioned,ifanattackercangainphysicalaccesstoafacility,chancesareverygoodthattheattackercanobtainenoughinformationtopenetratecomputersystemsandnetworks.Manyorganizationsrequireemployeestowearidentificationbadgeswhenatwork.Thisisaneasymethodtoquicklyspotwhohaspermissiontohavephysicalaccesstotheorganizationandwhodoesnot.Whilethismethodiseasytoimplementandcanbeasignificantdeterrenttounauthorizedindividuals,italsorequiresthatemployeesactivelychallengeindividualswhoarenotwearingtherequiredidentificationbadge.Thisisoneareawhereorganizationsfail.Combineanattackerwhoslipsinbypiggybackingoffofanauthorizedindividualandanenvironmentwhereemployeeshavenotbeenencouragedtochallengeindividualswithoutappropriatecredentialsandyouhaveasituationwhereyoumightaswellnothaveanybadgesinthefirstplace.Organizationsalsofrequentlybecomecomplacentwhenfacedwithwhatappearstobealegitimatereasontoaccessthefacility,suchaswhenanindividualshowsupwithawarmpizzaclaimingitwasorderedbyanemployee.Ithasoftenbeenstatedbysecurityconsultantsthatitisamazingwhatyoucanobtainaccesstowithapizzaboxoravaseofflowers.

Preventingaccesstoinformationisalsoimportantintheworkarea.Firmswithsensitive

informationshouldhavea“cleandeskpolicy”specifyingthatsensitiveinformationisnotleftunsecuredintheworkareawhentheworkerisnotpresenttoactascustodian.

Anotheraspectthatmustbeconsideredispersonnelwhohavelegitimateaccesstoafacilitybutalsohaveintenttostealintellectualpropertyorotherwiseexploittheorganization.Physicalaccessprovidesaneasyopportunityforindividualstolookfortheoccasionalpieceofcriticalinformationcarelesslyleftout.Withtheproliferationofdevicessuchascellphoneswithbuilt-incameras,anindividualcouldeasilyphotographinformationwithoutitbeingobvioustoemployees.Contractors,consultants,andpartnersfrequentlynotonlyhavephysicalaccesstothefacilitybutmayalsohavenetworkaccess.Otherindividualswhotypicallyhaveunrestrictedaccesstothefacilitywhennooneisaroundarenighttimecustodialcrewmembersandsecurityguards.Suchpositionsareoftencontractedout.Asaresult,hackershavebeenknowntotaketemporarycustodialjobssimplytogainaccesstofacilities.

CleanDeskPoliciesPreventingaccesstoinformationisalsoimportantintheworkarea.Firmswithsensitiveinformationshouldhavea“cleandeskpolicy”specifyingthatsensitiveinformationmustnotbeleftunsecuredintheworkareawhentheworkerisnotpresenttoactascustodian.Evenleavingthedeskareaandgoingtothebathroomcanleaveinformationexposedandsubjecttocompromise.Thecleandeskpolicyshouldidentifyandprohibitthingsthatarenotobviousuponfirstglance,suchaspasswordsonstickynotesunderkeyboardsandmousepadsorinunsecureddeskdrawers.

PeopleasaSecurityToolAninterestingparadoxwhenspeakingofsocialengineeringattacksisthatpeoplearenotonlythebiggestproblemandsecurityriskbutalsothebesttoolindefendingagainstasocialengineeringattack.Thefirststepacompanyshouldtaketofightpotentialsocialengineeringattacksisto

createthepoliciesandproceduresthatestablishtherolesandresponsibilitiesfornotonlysecurityadministratorsbutforallusers.Whatisitthatmanagementexpects,security-wise,fromallemployees?Whatisitthattheorganizationistryingtoprotect,andwhatmechanismsareimportantforthatprotection?

Perthe2014VerizonDataBreachInvestigationReport,introducedinChapter1,hackswerediscoveredmoreoftenbyinternalemployeesthanbyoutsiders.Thismeansthattraineduserscanbeanimportantpartofasecurityplan.

SecurityAwarenessProbablythesinglemosteffectivemethodtocounterpotentialsocialengineeringattacks,afterestablishmentoftheorganization’ssecuritygoalsandpolicies,isanactivesecurityawarenessprogram.Theextentofthetrainingwillvarydependingontheorganization’senvironmentandthelevelofthreat,butinitialemployeetrainingonsocialengineeringatthetimeapersonishiredisimportant,aswellasperiodicrefreshertraining.Animportantelementthatshouldbestressedintrainingaboutsocial

engineeringisthetypeofinformationthattheorganizationconsiderssensitiveandwhichmaybethetargetofasocialengineeringattack.Thereareundoubtedlysignsthattheorganizationcouldpointtoasindicativeofanattackerattemptingtogainaccesstosensitivecorporateinformation.Allemployeesshouldbeawareoftheseindicators.Thescopeofinformationthatanattackermayaskforisverylarge,andmanyquestionsattackersposemightalsobelegitimateinanothercontext(askingforsomeone’sphonenumber,forexample).Employeesshouldbetaughttobecautiousaboutrevealingpersonalinformationandshouldespeciallybealertforquestionsregardingaccountinformation,personallyidentifiableinformation,orpasswords.

TryThis!SecurityAwarenessProgramsAstrongsecurityeducationandawarenesstrainingprogramcangoalongwaytowardreducingthechancethatasocialengineeringattackwillbesuccessful.Awarenessprogramsandcampaigns,whichmightincludeseminars,videos,posters,newsletters,andsimilarmaterials,arealsofairlyeasytoimplementandnotverycostly.Thereisnoreasonforanorganizationtonothaveanawarenessprograminplace.AlotofinformationandideasareavailableontheInternet.SeewhatyoucanfindthatmightbeusableforyourorganizationthatyoucanobtainatnochargefromvariousorganizationsontheInternet.(Tip:CheckorganizationssuchasNISTandNSA,whichhavedevelopednumeroussecuritydocumentsandguidelines.)

Asafinalnoteonuserresponsibilities,corporatesecurityofficersmustcultivateanenvironmentoftrustintheiroffice,aswellasanunderstandingoftheimportanceofsecurity.Ifusersfeelthatsecuritypersonnelareonlytheretomaketheirlifedifficultortodredgeupinformationthatwillresultinanemployee’stermination,theatmospherewillquicklyturnadversarialandbetransformedintoan“usversusthem”situation.Securitypersonnelneedthehelpofallusersandshouldstrivetocultivateateamenvironmentinwhichusers,whenfacedwithaquestionablesituation,willnothesitatetocallthesecurityoffice.Insituationslikethis,securityofficesshouldremembertheoldadageof“don’tshootthemessenger.”

SecurityPolicyTrainingandProceduresPeopleinanorganizationplayasignificantroleinthesecuritypostureoftheorganization,Assuch,trainingisimportantasitcanprovidethebasisforawarenessofissuessuchassocialengineeringanddesiredemployeesecurityhabits.ThesearedetailedinChapter2.

Chapter4Review

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingregardingtherolepeoplecanplayinsecurity.

Definebasicterminologyassociatedwithsocialengineering

Socialengineeringisatechniqueinwhichtheattackerusesvariousdeceptivepracticestoconvincethetargetedpersontodivulgeinformationtheynormallywouldnotdivulge,ortoconvincethetargettodosomethingtheynormallywouldn’tdo.

Inreversesocialengineering,theattackerhopestoconvincethetargettoinitiatecontact.

Describestepsorganizationscantaketoimprovetheirsecurity

Organizationsshouldhaveapolicythatrestrictstheabilityofnormaluserstoinstallnewsoftwareandhardwareontheirsystems.

Contractors,consultants,andpartnersmayfrequentlyhavenotonlyphysicalaccesstothefacilitybutalsonetworkaccess.Othergroupsthataregivenunrestricted,andunobserved,accesstoafacilityarenighttimecustodialcrewmembersandsecurityguards.Botharepotentialsecurityproblemsandorganizationsshouldtakestepstolimittheseindividuals’access.

Thesinglemosteffectivemethodtocounterpotentialsocialengineeringattacks,afterestablishingtheorganization’ssecuritygoalsandpolicies,isanactivesecurityawarenessprogram.

Describecommonuseractionsthatmayputanorganization’sinformationatrisk

Nomatterhowadvancedsecuritytechnologyis,itwillultimatelybedeployedinanenvironmentwherethehumanelementmaybeitsgreatestweakness.

Attackersknowthatemployeesarefrequentlyverybusyanddon’tstoptothinkaboutsecurity.Theymayattempttoexploitthisworkcharacteristicthroughpiggybackingorshouldersurfing.

Recognizemethodsattackersmayusetogaininformationaboutanorganization

Formanyyearscomputerintrudershavereliedonusers’poorselectionofpasswordstohelptheintrudersintheirattemptstogainunauthorizedaccesstoasystemornetwork.

Onecommonwaytofindusefulinformation(iftheattackerisinthevicinityofthetarget,suchasacompanyoffice)istogothroughthetarget’strashlookingforbitsofinformationthatcouldbeusefultoapenetrationattempt.

Determinewaysinwhichuserscanaidinsteadofdetractfromsecurity

Aninterestingparadoxofsocialengineeringattacksisthatpeoplearenotonlythebiggestproblemandsecurityriskbutalsothebestlineofdefenseagainstasocialengineeringattack.

Asignificantportionofemployee-createdsecurityproblemsarisefrompoorsecuritypractices.

Usersshouldalwaysbeonthewatchforattemptsbyindividualstogaininformationabouttheorganizationandshouldreportsuspiciousactivitytotheiremployer.

Recognizetheroletrainingandawarenessplaysinassistingthepeoplesideofsecurity

Individualuserscanenhancesecurityofasystemthroughproperexecutionoftheirindividualactionsandresponsibilities.

Trainingandawarenessprogramscanreinforceuserknowledgeof

desiredactions.

KeyTermsbackdoor(82)dumpsterdiving(81)phishing(75)piggybacking(80)reversesocialengineering(77)shouldersurfing(76)socialengineering(73)SPAM(76)tailgating(80)vishing(76)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.A_______________isanavenuethatcanbeusedtoaccessasystemwhilecircumventingnormalsecuritymechanisms.

2._______________isaprocedureinwhichattackerspositionthemselvesinsuchawayastobeabletoobserveanauthorizeduserenteringthecorrectaccesscode.

3.Theprocessofgoingthroughatarget’strashsearchingforinformationthatcanbeusedinanattack,ortogainknowledgeaboutasystemornetwork,isknownas_______________.

4._______________isthesimpletacticoffollowingcloselybehindapersonwhohasjustusedtheiraccesscardorPINtogainphysicalaccesstoaroomorbuilding.

5.In_______________,theattackerhopestoconvincethetargettoinitiatecontact.

6._______________isavariationof_______________thatusesvoicecommunicationtechnologytoobtaintheinformationtheattackerisseeking.

Multiple-ChoiceQuiz1.Whichofthefollowingisconsideredagoodpracticeforpassword

security?

A.Usingacombinationofupper-andlowercasecharacters,anumber,andaspecialcharacterinthepassworditself

B.Notwritingthepassworddown

C.Changingthepasswordonaregularbasis

D.Alloftheabove

2.Thepassworddilemmareferstothefactthat:A.Passwordsthatareeasyforuserstorememberarealsoeasyfor

attackerstoguess.

B.Themoredifficultwemakeitforattackerstoguessourpasswords,andthemorefrequentlyweforcepasswordchanges,themoredifficultthepasswordsareforauthorizeduserstorememberandthemorelikelytheyaretowritethemdown.

C.Userswillinvariablyattempttoselectpasswordsthatarewordstheycanremember.Thismeanstheymayselectthingscloselyassociatedwiththem,suchastheirspouse’sorchild’sname,abelovedsportsteam,orafavoritemodelofcar.

D.Passwordsassignedbyadministratorsareusuallybetterand

moresecure,butareoftenharderforuserstoremember.

3.ThesimpletacticoffollowingcloselybehindapersonwhohasjustusedtheirownaccesscardorPINtogainphysicalaccesstoaroomorbuildingiscalled:

A.Shouldersurfing

B.Tagging-along

C.Piggybacking

D.Accessdrafting

4.Theprocessofgoingthroughatarget’strashinhopesoffindingvaluableinformationthatmightbeusedinapenetrationattemptisknownas:

A.Dumpsterdiving

B.Trashtrolling

C.Garbagegathering

D.Refuserolling

5.Whichofthefollowingisatypeofsocialengineeringattackinwhichanattackerattemptstoobtainsensitiveinformationfromauserbymasqueradingasatrustedentityinane-mail?

A.SPAM

B.SPIM

C.Phishing

D.Vishing

6.Reversesocialengineeringinvolves:A.Contactingthetarget,elicitingsomesensitiveinformation,and

convincingthemthatnothingoutoftheordinaryhasoccurred

B.Contactingthetargetinanattempttoobtaininformationthatcanbeusedinasecondattemptwithadifferentindividual

C.Anindividuallowerinthechainofcommandconvincingsomebodyatahigherleveltodivulgeinformationthattheattackerisnotauthorizedtohave

D.Anattackerattemptingtosomehowconvincethetargettoinitiatecontactinordertoavoidquestionsaboutauthenticity

7.Thereasonfornotallowinguserstoinstallnewhardwareorsoftwarewithouttheknowledgeofsecurityadministratorsis:

A.Theymaynotcompletetheinstallationcorrectlyandtheadministratorwillhavetodomorework,takingthemawayfrommoreimportantsecuritytasks.

B.Theymayinadvertentlyinstallmorethanjustthehardwareorsoftware;theymayaccidentallyinstallabackdoorintothenetwork.

C.Theymaynothavepaidforitandthusmaybeexposingtheorganizationtocivilpenalties.

D.Unauthorizedhardwareandsoftwareareusuallyforleisurepurposesandwilldistractemployeesfromthejobtheywerehiredtoperform.

8.Onceanorganization’ssecuritypolicieshavebeenestablished,thesinglemosteffectivemethodofcounteringpotentialsocialengineeringattacksis:

A.Anactivesecurityawarenessprogram

B.Aseparatephysicalaccesscontrolmechanismforeachdepartmentintheorganization

C.Frequenttestingofboththeorganization’sphysicalsecurityproceduresandemployeetelephonepractices

D.Implementingaccesscontrolcardsandthewearingofsecurityidentificationbadges

9.Whichofthefollowingtypesofattacksutilizesinstantmessagingservices?

A.SPAM

B.SPIM

C.Phishing

D.Vishing

10.InwhatwayarePINssimilartopasswords?A.UserswillnormallypickaPINthatiseasytoremember,such

asadateorspecificpattern.

B.AttackersknowcommonPINsandwilltrytousethemorwillattempttolearnmoreabouttheuserinordertomakeaneducatedguessastowhattheirPINmightbe.

C.Usersmaywritethemdowntorememberthem.

D.Alloftheabovearetrue.

EssayQuiz1.Explainthedifferencebetweensocialengineeringandreversesocial

engineering.

2.Discusshowasecurity-relatedhoaxmightbecomeasecurityissue.3.Howmightshouldersurfingbeathreatinyourschoolorwork

environment?Whatcanbedonetomakethissortofactivitymoredifficult?

4.Foranenvironmentfamiliartoyou(suchasworkorschool),describethedifferentnon-employeeswhomayhaveaccessto

facilitiesthatcouldcontainsensitiveinformation.

5.Describesomeoftheusersecurityresponsibilitiesthatyoufeelaremostimportantforuserstoremember.

LabProjects

•LabProject4.1Ifpossibleateitheryourplaceofemploymentoryourschool,attempttodeterminehoweasyitwouldbetoperformdumpsterdivingtogainaccesstoinformationatthesite.Aretrashreceptacleseasytogainaccessto?Aredocumentsshreddedbeforebeingdiscarded?Areareaswheretrashisstoredeasilyaccessible?

•LabProject4.2PerformasearchontheWebforarticlesandstoriesaboutsocialengineeringattacksorreversesocialengineeringattacks.Chooseandreadfiveorsixarticles.Howmanyoftheattacksweresuccessful?Howmanyfailedandwhy?Howcouldthosethatmayhaveinitiallysucceededbeenprevented?

•LabProject4.3SimilartoLabProject4.2,performasearchontheWebforarticlesandstoriesaboutphishingattacks.Chooseandreadfiveorsixarticles.Howmanyoftheattacksweresuccessful?Howmanyfailedandwhy?Howmightthesuccessfulattackshavebeenmitigatedorsuccessfullyaccomplished?

chapter5 Cryptography

Ifyouaredesigningcryptosystems,you’vegottothinkaboutlong-termapplications.You’vegottotrytofigureouthowtobuildsomethingthatissecureagainsttechnologyinthenextcentury

C

thatyoucannotevenimagine.

—WHITFIELDDIFFIE

Inthischapter,youwilllearnhowto

Understandthefundamentalsofcryptography

Identifyanddescribethethreetypesofcryptography

Listanddescribecurrentcryptographicalgorithms

Explainhowcryptographyisappliedforsecurity

ryptographyisthescienceofencrypting,orhiding,information—somethingpeoplehavesoughttodosincetheybeganusinglanguage.Althoughlanguageallowedpeopletocommunicatewithoneanother,

thoseinpowerattemptedtohideinformationbycontrollingwhowastaughttoreadandwrite.Eventually,morecomplicatedmethodsofconcealinginformationbyshiftinglettersaroundtomakethetextunreadableweredeveloped.Thesecomplicatedmethodsarecryptographicalgorithms,alsoknownasciphers.ThewordciphercomesfromtheArabicwordsifr,meaningemptyorzero.Whenmaterial,calledplaintext,needstobeprotectedfrom

unauthorizedinterceptionoralteration,itisencryptedintociphertext.Thisisdoneusinganalgorithmandakey,andtheriseofdigitalcomputershasprovidedawidearrayofalgorithmsandincreasinglycomplexkeys.Thechoiceofspecificalgorithmdependsonseveralfactors,andtheywillbeexaminedinthischapter.Cryptanalysis,theprocessofanalyzingavailableinformationinan

attempttoreturntheencryptedmessagetoitsoriginalform,requiredadvancesincomputertechnologyforcomplexencryptionmethods.Thebirthofthecomputermadeitpossibletoeasilyexecutethecalculationsrequiredbymorecomplexencryptionalgorithms.Today,thecomputeralmostexclusivelypowershowencryptionisperformed.Computertechnologyhasalsoaidedcryptanalysis,allowingnewmethodstobe

developed,suchaslinearanddifferentialcryptanalysis.Differentialcryptanalysisisdonebycomparingtheinputplaintexttotheoutputciphertexttotryanddeterminethekeyusedtoencrypttheinformation.Linearcryptanalysisissimilarinthatitusesbothplaintextandciphertext,butitputstheplaintextthroughasimplifiedciphertotryanddeducewhatthekeyislikelytobeinthefullversionofthecipher.

CryptographyinPracticeWhilecryptographymaybeascience,itperformscriticalfunctionsintheenablingoftrustacrosscomputernetworksinbusinessandotherfunctions.Beforewedigdeepintothetechnicalnatureofcryptographicpractices,anoverviewofcurrentcapabilitiesisuseful.Examiningcryptographyfromahighlevel,thereareseveralrelevantpointstoday.Cryptographyhasbeenalong-runningeventofadvancesbothonthe

sideofcryptographyandthesideofbreakingitviaanalysis.Withtheadventofdigitalcryptography,theadvantagehasclearlyswungtothesideofcryptography.Moderncomputershavealsoincreasedtheneedfor,andloweredthecostofemploying,cryptographytosecureinformation.Inthepast,theeffectivenessrestedinthesecrecyofthealgorithm,butwithmoderndigitalcryptography,thestrengthisbasedonsheercomplexity.Thepowerofnetworksandmodernalgorithmshasalsobeenemployedtomanageautomatickeymanagement.

Cryptographyismuchmorethanencryption.Cryptographicmethodsenabledataprotection,datahiding,integritychecks,nonrepudiationservices,policyenforcement,keymanagementandexchange,andmanymoreelementsusedinmoderncomputing.IfyouusedtheWebtoday,oddsareyouusedcryptographywithoutevenknowingit.

Cryptographyhasmanyusesbesidesjustenablingconfidentialityincommunicationchannels.Cryptographicfunctionsareusedinawide

rangeofapplications,including,butnotlimitedto,hidingdata,resistingforgery,resistingunauthorizedchange,resistingrepudiation,policyenforcement,andkeyexchanges.Inspiteofthestrengthsofmoderncryptography,itstillfailsduetootherissues;knownplaintextattacks,poorlyprotectedkeys,andrepeatedpassphrasesareexamplesofhowstrongcryptographyisrenderedweakviaimplementationmistakes.Moderncryptographicalgorithmsarefarstrongerthanneededgiventhe

stateofcryptanalysis.Theweaknessesincryptosystemscomefromthesystemsurroundingthealgorithm,implementation,andoperationalizationdetails.AdiShamir,theSinRSA,statesitclearly:“Attackersdonotbreakcrypto;theybypassit.”Overtime,weaknessesanderrors,aswellasshortcuts,arefoundin

algorithms.Whenanalgorithmisreportedasbroken,theterm“broken”canhavemanymeanings.Thiscouldmeanthatthealgorithmisofnofurtheruse,oritcouldmeanthatithasweaknessesthatmaysomedaybeemployedtobreakit,oranythingbetweentheseextremes.Asallmethodscanbebrokenwithbruteforce,onequestionishowmucheffortisrequired,atwhatcost,whencomparedtothevalueoftheassetunderprotection.Whenexaminingthestrengthofacryptosystem,itisworthexamining

thefollowingtypesoflevelsofprotection:

1.Themechanismisnolongerusefulforanypurpose.2.Thecostofrecoveringthecleartextwithoutbenefitofthekeyhasfallentoalowlevel.

3.Thecosthasfallentoequaltoorlessthanthevalueofthedataorthenextleastcostattack.

4.Thecosthasfallentowithinseveralordersofmagnitudesofthecostofencryptionorthevalueofthedata.

5.Theelapsedtimeofattackhasfallentowithinmagnitudesofthelifeofthedata,regardlessofthecostthereof.

6.Thecosthasfallentolessthanthecostofabrute-forceattackagainstthekey.

7.Someonehasrecoveredonekeyoronemessage.

Thislistofconditionsisadescendinglistofrisks/benefits.Conditions6and7areregularoccurrencesincryptographicsystems,andgenerallynotworthworryingaboutatall.Infact,itisnotuntilthefourthpointthatonehastohaverealconcerns.Withallthissaid,mostorganizationsconsiderreplacementbetween5and6.Ifanyofthefirstthreearepositive,theorganizationseriouslyneedstoconsiderchangingtheircryptographicmethods.

FundamentalMethodsModerncryptographicoperationsareperformedusingbothanalgorithmandakey.Thechoiceofalgorithmdependsonthetypeofcryptographicoperationthatisdesired.Thesubsequentchoiceofkeyisthentiedtothespecificalgorithm.Cryptographicoperationsincludeencryption(fortheprotectionofconfidentiality),hashing(fortheprotectionofintegrity),digitalsignatures(tomanagenonrepudiation),andabevyofspecialtyoperationssuchaskeyexchanges.Themethodsusedtoencryptinformationarebasedontwoseparate

operations,substitutionandtransposition.Substitutionisthereplacementofanitemwithadifferentitem.Transpositionisthechangingoftheorderofitems.PigLatin,achild’scipher,employsbothoperationsinsimplisticformandisthuseasytodecipher.Theseoperationscanbedoneonwords,characters,and,inthedigitalworld,bits.Whatmakesasystemsecureisthecomplexityofthechangesemployed.Tomakeasystemreversible(soyoucanreliablydecryptit),thereneedstobeabasisforthepatternofchanges.Historicalciphersusedrelativelysimplepatterns,andonesthatrequiredsignificantknowledge(atthetime)tobreak.Moderncryptographyisbuiltaroundcomplexmathematicalfunctions.

Thesefunctionshavespecificpropertiesthatmakethemresistantto

reversingorsolvingbymeansotherthantheapplicationofthealgorithmandkey.

Assuranceisaspecificterminsecuritythatmeansthatsomethingisnotonlytruebutcanbeproventobesotosomespecificlevelofcertainty.

Whilethemathematicalspecificsoftheseoperationscanbeverycomplexandarebeyondthescopeofthislevelofmaterial,theknowledgetoproperlyemploythemisnot.Cryptographicoperationsarecharacterizedbythequantityandtypeofdata,aswellasthelevelandtypeofprotectionsought.Integrityprotectionoperationsarecharacterizedbythelevelofassurancedesired.Datacanbecharacterizedbyitsstate:dataintransit,dataatrest,ordatainuse.Itisalsocharacterizedinhowitisused,eitherinblockformorstreamform.

ComparativeStrengthsandPerformanceofAlgorithmsThereareseveralfactorsthatplayaroleindeterminingthestrengthofacryptographicalgorithm.Firstandmostobviousisthesizeofthekeyandtheresultingkeyspace.Thekeyspaceisdefinedasasetofeverypossiblekeyvalue.Onemethodofattackistosimplytryallofthepossiblekeysinabrute-forceattack.Theotherfactorisreferredtoasworkfactor,whichisasubjectivemeasurementofthetimeandeffortneededtoperformoperations.Iftheworkfactorislow,thentherateatwhichkeyscanbetestedishigh,meaningthatlargerkeyspacesareneeded.Workfactoralsoplaysaroleinprotectingsystemssuchaspasswordhashes,wherehavingahigherworkfactorcanbepartofthesecuritymechanism.

TechTip

KeyspaceComparisonsBecausethekeyspaceisanumericvalue,itisveryimportanttoensurethatcomparisonsaredoneusingsimilarkeytypes.Comparingakeymadeof1bit(2possiblevalues)andakeymadeof1letter(26possiblevalues)wouldnotyieldaccurateresults.Fortunately,thewidespreaduseofcomputershasmadealmostallalgorithmsstatetheirkeyspacevaluesintermsofbits.

Alargerkeyspaceallowstheuseofkeysofgreatercomplexity,andthereforemoresecurity,assumingthealgorithmiswelldesigned.Itiseasytoseehowkeycomplexityaffectsanalgorithmwhenyoulookatsomeoftheencryptionalgorithmsthathavebeenbroken.TheDataEncryptionStandard(DES)usesa56-bitkey,allowing72,000,000,000,000,000possiblevalues,butithasbeenbrokenbymoderncomputers.ThemodernimplementationofDES,TripleDES(3DES),usesthree56-bitkeys,foratotalkeylengthof168bits(althoughfortechnicalreasonstheeffectivekeylengthis112bits),or340,000,000,000,000,000,000,000,000,000,000,000,000possiblevalues.Whenanalgorithmlistsacertainnumberofbitsasakey,itisdefining

thekeyspace.Somealgorithmshavekeylengthsof8192bitsormore,resultinginverylargekeyspaces,evenbydigitalcomputerstandards.Moderncomputershavealsochallengedworkfactorelementsas

algorithmscanberenderedveryquicklybyspecializedhardwaresuchashigh-endgraphicchips.Todefeatthis,manyalgorithmshaverepeatedcyclestoaddtotheworkandreducetheabilitytoparallelizeoperationsinsideprocessorchips.Thisisdonetoincreasetheinefficiencyofacalculation,butinamannerthatstillresultsinsuitableperformancewhengiventhekeyandstillcomplicatesmatterswhendoneinabrute-forcemannerwithallkeys.

HistoricalPerspectives

Cryptographyisasoldassecrets.Humanshavebeendesigningsecretcommunicationsystemsforaslongthey’veneededtokeepcommunicationprivate.TheSpartansofancientGreecewouldwriteonaribbonwrappedaroundacylinderwithaspecificdiameter(calledascytale).Whentheribbonwasunwrapped,itrevealedastrangestringofletters.Themessagecouldbereadonlywhentheribbonwaswrappedaroundthesamediametercylinder.Thisisanexampleofatranspositioncipher,wherethesamelettersareusedbuttheorderischanged.Inalltheseciphersystems,theunencryptedinputtextisknownasplaintextandtheencryptedoutputisknownasciphertext.

SubstitutionCiphersTheRomanstypicallyusedadifferentmethodknownasashiftcipher.Inthiscase,oneletterofthealphabetisshiftedasetnumberofplacesinthealphabetforanotherletter.Acommonmodern-dayexampleofthisistheROT13cipher,inwhicheveryletterisrotated13positionsinthealphabet:niswritteninsteadofa,oinsteadofb,andsoon.Thesetypesofciphersarecommonlyencodedonanalphabetwheel,asshowninFigure5.1.

•Figure5.1Anyshiftciphercaneasilybeencodedanddecodedonawheeloftwopiecesofpaperwiththealphabetsetasaring;bymovingonecirclethespecifiednumberintheshift,youcantranslatethecharacters.

Theseciphersweresimpletouseandalsosimpletobreak.Becausehidinginformationwasstillimportant,moreadvancedtranspositionandsubstitutioncipherswererequired.Assystemsandtechnologybecamemorecomplex,cipherswerefrequentlyautomatedbysomemechanicalorelectromechanicaldevice.AfamousexampleofarelativelymodernencryptionmachineistheGermanEnigmamachinefromWorldWarII(seeFigure5.2).Thismachineusedacomplexseriesofsubstitutionstoperformencryption,andinterestinglyenoughitgaverisetoextensiveresearchincomputers.

•Figure5.2OneofthesurvivingGermanEnigmamachines

Caesar’scipherusesanalgorithmandakey:thealgorithmspecifiesthatyouoffsetthealphabeteithertotheright(forward)ortotheleft(backward),andthekeyspecifieshowmanyletterstheoffsetshouldbe.Forexample,ifthealgorithmspecifiesoffsettingthealphabettotheright,

andthekeyis3,theciphersubstitutesanalphabeticletterthreetotherightfortherealletter,sodisusedtorepresenta,frepresentsc,andsoon.Inthisexample,boththealgorithmandkeyaresimple,allowingforeasycryptanalysisofthecipherandeasyrecoveryoftheplaintextmessage.Theeasewithwhichshiftcipherswerebrokenledtothedevelopmentof

substitutionciphers,whichwerepopularinElizabethanEngland(roughlythesecondhalfofthe16thcentury)andmorecomplexthanshiftciphers.Substitutionciphersworkontheprincipleofsubstitutingadifferentletterforeveryletter:abecomesg,bbecomesd,andsoon.Thissystempermits26possiblevaluesforeveryletterinthemessage,makingtheciphermanytimesmorecomplexthanastandardshiftcipher.Simpleanalysisoftheciphercouldbeperformedtoretrievethekey,however.Bylookingforcommonletterssuchaseandpatternsfoundinwordssuchasing,youcandeterminewhichcipherlettercorrespondstowhichplaintextletter.Theexaminationofciphertextforfrequentlettersisknownasfrequencyanalysis.Makingeducatedguessesaboutwordswilleventuallyallowyoutodeterminethesystem’skeyvalue(seeFigure5.3).

•Figure5.3Makingeducatedguessesismuchlikeplayinghangman—correctguessescanleadtomoreorallofthekeybeingrevealed.

Tocorrectthisproblem,morecomplexityhadtobeaddedtothesystem.TheVigenèrecipherworksasapolyalphabeticsubstitutioncipherthatdependsonapassword.Thisisdonebysettingupasubstitutiontablelikethisone:

Thenthepasswordismatcheduptothetextitismeanttoencipher.Ifthepasswordisnotlongenough,thepasswordisrepeateduntilonecharacterofthepasswordismatchedupwitheachcharacteroftheplaintext.Forexample,iftheplaintextisSampleMessageandthepasswordispassword,theresultingmatchis

SAMPLEMESSAGEPASSWORDPASSW

Thecipherletterisdeterminedbyuseofthegrid,matchingtheplaintextcharacter’srowwiththepasswordcharacter’scolumn,resultinginasingleciphertextcharacterwherethetwomeet.ConsiderthefirstlettersSandP:whenpluggedintothegridtheyoutputaciphertextcharacterofH.Thisprocessisrepeatedforeveryletterofthemessage.Oncetherestofthelettersareprocessed,theoutputisHAEHHSDHHSSYA.Inthisexample,thekeyintheencryptionsystemisthepassword.The

examplealsoillustratesthatanalgorithmcanbesimpleandstillprovide

strongsecurity.Ifsomeoneknowsaboutthetable,theycandeterminehowtheencryptionwasperformed,buttheystillwillnotknowthekeytodecryptingthemessage.Themorecomplexthekey,thegreaterthesecurityofthesystem.The

Vigenèreciphersystemandsystemslikeitmakethealgorithmsrathersimplebutthekeyrathercomplex,withthebestkeyscomprisingverylongandveryrandomdata.Keycomplexityisachievedbygivingthekeyalargenumberofpossiblevalues.

TryThis!VigenèreCipherMakeasimplemessagethat’sabouttwosentenceslong,andthenchoosetwopasswords,onethat’sshortandonethat’slong.Then,usingthesubstitutiontablepresentedinthissection,performsimpleencryptiononthemessage.Comparethetwociphertexts;sinceyouhavetheplaintextandtheciphertext,youshouldbeabletoseeapatternofmatchingcharacters.Knowingthealgorithmused,seeifyoucandeterminethekeyusedtoencryptthemessage.

One-timePadsOne-timepadsareaninterestingformofencryptioninthattheytheoreticallyareperfectandunbreakable.Thekeyisthesamesizeorlargerthanthematerialbeingencrypted.TheplaintextisXOR’edagainstthekeyproducingtheciphertext.Whatmakestheone-timepad“perfect”isthesizeofthekey.Ifyouuseakeyspacefullofkeys,youwilldecrypteverypossiblemessageofthesamelengthastheoriginal,withnowaytodiscriminatewhichoneiscorrect.Thismakesaone-timepadunabletobebrokenbyevenbrute-forcemethods,providedthatthekeyisnotreused.Thismakesaone-timepadlessthanpracticalforanymassuse.

One-timepadsareexamplesofperfectciphersfromamathematicalpointofview.Butwhenput

intopractice,theimplementationcreatesweaknessesthatresultinlessthanperfectsecurity.Thisisanimportantreminderthatperfectciphersfromamathematicalpointofviewdonotcreateperfectsecurityinpracticebecauseofthelimitationsassociatedwithimplementation.

AlgorithmsEverycurrentencryptionschemeisbaseduponanalgorithm,astep-by-step,recursivecomputationalprocedureforsolvingaprobleminafinitenumberofsteps.Thecryptographicalgorithm—whatiscommonlycalledtheencryptionalgorithmorcipher—ismadeupofmathematicalstepsforencryptinganddecryptinginformation.Thefollowingillustrationshowsadiagramoftheencryptionanddecryptionprocessanditsparts.Therearethreetypesofencryptionalgorithmscommonlyused:hashing,symmetric,andasymmetric.Hashingisaveryspecialtypeofencryptionalgorithmthattakesaninputandmathematicallyreducesittoauniquenumberknownasahash,whichisnotreversible.Symmetricalgorithmsarealsoknownassharedsecretalgorithms,asthesamekeyisusedforencryptionanddecryption.Finally,asymmetricalgorithmsuseaverydifferentprocessemployingtwokeys,apublickeyandaprivatekey,makingupwhatisknownasakeypair.

Thebestalgorithmsarealwayspublicalgorithmsthathavebeenpublishedforpeerreviewbyothercryptographicandmathematicalexperts.Publicationisimportant,asanyflawsinthesystemcanbe

revealedbyothersbeforeactualuseofthesystem.Thisprocessgreatlyencouragestheuseofproventechnologies.Severalproprietaryalgorithmshavebeenreverse-engineered,exposingtheconfidentialdatathealgorithmstrytoprotect.ExamplesofthisincludethedecryptionofNikon’sproprietaryRAWformat,white-balanceencryption,andthecrackingoftheExxonMobilSpeedpassRFIDencryption.Theuseofaproprietarysystemcanactuallybelesssecurethanusingapublishedsystem.Whereasproprietarysystemsarenotmadeavailabletobetestedbypotentialcrackers,publicsystemsaremadepublicforpreciselythispurpose.

Oneofthemostcommoncryptographicfailuresisthecreationofyourownencryptionscheme.Rollingyourowncryptography,whetherincreatingalgorithmsorimplementationofexistingalgorithmsyourself,isarecipeforfailure.Alwaysuseapprovedalgorithmsandalwaysuseapprovedcryptolibrariestoimplement.

Asystemthatmaintainsitssecurityafterpublictestingcanbereasonablytrustedtobesecure.Apublicalgorithmcanbemoresecurebecausegoodsystemsrelyontheencryptionkeytoprovidesecurity,notthealgorithmitself.Theactualstepsforencryptingdatacanbepublished,becausewithoutthekey,theprotectedinformationcannotbeaccessed(seeFigure5.4).

•Figure5.4Whileeveryoneknowshowtouseaknobtoopenadoor,withoutthekeytounlocktheknob,thatknowledgeisuseless.

Akeyisaspecialpieceofdatausedinboththeencryptionanddecryptionprocesses.Thealgorithmsstaythesameineveryimplementation,butadifferentkeyisusedforeach,whichensuresthatevenifsomeoneknowsthealgorithmyouusetoprotectyourdata,hecannotbreakyoursecurity.

TechTip

XORApopularfunctionincryptographyiseXclusiveOR(XOR),whichisabitwisefunctionappliedtodata.WhenyouapplyakeytodatausingXOR,thenasecondapplicationundoesthefirstoperation.Thismakesforspeedyencryption/decryption,butmakesthesystemtotallydependentuponthesecrecyofthekey.Ahard-codedkeyinaprogramwillbediscovered,makingthisaweaksecuritymechanisminmostcases.

Comparingthestrengthoftwodifferentalgorithmscanbemathematicallyverychallenging;fortunatelyforthelayperson,thereisaroughguide.Mostcurrentalgorithmsarelistedwiththeirkeysizeinbits.Unlessaspecificalgorithmhasbeenshowntobeflawed,ingeneral,thegreaternumberofbitswillyieldamoresecuresystem.Thisworkswellforagivenalgorithm,butismeaninglesstocomparedifferentalgorithms.Thegoodnewsisthatmostmoderncryptographyismorethanstrongenoughforallbuttechnicaluses,andforthoseusesexpertscandetermineappropriatealgorithmsandkeylengthstoprovidethenecessaryprotections.

TechTip

Man-in-the-MiddleAttackAman-in-the-middleattackisdesignedtodefeatproperkeyexchangebyinterceptingtheremoteparty’skeyandreplacingitwiththeattacker’skeyinbothdirections.Ifdoneproperly,onlytheattackerknowsthattheencryptedtrafficisnotsecureandtheencryptedtrafficcanbereadbytheattacker.

KeyManagementBecausethesecurityofthealgorithmsreliesonthekey,keymanagementisofcriticalconcern.Keymanagementincludesanythinghavingtodowiththeexchange,storage,safeguarding,andrevocationofkeys.Itismostcommonlyassociatedwithasymmetricencryption,sinceasymmetricencryptionusesbothpublicandprivatekeys.Tobeusedproperlyfor

authentication,akeymustbecurrentandverified.Ifyouhaveanoldorcompromisedkey,youneedawaytochecktoseethatthekeyhasbeenrevoked.Keymanagementisalsoimportantforsymmetricencryption,because

symmetricencryptionreliesonbothpartieshavingthesamekeyforthealgorithmtowork.Sincethesepartiesareusuallyphysicallyseparate,keymanagementiscriticaltoensurekeysaresharedandexchangedeasily.Theymustalsobesecurelystoredtoprovideappropriateconfidentialityoftheencryptedinformation.Therearemanydifferentapproachestosecurestorageofkeys,suchasputtingthemonaUSBflashdriveorsmartcard.Whilekeyscanbestoredinmanydifferentways,newPChardwareoftenincludestheTrustedPlatformModule(TPM),whichprovidesahardware-basedkeystoragelocationthatisusedbymanyapplications.(MorespecificinformationaboutthemanagementofkeysisprovidedlaterinthischapterandinChapter6.)

RandomNumbersManydigitalcryptographicalgorithmshaveaneedforarandomnumbertoactasaseedandprovidetruerandomness.Oneofthestrengthsofcomputersisthattheycandoataskoverandoveragainintheexactsamemanner—nonoiseorrandomness.Thisisgreatformosttasks,butingeneratingarandomsequenceofvalues,itpresentschallenges.Softwarelibrarieshavepseudo-randomgenerators,functionsthatproduceaseriesofnumbersthatstatisticallyappearrandom.Buttheserandomnumbergeneratorsaredeterministicinthat,giventhesequence,youcancalculatefuturevalues.Thismakestheminappropriateforuseincryptographicsituations.Theleveloramountofrandomnessisreferredtoasentropy.Entropyis

themeasureofuncertaintyassociatedwithaseriesofvalues.Perfectentropyequatestocompleterandomness,suchthatgivenanystringofbits,thereisnocomputationtoimproveguessingthenextbitinthesequence.Asimple“measure”ofentropyisinbits,wherethebitsarethepowerof2

thatrepresentsthenumberofchoices.Soifthereare2048options,thenthiswouldrepresent11bitsofentropy.Inthisfashion,onecancalculatetheentropyofpasswordsandmeasurehow“hardtheyaretoguess.”

TechTip

RandomnessIssuesTheimportanceofproperrandomnumbergenerationincryptosystemscannotbeunderestimated.RecentreportsbytheGuardianandtheNewYorkTimesassertthattheU.S.NationalSecurityAgency(NSA)hasputabackdoorintotheCryptographicallySecureRandomNumberGenerator(CSPRNG)algorithmsdescribedinNISTSP800-90A,particularlytheDual_EC_DRBGalgorithm.FurtherallegationsarethattheNSApaidRSA$10milliontousetheresultingstandardinitsproductline.

Toresolvetheproblemofappropriaterandomness,therearesystemstocreatecryptographicrandomnumbers.Thelevelofcomplexityofthesystemisdependentuponthelevelofpurerandomnessneeded.Forsomefunctions,suchasmasterkeys,theonlytruesolutionisahardware-basedrandomnumbergeneratorthatcanusephysicalpropertiestoderiveentropy.Inother,lessdemandingcases,acryptographiclibrarycallcanprovidethenecessaryentropy.Whilethetheoreticalstrengthofthecryptosystemdependsonthealgorithm,thestrengthoftheimplementationinpracticecandependonissuessuchasthekey.Thisisaveryimportantissueandmistakesmadeinimplementationcaninvalidateeventhestrongestalgorithmsinpractice.

HashingFunctionsHashingfunctionsarecommonlyusedencryptionmethods.Ahashingfunctionorhashfunctionisaspecialmathematicalfunctionthatperformsaone-wayfunction,whichmeansthatoncethealgorithmisprocessed,thereisnofeasiblewaytousetheciphertexttoretrievetheplaintextthatwasusedtogenerateit.Also,ideally,thereisnofeasiblewaytogenerate

twodifferentplaintextsthatcomputetothesamehashvalue.Thehashvalueistheoutputofthehashingalgorithmforaspecificinput.Theillustrationshowstheone-waynatureofthesefunctions.

Commonusesofhashingalgorithmsaretostorecomputerpasswordsandtoensuremessageintegrity.Theideaisthathashingcanproduceauniquevaluethatcorrespondstothedataentered,butthehashvalueisalsoreproduciblebyanyoneelserunningthesamealgorithmagainstthesamedata.Soyoucouldhashamessagetogetamessageauthenticationcode(MAC),andthecomputationalnumberofthemessagewouldshowthatnointermediaryhasmodifiedthemessage.Thisprocessworksbecausehashingalgorithmsaretypicallypublic,andanyonecanhashdatausingthespecifiedalgorithm.Itiscomputationallysimpletogeneratethehash,soitissimpletocheckthevalidityorintegrityofsomethingbymatchingthegivenhashtoonethatislocallygenerated.Severalprogramscancomputehashvaluesforaninputfile,asshowninFigure5.5.Hash-basedMessageAuthenticationCode(HMAC)isaspecialsubsetofhashingtechnology.ItisahashalgorithmappliedtoamessagetomakeaMAC,butitisdonewithapreviouslysharedsecret.SotheHMACcanprovideintegritysimultaneouslywithauthentication.HMAC-MD5isusedintheNTLANManagerversion2challenge/responseprotocol.

•Figure5.5Thereareseveralprogramsavailablethatwillacceptan

inputandproduceahashvalue,lettingyouindependentlyverifytheintegrityofdownloadedcontent.

Ahashalgorithmcanbecompromisedwithwhatiscalledacollisionattack,inwhichanattackerfindstwodifferentmessagesthathashtothesamevalue.Thistypeofattackisverydifficultandrequiresgeneratingaseparatealgorithmthatattemptstofindatextthatwillhashtothesamevalueofaknownhash.Thismustoccurfasterthansimplyeditingcharactersuntilyouhashtothesamevalue,whichisabrute-forcetypeattack.Theconsequenceofahashfunctionthatsuffersfromcollisionsisalossofintegrity.Ifanattackercanmaketwodifferentinputspurposefullyhashtothesamevalue,shemighttrickpeopleintorunningmaliciouscodeandcauseotherproblems.PopularhashalgorithmsaretheSecureHashAlgorithm(SHA)series,theRIPEMDalgorithms,andtheMessageDigest(MD)hashofvaryingversions(MD2,MD4,MD5).Becauseofweaknesses,andcollisionattackvulnerabilities,manyhashfunctionsarenowconsideredtobeinsecure,includingMD2,MD4,MD5,andSHA-1series.

TechTip

HashingAlgorithmsThehashingalgorithmsincommonuseareMD2,MD4,andMD5,andSHA-1,SHA-256,SHA-384,andSHA-512.Becauseofpotentialcollisions,MD2,MD4,MD5,andSHA-1havebeendeprecatedbymanygroups.Althoughnotconsideredsecure,theyarestillfoundinuse,atestamenttoslowadoptionofbettersecurity.

Hashingfunctionsareverycommonandplayanimportantroleinthewayinformation,suchaspasswords,isstoredsecurely,andthewayinwhichmessagescanbesigned.Bycomputingadigestofthemessage,lessdataneedstobesignedbythemorecomplexasymmetricencryption,andthisstillmaintainsassurancesaboutmessageintegrity.Thisistheprimarypurposeforwhichtheprotocolsweredesigned,andtheirsuccesswill

allowgreatertrustinelectronicprotocolsanddigitalsignatures.

SHASecureHashAlgorithm(SHA)referstoasetofhashalgorithmsdesignedandpublishedbytheNationalInstituteofStandardsandTechnology(NIST)andtheNationalSecurityAgency(NSA).ThesealgorithmsareincludedintheSHAstandardFederalInformationProcessingStandards(FIPS)180-2and180-3.TheindividualstandardsarenamedSHA-1,SHA-224,SHA-256,SHA-384,andSHA-512.ThelatterthreevariantsareoccasionallyreferredtocollectivelyasSHA-2.ThenewestversionisknownasSHA-3,whichisspecifiedinFIPS202.

SHA-1SHA-1,developedin1993,wasdesignedasthealgorithmtobeusedforsecurehashingintheU.S.DigitalSignatureStandard(DSS).ItismodeledontheMD4algorithmandimplementsfixesinthatalgorithmdiscoveredbytheNSA.Itcreatesmessagedigests160bitslongthatcanbeusedbytheDigitalSignatureAlgorithm(DSA),whichcanthencomputethesignatureofthemessage.Thisiscomputationallysimpler,asthemessagedigestistypicallymuchsmallerthantheactualmessage—smallermessage,lesswork.

TechTip

BlockModeinHashingMosthashalgorithmsuseblockmodetoprocess;thatis,theyprocessallinputinsetblocksofdatasuchas512-bitblocks.Thefinalhashistypicallygeneratedbyaddingtheoutputblockstogethertoformthefinaloutputstringof160or512bits.

SHA-1works,asdoallhashingfunctions,byapplyingacompressionfunctiontothedatainput.Itacceptsaninputofupto264bitsorlessand

thencompressesdowntoahashof160bits.SHA-1worksinblockmode,separatingthedataintowordsfirst,andthengroupingthewordsintoblocks.Thewordsare32-bitstringsconvertedtohex;groupedtogetheras16words,theymakeupa512-bitblock.IfthedatathatisinputtoSHA-1isnotamultipleof512,themessageispaddedwithzerosandanintegerdescribingtheoriginallengthofthemessage.Oncethemessagehasbeenformattedforprocessing,theactualhashcanbegenerated.The512-bitblocksaretakeninorderuntiltheentiremessagehasbeenprocessed.

Trytokeepattacksoncrypto-systemsinperspective.Whilethetheoryofattackinghashingthroughcollisionsissolid,findingacollisionstilltakesenormousamountsofeffort.InthecaseofattackingSHA-1,thecollisionisabletobefoundfasterthanapurebrute-forcemethod,butbymostestimateswillstilltakeseveralyears.

Atonetime,SHA-1wasoneofthemoresecurehashfunctions,butithasbeenfoundtobevulnerabletoacollisionattack.Thisattackfoundacollisionin269computations,lessthanthebrute-forcemethodof280computations.Whilethisisnotatremendouslypracticalattack,itdoessuggestaweakness.Thus,manysecurityprofessionalsaresuggestingthatimplementationsofSHA-1bemovedtooneoftheotherSHAversions.Theselongerversions,SHA-256,SHA-384,andSHA-512,allhavelongerhashresults,makingthemmoredifficulttoattacksuccessfully.TheaddedsecurityandresistancetoattackinSHA-2doesrequiremoreprocessingpowertocomputethehash.

SHA-2SHA-2isacollectivenameforSHA-224,SHA-256,SHA-384,andSHA-512.SHA-256issimilartoSHA-1inthatitalsoacceptsinputoflessthan264bitsandreducesthatinputtoahash.Thisalgorithmreducesto256bitsinsteadofSHA-1’s160.DefinedinFIPS180-2in2002,SHA-256islistedasanupdatetotheoriginalFIPS180thatdefinedSHA.SimilartoSHA-1,

SHA-256uses32-bitwordsand512-bitblocks.Paddingisaddeduntiltheentiremessageisamultipleof512.SHA-256usessixty-four32-bitwords,eightworkingvariables,andresultsinahashvalueofeight32-bitwords,hence256bits.SHA-224isatruncatedversionoftheSHA-256algorithmthatresultsina224-bithashvalue.TherearenoknowncollisionattacksagainstSHA-256;however,anattackonreduced-roundSHA-256ispossible.SHA-512isalsosimilartoSHA-1,butithandleslargersetsofdata.

SHA-512accepts2128bitsofinput,whichitpadsuntilithasseveralblocksofdatain1024-bitblocks.SHA-512alsouses64-bitwordsinsteadofSHA-1’s32-bitwords.Ituseseight64-bitwordstoproducethe512-bithashvalue.SHA-384isatruncatedversionofSHA-512thatusessix64-bitwordstoproducea384-bithash.WhileSHA-2isnotascommonasSHA-1,moreapplicationsare

startingtoutilizeitafterSHA-1wasshowntobepotentiallyvulnerabletoacollisionattack.

SHA-3SHA-3isthenamefortheSHA-2replacement.In2012,theKeccakhashfunctionwontheNISTcompetitionandwaschosenasthebasisfortheSHA-3method.BecausethealgorithmiscompletelydifferentfromthepreviousSHAseries,ithasprovedtobemoreresistanttoattacksthataresuccessfulagainstthem.AstheSHA-3seriesisrelativelynew,ithasnotbeenwidelyadoptedinmanyciphersuitesyet.

TheSHA-2andSHA-3seriesarecurrentlyapprovedforuse.SHA-1hasbeendeprecatedanditsusediscontinuedinmanystrongciphersuites.

RIPEMD

RACEIntegrityPrimitivesEvaluationMessageDigest(RIPEMD)isahashingfunctiondevelopedbytheRACEIntegrityPrimitivesEvaluation(RIPE)consortium.Itoriginallyprovideda128-bithashandwaslatershowntohaveproblemswithcollisions.RIPEMDwasstrengthenedtoa160-bithashknownasRIPEMD-160byHansDobbertin,AntoonBosselaers,andBartPreneel.Therearealso256-and320-bitversionsofthealgorithmknownasRIPEMD-256andRIPEMD-320.

RIPEMD-160RIPEMD-160isanalgorithmbasedonMD4,butitusestwoparallelchannelswithfiverounds.Theoutputconsistsoffive32-bitwordstomakea160-bithash.TherearealsolargeroutputextensionsoftheRIPEMD-160algorithm.Theseextensions,RIPEMD-256andRIPEMD-320,offeroutputsof256bitsand320bits,respectively.Whiletheseofferlargeroutputsizes,thisdoesnotmakethehashfunctioninherentlystronger.

MessageDigestMessageDigest(MD)isthegenericversionofoneofseveralalgorithmsthataredesignedtocreateamessagedigestorhashfromdatainputintothealgorithm.MDalgorithmsworkinthesamemannerasSHAinthattheyuseasecuremethodtocompressthefileandgenerateacomputedoutputofaspecifiednumberofbits.TheMDalgorithmswerealldevelopedbyRonaldL.RivestofMIT.

MD2MD2wasdevelopedin1989andisinsomewaysanearlyversionofthelaterMD5algorithm.Ittakesadatainputofanylengthandproducesahashoutputof128bits.ItisdifferentfromMD4andMD5inthatMD2isoptimizedfor8-bitmachines,whereastheothertwoareoptimizedfor32-bitmachines.Afterthefunctionhasbeenrunforevery16bytesofthe

message,theoutputresultisa128-bitdigest.TheonlyknownattackthatissuccessfulagainstMD2requiresthatthechecksumnotbeappendedtothemessagebeforethehashfunctionisrun.Withoutachecksum,thealgorithmcanbevulnerabletoacollisionattack.Somecollisionattacksarebaseduponthealgorithm’sinitializationvector(IV).

MD4MD4wasdevelopedin1990andisoptimizedfor32-bitcomputers.Itisafastalgorithm,butitissubjecttomoreattacksthanmoresecurealgorithmssuchasMD5.AnextendedversionofMD4computesthemessageinparallelandproducestwo128-bitoutputs—effectivelya256-bithash.Eventhoughalongerhashisproduced,securityhasnotbeenimprovedbecauseofbasicflawsinthealgorithm.Acryptographer,HansDobbertin,hasshownhowcollisionsinMD4canbefoundinunderaminuteusingjustaPC.Thisvulnerabilitytocollisionsappliesto128-bitMD4aswellas256-bitMD4.Becauseofweaknesses,peoplehavemovedawayfromMD4tomorerobusthashfunctions.

MD5MD5wasdevelopedin1991andisstructuredafterMD4butwithadditionalsecuritytoovercometheproblemsinMD4.Therefore,itisverysimilartotheMD4algorithm,onlyslightlyslowerandmoresecure.

MD5createsa128-bithashofamessageofanylength.

Recently,successfulattacksonthealgorithmhaveoccurred.Cryptanalysishasdisplayedweaknessesinthecompressionfunction.However,thisweaknessdoesnotlenditselftoanattackonMD5itself.CzechcryptographerVlastimilKlímapublishedworkshowingthatMD5collisionscanbecomputedinabouteighthoursonastandardhomePC.In

November2007,researcherspublishedresultsshowingtheabilitytohavetwoentirelydifferentWin32executableswithdifferentfunctionalitybutthesameMD5hash.Thisdiscoveryhasobviousimplicationsforthedevelopmentofmalware.ThecombinationoftheseproblemswithMD5haspushedpeopletoadoptastrongSHAversionforsecurityreasons.

TechTip

RainbowTablesRainbowtablesareprecomputedhashtablesthatenablelookingupsmalltextentriesviatheirhashvalues.Thismakeshashedpasswords“reversible”bylookingupthehashinaprecomputedhashtable.Thisworksforsmallpasswords(lessthan10characters)andisveryfast.Saltingpasswordsisoneofthedefensesagainstthesetables.

HashingSummaryHashingfunctionsareverycommon,andtheyplayanimportantroleinthewayinformation,suchaspasswords,isstoredsecurelyandthewayinwhichmessagescanbesigned.Bycomputingadigestofthemessage,lessdataneedstobesignedbythemorecomplexasymmetricencryption,andthisstillmaintainsassurancesaboutmessageintegrity.Thisistheprimarypurposeforwhichtheprotocolsweredesigned,andtheirsuccesswillallowgreatertrustinelectronicprotocolsanddigitalsignatures.ThefollowingillustrationshowsanMD5hashcalculationinLinux.

SymmetricEncryptionSymmetricencryptionistheolderandsimplermethodofencryptinginformation.Thebasisofsymmetricencryptionisthatboththesenderandthereceiverofthemessagehavepreviouslyobtainedthesamekey.Thisis,infact,thebasisforeventheoldestciphers—theSpartansneededtheexactsamesizecylinder,makingthecylinderthe“key”tothemessage,andinshiftciphersbothpartiesneedtoknowthedirectionandamountofshiftbeingperformed.Allsymmetricalgorithmsarebaseduponthissharedsecretprinciple,includingtheunbreakableone-timepadmethod.Figure5.6isasimplediagramshowingtheprocessthatasymmetric

algorithmgoesthroughtoprovideencryptionfromplaintexttociphertext.Thisciphertextmessageis,presumably,transmittedtothemessagerecipient,whogoesthroughtheprocesstodecryptthemessageusingthesamekeythatwasusedtoencryptthemessage.Figure5.6showsthekeystothealgorithm,whicharethesamevalueinthecaseofsymmetricencryption.

•Figure5.6Layoutofasymmetricalgorithm

Unlikewithhashfunctions,acryptographickeyisinvolvedinsymmetricencryption,sotheremustbeamechanismforkeymanagement(discussedearlierinthechapter).Managingthecryptographickeysiscriticallyimportantinsymmetricalgorithmsbecausethekeyunlocksthedatathatisbeingprotected.However,thekeyalsoneedstobeknownby,ortransmittedtoinaconfidentialway,thepartytowhichyouwishtocommunicate.Akeymustbemanagedatallstages,whichrequiressecuringitonthelocalcomputer,securingitontheremoteone,protectingitfromdatacorruption,protectingitfromloss,and,probablythemostimportantstep,protectingitwhileitistransmittedbetweenthetwoparties.Laterinthechapterwewilllookatpublickeycryptography,whichgreatlyeasesthekeymanagementissue,butforsymmetricalgorithmsthemostimportantlessonistostoreandsendthekeyonlybyknownsecuremeans.Someofthemorepopularsymmetricencryptionalgorithmsinusetoday

areDES,3DES,AES,andIDEA.

DESDES,theDataEncryptionStandard,wasdevelopedinresponsetotheNationalBureauofStandards(NBS),nowknownastheNationalInstituteofStandardsandTechnology(NIST),issuingarequestforproposalsforastandardcryptographicalgorithmin1973.NBSreceivedapromising

responseinanalgorithmcalledLucifer,originallydevelopedbyIBM.TheNBSandtheNSAworkedtogethertoanalyzethealgorithm’ssecurity,andeventuallyDESwasadoptedasafederalstandardin1976.DESiswhatisknownasablockcipher;itsegmentstheinputdatainto

blocksofaspecifiedsize,typicallypaddingthelastblocktomakeitamultipleoftheblocksizerequired.Thisisincontrasttoastreamcipher,whichencryptsthedatabitbybit.InthecaseofDES,theblocksizeis64bits,whichmeansDEStakesa64-bitinputandoutputs64bitsofciphertext.Thisprocessisrepeatedforall64-bitblocksinthemessage.DESusesakeylengthof56bits,andallsecurityrestswithinthekey.Thesamealgorithmandkeyareusedforbothencryptionanddecryption.Atthemostbasiclevel,DESperformsasubstitutionandthena

permutation(aformoftransposition)ontheinput,baseduponthekey.Thisactioniscalledaround,andDESperformsthis16timesonevery64-bitblock.Thealgorithmgoesstepbystep,producing64-bitblocksofciphertextforeachplaintextblock.ThisiscarriedonuntiltheentiremessagehasbeenencryptedwithDES.Asmentioned,thesamealgorithmandkeyareusedtodecryptandencryptwithDES.Theonlydifferenceisthatthesequenceofkeypermutationsisusedinreverseorder.OvertheyearsthatDEShasbeenacryptographicstandard,alotof

cryptanalysishasoccurred,andwhilethealgorithmhasheldupverywell,someproblemshavebeenencountered.Weakkeysarekeysthatarelesssecurethanthemajorityofkeysallowedinthekeyspaceofthealgorithm.InthecaseofDES,becauseofthewaytheinitialkeyismodifiedtogetthesubkey,certainkeysareweakkeys.Theweakkeysequateinbinarytohavingall1’sorall0’s,likethoseshowninFigure5.7,ortohavinghalfthekeyall1’sandtheotherhalfall0’s.

•Figure5.7WeakDESkeys

Semiweakkeys,withwhichtwokeyswillencryptplaintexttoidenticalciphertext,alsoexist,meaningthateitherkeywilldecrypttheciphertext.Thetotalnumberofpossiblyweakkeysis64,whichisverysmallrelativetothe256possiblekeysinDES.With16roundsandnotusingaweakkey,DESisreasonablysecure

and,amazingly,hasbeenformorethantwodecades.In1999,adistributedeffortconsistingofasupercomputerand100,000PCsovertheInternetwasmadetobreaka56-bitDESkey.Byattemptingmorethan240billionkeyspersecond,theeffortwasabletoretrievethekeyinlessthanaday.Thisdemonstratesanincredibleresistancetocrackinga20-year-oldalgorithm,butitalsodemonstratesthatmorestringentalgorithmsareneededtoprotectdatatoday.

3DESTripleDES(3DES)isavariantofDES.Dependingonthespecificvariant,ituseseithertwoorthreekeysinsteadofthesinglekeythatDESuses.ItalsospinsthroughtheDESalgorithmthreetimesviawhat’scalledmultipleencryption.Multipleencryptioncanbeperformedinseveraldifferentways.The

simplestmethodofmultipleencryptionisjusttostackalgorithmsontopofeachother—takingplaintext,encryptingitwithDES,thenencryptingthefirstciphertextwithadifferentkey,andthenencryptingthesecondciphertextwithathirdkey.Inreality,thistechniqueislesseffectivethanthetechniquethat3DESuses.Oneofthemodesof3DES(EDEmode)istoencryptwithonekey,thendecryptwithasecond,andthenencryptwithathird,asshowninFigure5.8.

•Figure5.8Diagramof3DES

Thisgreatlyincreasesthenumberofattemptsneededtoretrievethekeyandisasignificantenhancementofsecurity.Theadditionalsecuritycomesataprice,however.Itcantakeuptothreetimeslongertocompute3DESthantocomputeDES.However,theadvancesinmemoryandprocessing

powerintoday’selectronicsshouldmakethisproblemirrelevantinalldevicesexceptforverysmalllow-powerhandhelds.Theonlyweaknessesof3DESarethosethatalreadyexistinDES.

However,duetotheuseofdifferentkeysinthesamealgorithm,effectingalongerkeylengthbyaddingthefirstkeyspacetothesecondkeyspace,andthegreaterresistancetobrute-forcing,3DEShaslessactualweakness.While3DEScontinuestobepopularandisstillwidelysupported,AEShastakenoverasthesymmetricencryptionstandard.

AESThecurrentgoldstandardforsymmetricencryptionistheAESalgorithm.Developedinresponsetoaworldwidecallinthelate1990sforanewsymmetriccipher,agroupofDutchresearcherssubmittedamethodcalledRijndael(pronounced“raindoll”).Inthefallof2000,NISTpickedRijndaeltobethenewAES.Itwas

chosenforitsoverallsecurityaswellasitsgoodperformanceonlimited-capacitydevices.Rijndael’sdesignwasinfluencedbySquare,alsowrittenbyJoanDaemenandVincentRijmen.LikeSquare,Rijndaelisablockcipherthatseparatesdatainputinto128-bitblocks.Rijndaelcanalsobeconfiguredtouseblocksof192or256bits,butAEShasstandardizedon128-bitblocks.AEScanhavekeysizesof128,192,and256bits,withthesizeofthekeyaffectingthenumberofroundsusedinthealgorithm.LongerkeyversionsareknownasAES-192andAES-256,respectively.

TechTip

AESinDepthForamorein-depthdescriptionofAES,seetheNISTdocumenthttp://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

TheRijndael/AESalgorithmiswellthoughtoutandhasasuitablekey

lengthtoprovidesecurityformanyyearstocome.WhilenoefficientattackscurrentlyexistagainstAES,moretimeandanalysiswilltellifthisstandardcanlastaslongasDEShas.

CASTCASTisanencryptionalgorithmthatissimilartoDESinitsstructure.ItwasdesignedbyCarlisleAdamsandStaffordTavares.CASTusesa64-bitblocksizefor64-and128-bitkeyversions,anda128-bitblocksizeforthe256-bitkeyversion.LikeDES,itdividestheplaintextblockintoalefthalfandarighthalf.TherighthalfisthenputthroughfunctionfandthenisXORedwiththelefthalf.Thisvaluebecomesthenewrighthalf,andtheoriginalrighthalfbecomesthenewlefthalf.Thisisrepeatedforeightroundsfora64-bitkey,andtheleftandrightoutputisconcatenatedtoformtheciphertextblock.ThealgorithminCAST-256formwassubmittedfortheAESstandardbutwasnotchosen.CASThasundergonethoroughanalysis,withonlyminorweaknessesdiscoveredthataredependentonlownumbersofrounds.Currently,nobetterwayisknowntobreakhigh-roundCASTthanbybrute-forcingthekey,meaningthatwithsufficientkeylength,CASTshouldbeplacedwithothertrustedalgorithms.

RCRCisageneraltermforseveralciphersalldesignedbyRonRivest—RCofficiallystandsforRivestCipher.RC1,RC2,RC3,RC4,RC5,andRC6areallciphersintheseries.RC1andRC3nevermadeittorelease,butRC2,RC4,RC5,andRC6areallworkingalgorithms.

RC2RC2wasdesignedasaDESreplacement,anditisavariable-key-sizeblock-modecipher.Thekeysizecanbefrom8bitsto1024bits,withtheblocksizebeingfixedat64bits.RC2breaksuptheinputblocksintofour

16-bitwordsandthenputsthemthrough18roundsofeithermixormashoperations,outputting64bitsofciphertextfor64bitsofplaintext.AccordingtoRSA,RC2isuptothreetimesfasterthanDES.RSA

maintainedRC2asatradesecretforalongtime,withthesourcecodeeventuallybeingillegallypostedontheInternet.TheabilityofRC2toacceptdifferentkeylengthsisoneofthelargervulnerabilitiesinthealgorithm.Anykeylengthbelow64bitscanbeeasilyretrievedbymoderncomputationalpower.Additionally,thereisarelatedkeyattackthatneeds234chosenplaintextstowork.Consideringtheseweaknesses,RC2isnotrecommendedasastrongcipher.

RC5RC5isablockcipher,writtenin1994.Ithasmultiplevariableelements,numbersofrounds,keysizes,andblocksizes.Thisalgorithmisrelativelynew,butifconfiguredtorunenoughrounds,RC5seemstoprovideadequatesecurityforcurrentbrute-forcingtechnology.Rivestrecommendsusingatleast12rounds.With12roundsinthealgorithm,cryptanalysisinalinearfashionproveslesseffectivethanbrute-forceagainstRC5,anddifferentialanalysisfailsfor15ormorerounds.AneweralgorithmisRC6.

RC6RC6isbasedonthedesignofRC5.Itusesa128-bitblocksize,separatedintofourwordsof32bitseach.Itusesaroundcountof20toprovidesecurity,andithasthreepossiblekeysizes:128,192,and256bits.RC6isamodernalgorithmthatrunswellon32-bitcomputers.Withasufficientnumberofrounds,thealgorithmmakesbothlinearanddifferentialcryptanalysisinfeasible.Theavailablekeylengthsmakebrute-forceattacksextremelytime-consuming.RC6shouldprovideadequatesecurityforsometimetocome.

RC4

RC4wascreatedbeforeRC5andRC6,butitdiffersinoperation.RC4isastreamcipher,whereasallthesymmetriccipherswehavelookedatsofarhavebeenblockciphers.Astreamcipherworksbyencipheringtheplaintextinastream,usuallybitbybit.Thismakesstreamciphersfasterthanblock-modeciphers.StreamciphersaccomplishthisbyperformingabitwiseXORwiththeplaintextstreamandageneratedkeystream.RC4operatesinthismanner.Itwasdevelopedin1987andremaineda

tradesecretofRSAuntilitwaspostedtotheInternetin1994.RC4canuseakeylengthof8to2048bits,thoughthemostcommonversionsuse128-bitkeysor,ifsubjecttotheoldexportrestrictions,40-bitkeys.Thekeyisusedtoinitializea256-bytestatetable.Thistableisusedtogeneratethepseudo-randomstreamthatisXORedwiththeplaintexttogeneratetheciphertext.Alternatively,thestreamisXORedwiththeciphertexttoproducetheplaintext.Thealgorithmisfast,sometimestentimesfasterthanDES.Themost

vulnerablepointoftheencryptionisthepossibilityofweakkeys.Onekeyin256cangeneratebytescloselycorrelatedwithkeybytes.ProperimplementationsofRC4needtoincludeweakkeydetection.

RC4isthemostwidelyusedstreamcipherandisusedinpopularprotocolssuchasTransportLayerSecurity(TLS)andWEP/WPA/WPA2.

BlowfishBlowfishwasdesignedin1994byBruceSchneier.Itisablock-modecipherusing64-bitblocksandavariablekeylengthfrom32to448bits.Itwasdesignedtorunquicklyon32-bitmicroprocessorsandisoptimizedforsituationswithfewkeychanges.Encryptionisdonebyseparatingthe64-bitinputblockintotwo32-bitwords,andthenafunctionisexecutedeveryround.Blowfishhas16rounds;oncetheroundsarecompleted,the

twowordsarethenrecombinedtoformthe64-bitoutputciphertext.TheonlysuccessfulcryptanalysistodateagainstBlowfishhasbeenagainstvariantsthatusedareducednumberofrounds.Theredoesnotseemtobeaweaknessinthefull16-roundversion.

TwofishTwofishwasdevelopedbyBruceSchneier,DavidWagner,ChrisHall,NielsFerguson,JohnKelsey,andDougWhiting.TwofishwasoneofthefivefinalistsfortheAEScompetition.LikeotherAESentrants,itisablockcipher,utilizing128-bitblockswithavariable-lengthkeyofupto256bits.Ituses16roundsandsplitsthekeymaterialintotwosets,onetoperformtheactualencryptionandtheothertoloadintothealgorithm’sS-boxes.Thisalgorithmisavailableforpublicuseandhasproventobesecure.

TechTip

S-BoxesS-boxes,orsubstitutionboxes,areamethodusedtoprovideconfusion,aseparationoftherelationshipbetweenthekeybitsandtheciphertextbits.Usedinmostsymmetricschemes,theyperformaformofsubstitutionandcanprovidesignificantstrengtheningofanalgorithmagainstcertainformsofattack.Theycanbeintheformoflookuptables,eitherstaticlikeDES,ordynamic(basedonthekey)inotherformssuchasTwofish.

IDEAIDEA(InternationalDataEncryptionAlgorithm)startedoutasPES,orProposedEncryptionCipher,in1990,anditwasmodifiedtoimproveitsresistancetodifferentialcryptanalysisanditsnamewaschangedtoIDEAin1992.Itisablock-modecipherusinga64-bitblocksizeanda128-bitkey.Theinputplaintextissplitintofour16-bitsegments,A,B,C,andD.

Theprocessuseseightrounds,withafinalfour-stepprocess.Theoutputofthelastfourstepsisthenconcatenatedtoformtheciphertext.Allcurrentcryptanalysisonfull,eight-roundIDEAshowsthatthemost

efficientattackwouldbetobrute-forcethekey.The128-bitkeywouldpreventthisattackbeingaccomplished,givencurrentcomputertechnology.TheonlyknownissueisthatIDEAissusceptibletoaweakkey—likeakeythatismadeofall0’s.Thisweakkeyconditioniseasytocheckfor,andtheweaknessissimpletomitigate.

Blockvs.StreamWhenencryptionoperationsareperformedondata,therearetwoprimarymodesofoperation,blockandstream.Blockoperationsareperformedonblocksofdata,enablingbothtranspositionandsubstitutionoperations.Thisispossiblewhenlargepiecesofdataarepresentfortheoperations.StreamdatahasbecomemorecommonwithaudioandvideoacrosstheWeb.Theprimarycharacteristicofstreamdataisthatitisnotavailableinlargechunks,buteitherbitbybitorbytebybyte,piecestoosmallforblockoperations.Streamciphersoperateusingsubstitutiononlyandthereforeofferlessrobustprotectionthanblockciphers.Table5.1comparesandcontrastsblockandstreamciphers.

Table5.1 ComparisonofBlockandStreamCiphers

SymmetricEncryptionSummarySymmetricalgorithmsareimportantbecausetheyarecomparativelyfastandhavefewcomputationalrequirements.Theirmainweaknessisthattwogeographicallydistantpartiesbothneedtohaveakeythatmatchestheotherkeyexactly(seeFigure5.9).

•Figure5.9Symmetrickeysmustmatchexactlytoencryptanddecryptthemessage.

AsymmetricEncryptionAsymmetricencryptionismorecommonlyknownaspublickeycryptography.Asymmetricencryptionisinmanywayscompletelydifferentfromsymmetricencryption.Whilebothareusedtokeepdatafrombeingseenbyunauthorizedusers,asymmetriccryptographyusestwokeysinsteadofone.ItwasinventedbyWhitfieldDiffieandMartinHellmanin1975.Thesystemusesapairofkeys:aprivatekeythatiskeptsecretandapublickeythatcanbesenttoanyone.Thesystem’ssecurityreliesuponresistancetodeducingonekey,giventheother,andthusretrievingtheplaintextfromtheciphertext.Asymmetricencryptioncreatesthepossibilityofdigitalsignaturesand

alsoaddressesthemainweaknessofsymmetriccryptography.Theabilitytosendmessagessecurelywithoutsendersandreceivershavinghadpriorcontacthasbecomeoneofthebasicconcernswithsecurecommunication.Digitalsignatureswillenablefasterandmoreefficientexchangeofallkindsofdocuments,includinglegaldocuments.Withstrongalgorithmsandgoodkeylengths,securitycanbeassured.Asymmetricencryptioninvolvestwoseparatebutmathematically

relatedkeys.Thekeysareusedinanopposingfashion.Onekeyundoestheactionsoftheotherandviceversa.So,asshowninFigure5.10,ifyouencryptamessagewithonekey,theotherkeyisusedtodecryptthemessage.Inthetopexample,AlicewishestosendaprivatemessagetoBob,sosheusesBob’spublickeytoencryptthemessage.Then,sinceonlyBob’sprivatekeycandecryptthemessage,onlyBobcanreadit.Inthelowerexample,Bobwishestosendamessage,withproofthatitisfromhim.Byencryptingitwithhisprivatekey,anyonewhodecryptsitwithhispublickeyknowsthemessagecamefromBob.

•Figure5.10Usinganasymmetricalgorithm

Publickeycryptographyalwaysinvolvestwokeys,apublickeyandaprivatekey,whichtogetherareknownasakeypair.Thepublickeyismadewidelyavailabletoanyonewhomayneedit,whiletheprivatekeyiscloselysafeguardedandsharedwithnoone.

Asymmetrickeysaredistributedusingcertificates.Adigitalcertificatecontainsinformationabouttheassociationofthepublickeytoanentity,andadditionalinformationthatcanbeusedtoverifythecurrentvalidityofthecertificateandthekey.Whenkeysareexchangedbetweenmachines,suchasduringanSSL/TLShandshake,theexchangeisdonebypassingcertificates.

Asymmetricmethodsaresignificantlyslowerthansymmetricmethodsandthusaretypicallynotsuitableforbulkencryption.

Publickeysystemstypicallyworkbyusinghardmathproblems.Oneofthemorecommonmethodsreliesonthedifficultyoffactoringlargenumbers.Thesefunctionsareoftencalledtrapdoorfunctions,astheyaredifficulttoprocesswithoutthekeybuteasytoprocesswhenyouhavethekey—thetrapdoorthroughthefunction.Forexample,givenaprimenumber,say293,andanotherprime,suchas307,itisaneasyfunctiontomultiplythemtogethertoget89,951.Given89,951,itisnotsimpletofindthefactors293and307unlessyouknowoneofthemalready.Computerscaneasilymultiplyverylargeprimeswithhundredsorthousandsofdigitsbutcannoteasilyfactortheproduct.Thestrengthofthesefunctionsisveryimportant:Becauseanattackeris

likelytohaveaccesstothepublickey,hecanruntestsofknownplaintextandproduceciphertext.Thisallowsinstantcheckingofguessesthataremadeaboutthekeysofthealgorithm.Publickeysystems,becauseoftheirdesign,alsoformthebasisfordigitalsignatures,acryptographicmethodforsecurelyidentifyingpeople.RSA,Diffie-Hellman,ellipticcurvecryptography(ECC),andElGamalareallpopularasymmetricprotocols.Wewilllookatallofthemandtheirsuitabilityfordifferentfunctions.

CrossCheckDigitalCertificatesInChapter6youwilllearnmoreaboutdigitalcertificatesandhowencryptionisimportanttoapublickeyinfrastructure.Whyisanasymmetricalgorithmsoimportanttodigitalsignatures?

Diffie-Hellman

Diffie-Hellman(DH)wascreatedin1976byWhitfieldDiffieandMartinHellman.Thisprotocolisoneofthemostcommonencryptionprotocolsinusetoday.ItplaysaroleintheelectronickeyexchangemethodoftheSecureSocketsLayer(SSL)protocol.ItisalsousedbytheTransportLayerSecurity(TLS),SecureShell(SSH),andIPSecurity(IPsec)protocols.Diffie-Hellmanisimportantbecauseitenablesthesharingofasecretkeybetweentwopeoplewhohavenotcontactedeachotherbefore.Theprotocol,likeRSA,useslargeprimenumberstowork.Twousers

agreetotwonumbers,PandG,withPbeingasufficientlylargeprimenumberandGbeingthegenerator.Bothuserspickasecretnumber,aandb.Thenbothuserscomputetheirpublicnumber:

User1X=GamodP,withXbeingthepublicnumberUser2Y=GbmodP,withYbeingthepublicnumber

Theusersthenexchangepublicnumbers.User1knowsP,G,a,X,andY.

User1ComputesKa=YamodPUser2ComputesKb=XbmodP

WithKa=Kb=K,nowbothusersknowthenewsharedsecretK.Thisisthebasicalgorithm,andalthoughmethodshavebeencreatedto

strengthenit,Diffie-Hellmanisstillinwideuse.Itremainsveryeffectivebecauseofthenatureofwhatitisprotecting—atemporary,automaticallygeneratedsecretkeythatisgoodonlyforasinglecommunicationsession.VariationsofDiffie-HellmanincludeEphemeralDiffie-Hellman(EDH),

EllipticCurveDiffie-Hellman(ECDH),andEllipticCurveDiffie-HellmanEphemeral(ECDHE).Thesearediscussedindetaillaterinthechapter.

Diffie-Hellmanisthegoldstandardforkeyexchange,andfortheCompTIASecurity+exam,youshouldunderstandthesubtledifferencesbetweenthedifferentforms,DH,EDH,ECDH,andECDHE.

RSARSAisoneofthefirstpublickeycryptosystemseverinvented.Itcanbeusedforbothencryptionanddigitalsignatures.RSAisnamedafteritsinventors,RonRivest,AdiShamir,andLeonardAdleman,andwasfirstpublishedin1977.Thisalgorithmusestheproductoftwoverylargeprimenumbersand

worksontheprincipleofdifficultyinfactoringsuchlargenumbers.It’sbesttochooselargeprimenumbersthatarefrom100to200digitsinlengthandareequalinlength.ThesetwoprimeswillbePandQ.Randomlychooseanencryptionkey,E,sothatEisgreaterthan1,EislessthanP*Q,andEmustbeodd.Emustalsoberelativelyprimeto(P–1)and(Q–1).ThencomputethedecryptionkeyD:

D=E–1mod((P–1)(Q–1))Nowthattheencryptionkeyanddecryptionkeyhavebeengenerated,

thetwoprimenumberscanbediscarded,buttheyshouldnotberevealed.Toencryptamessage,itshouldbedividedintoblockslessthanthe

productofPandQ.Then,

Ci=MiEmod(P*Q)

Cistheoutputblockofciphertextmatchingtheblocklengthoftheinputmessage,M.Todecryptamessage,takeciphertext,C,andusethisfunction:

Mi=CiDmod(P*Q)

Theuseofthesecondkeyretrievestheplaintextofthemessage.Thisisasimplefunction,butitssecurityhaswithstoodthetestofmore

than20yearsofanalysis.ConsideringtheeffectivenessofRSA’ssecurityandtheabilitytohavetwokeys,whyaresymmetricencryptionalgorithmsneededatall?Theanswerisspeed.RSAinsoftwarecanbe100timesslowerthanDES,andinhardwareitcanbeevenslower.RSAcanbeusedtoperformbothregularencryptionanddigital

signatures.Digitalsignaturestrytoduplicatethefunctionalityofaphysicalsignatureonadocumentusingencryption.Typically,RSAandtheotherpublickeysystemsareusedinconjunctionwithsymmetrickeycryptography.Publickey,theslowerprotocol,isusedtoexchangethesymmetrickey(orsharedsecret),andthenthecommunicationusesthefastersymmetrickeyprotocol.Thisprocessisknownaselectronickeyexchange.SincethesecurityofRSAisbaseduponthesupposeddifficultyof

factoringlargenumbers,themainweaknessesareintheimplementationsoftheprotocol.Untilrecently,RSAwasapatentedalgorithm,butitwasadefactostandardformanyyears.

ElGamalElGamalcanbeusedforbothencryptionanddigitalsignatures.TaherElGamaldesignedthesystemintheearly1980s.Thissystemwasneverpatentedandisfreeforuse.ItisusedastheU.S.governmentstandardfordigitalsignatures.Thesystemisbaseduponthedifficultyofcalculatingdiscrete

logarithmsinafinitefield.Threenumbersareneededtogenerateakeypair.User1choosesaprime,P,andtworandomnumbers,FandD.FandDshouldbothbelessthanP.Thenuser1cancalculatethepublickeyA:

A=DFmodPThenA,D,andParesharedwiththeseconduser,withFbeingtheprivatekey.Toencryptamessage,M,arandomkey,k,ischosenthatisrelativelyprimetoP–1.Then,

C1=DkmodP

C2=AkMmodP

C1andC2makeuptheciphertext.Decryptionisdoneby

M=C2/C1FmodP

ElGamalusesadifferentfunctionfordigitalsignatures.Tosignamessage,M,onceagainchoosearandomvaluekthatisrelativelyprimetoP–1.Then,

C1=DkmodP

C2=(M–C1*F)/k(modP–1)

C1concatenatedtoC2isthedigitalsignature.ElGamalisaneffectivealgorithmandhasbeeninuseforsometime.It

isusedprimarilyfordigitalsignatures.Likeallasymmetriccryptography,itisslowerthansymmetriccryptography.

ECCEllipticcurvecryptography(ECC)worksonthebasisofellipticcurves.AnellipticcurveisasimplefunctionthatisdrawnasagentlyloopingcurveontheX,Yplane.Ellipticcurvesaredefinedbythisequation:

y2=x3+ax2+bEllipticcurvesworkbecausetheyhaveaspecialproperty—youcanaddtwopointsonthecurvetogetherandgetathirdpointonthecurve,asshownintheillustration.

Forcryptography,theellipticcurveworksasapublickeyalgorithm.Usersagreeonanellipticcurveandafixedcurvepoint.Thisinformationisnotasharedsecret,andthesepointscanbemadepublicwithoutcompromisingthesecurityofthesystem.User1thenchoosesasecretrandomnumber,K1,andcomputesapublickeybaseduponapointonthecurve:

P1=K1*F

User2performsthesamefunctionandgeneratesP2.Nowuser1cansenduser2amessagebygeneratingasharedsecret:

S=K1*P2User2cangeneratethesamesharedsecretindependently:

S=K2*P1Thisistruebecause

K1*P2=K1*(K2*F)=(K1*K2)*F=K2*(K1*F)=K2*P1Thesecurityofellipticcurvesystemshasbeenquestioned,mostly

becauseoflackofanalysis.However,allpublickeysystemsrelyonthedifficultyofcertainmathproblems.Itwouldtakeabreakthroughinmathforanyofthementionedsystemstobeweakeneddramatically,butresearchhasbeendoneabouttheproblemsandhasshownthattheellipticcurveproblemhasbeenmoreresistanttoincrementaladvances.Again,aswithallcryptographyalgorithms,onlytimewilltellhowsecuretheyreallyare.ThebigbenefittoECCsystemsisthattheyrequirelesscomputingpowerforagivenbitstrength.ThismakesECCidealforuseinlow-powermobiledevices.Thesurgeinmobileconnectivityhasledtosecurevoice,e-mail,andtextapplicationsthatuseECCandAESalgorithmstoprotectauser’sdata.EllipticcurvefunctionscanbeusedaspartofaDiffie-Hellmankey

exchange,andwhenused,themethodisreferredtoasEllipticCurveDIffie-Hellman(ECDH).ThistechniquecanprovidetheadvantagesofellipticcurveandthefunctionalityofDiffie-Hellman.

AsymmetricEncryptionSummaryAsymmetricencryptioncreatesthepossibilityofdigitalsignaturesandalsocorrectsthemainweaknessofsymmetriccryptography.Theabilitytosendmessagessecurelywithoutsendersandreceivershavinghadpriorcontacthasbecomeoneofthebasicconcernswithsecurecommunication.Digitalsignatureswillenablefasterandmoreefficientexchangeofallkindsofdocuments,includinglegaldocuments.Withstrongalgorithms

andgoodkeylengths,securitycanbeassured.

Symmetricvs.AsymmetricBothsymmetricandasymmetricencryptionmethodshaveadvantagesanddisadvantages.Symmetricencryptiontendstobefaster,islesscomputationallyinvolved,andisbetterforbulktransfers.Butitsuffersfromakeymanagementprobleminthatkeysmustbeprotectedfromunauthorizedparties.Asymmetricmethodsresolvethekeysecrecyissuewithpublickeys,butaddsignificantcomputationalcomplexitythatmakesthemlesssuitedforbulkencryption.Bulkencryptioncanbedoneusingthebestofbothsystems,byusing

asymmetricencryptiontopassasymmetrickey.Byaddinginephemeralkeyexchange,youcanachieveperfectforwardsecrecy,discussedlaterinthechapter.Digitalsignatures,ahighlyusefultool,arenotpracticalwithoutasymmetricmethods.

QuantumCryptographyCryptographyistraditionallyaveryconservativebranchofinformationtechnology.Itreliesonproventechnologiesanddoesitsbesttoresistchange.Abignewtopicinrecentyearshasbeenquantumcryptography.Quantumcryptographyisbasedonquantummechanics,principallysuperpositionandentanglement.Adiscussionofquantummechanicsisbeyondthescopeofthistext,buttheprinciplewearemostconcernedwithinregardtocryptographyisthatinquantummechanics,themeasuringofdatadisturbsthedata.Whatthismeanstocryptographersisthatitiseasytotellifamessagehasbeeneavesdroppedonintransit,allowingpeopletoexchangekeydatawhileknowingthatthedatawasnotinterceptedintransit.Thisuseofquantumcryptographyiscalledquantumkeydistribution.Thisiscurrentlytheonlycommercialuseofquantumcryptography,andalthoughthereareseveralmethodsforsendingthekey,theyalladheretothesameprinciple.Keybitsaresentandthencheckedat

theremoteendforinterception,andthenmorekeybitsaresentusingthesameprocess.Onceanentirekeyhasbeensentsecurely,symmetricencryptioncanthenbeused.Theotherfieldofresearchinvolvingquantummechanicsand

cryptographyisquantumcryptanalysis.Aquantumcomputeriscapableoffactoringlargeprimesexponentiallyfasterthananormalcomputer,potentiallymakingtheRSAalgorithm,andanysystembaseduponfactoringprimenumbers,insecure.Thishasledtoresearchincryptosystemsthatarenotvulnerabletoquantumcomputations,afieldknownaspost-quantumcryptography.

SteganographySteganography,anoffshootofcryptographytechnology,getsitsmeaningfromtheGreekwordsteganos,meaningcovered.Invisibleinkplacedonadocumenthiddenbyinnocuoustextisanexampleofasteganographicmessage.Anotherexampleisatattooplacedonthetopofaperson’shead,visibleonlywhentheperson’shairisshavedoff.Hiddenwritinginthecomputeragereliesonaprogramtohidedata

insideotherdata.Themostcommonapplicationistheconcealingofatextmessageinapicturefile.TheInternetcontainsmultiplebillionsofimagefiles,allowingahiddenmessagetobelocatedalmostanywherewithoutbeingdiscovered.Becausenotalldetectionprogramscandetecteverykindofsteganography,tryingtofindthemessageinanInternetimageisakintoattemptingtofindaneedleinahaystackthesizeofthePacificOcean;evenaGooglesearchforsteganographyreturnsthousandsofimages.

Thenatureoftheimagefilesalsomakesahiddenmessagedifficulttodetect.Whileitismostcommontohidemessagesinsideimages,theycanalsobehiddeninvideoandaudiofiles.Theadvantagetosteganographyovertheuseofencryptionaloneisthat

themessagesdonotattractattention,andthisdifficultyindetectingthe

hiddenmessageprovidesanadditionalbarriertoanalysis.Thedatathatishiddeninasteganographicmessageisfrequentlyalsoencrypted,sothatifitisdiscovered,themessagewillremainsecure.Steganographyhasmanyusesbutthemostpublicizedusesaretohideillegalmaterial,oftenpornography,orallegedlyforcovertcommunicationbyterroristnetworks.Steganographicencodingcanbeusedinmanywaysandthroughmany

differentmedia.Coveringthemallisbeyondthescopeforthisbook,butwewilldiscussoneofthemostcommonwaystoencodeintoanimagefile,LSBencoding.LSB,LeastSignificantBit,isamethodofencodinginformationintoanimagewhilealteringtheactualvisualimageaslittleaspossible.Acomputerimageismadeupofthousandsormillionsofpixels,alldefinedby1’sand0’s.IfanimageiscomposedofRedGreenBlue(RGB)values,eachpixelhasanRGBvaluerepresentednumericallyfrom0to255.Forexample,0,0,0isblack,and255,255,255iswhite,whichcanalsoberepresentedas00000000,00000000,00000000forblackand11111111,11111111,11111111forwhite.Givenawhitepixel,editingtheleastsignificantbitofthepixelto11111110,11111110,11111110changesthecolor.Thechangeincolorisundetectabletothehumaneye,butinanimagewithamillionpixels,thiscreatesa125KBareainwhichtostoreamessage.SomepopularsteganographydetectiontoolsincludeStegdetect,

StegSecret,StegSpy,andthefamilyofSARCtools.Allofthesetoolsusedetectiontechniquesbaseduponthesameprinciple,patterndetection.Bylookingforknownsteganographicencodingschemesorartifacts,theycanpotentiallydetectembeddeddata.Additionally,steganographyinsertiontoolscanbeusedtoattempttodecodeimageswithsuspectedhiddenmessages.InvisibleInkisasmallprogramforsteganographicinsertionofmessagesandthentheextractionofthosemessages,asillustratedhere.

CryptographyAlgorithmUse

Theuseofcryptographicalgorithmsgrowseveryday.Moreandmoreinformationbecomesdigitallyencodedandplacedonline,andallofthisdataneedstobesecured.Thebestwaytodothatwithcurrenttechnologyistouseencryption.Thissectionconsiderssomeofthetaskscryptographicalgorithmsaccomplishandthoseforwhichtheyarebestsuited.Securityistypicallydefinedasaproductoffivecomponents:confidentiality,integrity,availability,authentication,andnonrepudiation.Encryptionaddressesallofthesecomponentsexceptavailability.Keyescrowwillbeoneofthemostimportanttopicsasinformationbecomesuniversallyencrypted;otherwise,everyonemaybeleftwithuselessdata.Digitalrightsmanagementandintellectualpropertyprotectionarealsoplaceswhereencryptionalgorithmsareheavilyused.Digitalsignaturescombineseveralalgorithmstoprovidereliableidentificationinadigitalform.

ConfidentialityConfidentialitytypicallycomestomindwhenthetermsecurityisbroughtup.Confidentialityistheabilitytokeepsomepieceofdataasecret.Inthedigitalworld,encryptionexcelsatprovidingconfidentiality.Inmostcases,symmetricencryptionisfavoredbecauseofitsspeedandbecausesomeasymmetricalgorithmscansignificantlyincreasethesizeoftheobjectbeingencrypted.Asymmetriccryptographyalsocanbeusedtoprotectconfidentiality,butitssizeandspeedmakeitmoreefficientatprotectingtheconfidentialityofsmallunitsfortaskssuchaselectronickeyexchange.Inallcases,thestrengthofthealgorithmsandthelengthofthekeysensurethesecrecyofthedatainquestion.

IntegrityIntegrity,betterknownasmessageintegrity,isacrucialcomponentofmessagesecurity.Whenamessageissent,boththesenderandrecipientneedtoknowthatthemessagewasnotalteredintransmission.Thisis

especiallyimportantforlegalcontracts—recipientsneedtoknowthatthecontractshavenotbeenaltered.Signersalsoneedawaytovalidatethatacontracttheysignwillnotbealteredinthefuture.

Messageintegritywillbecomeincreasinglyimportantasmorecommerceisconducteddigitally.Theabilitytoindependentlymakesurethatadocumenthasnotbeentamperedwithisveryimportanttocommerce.Moreimportantly,oncethedocumentis“signed”withadigitalsignature,itcannotberefutedthatthepersoninquestionsignedit.

Integrityisprovidedviaone-wayhashfunctionsanddigitalsignatures.Thehashfunctionscomputethemessagedigests,andthisguaranteestheintegrityofthemessagebyallowingeasytestingtodeterminewhetheranypartofthemessagehasbeenchanged.Themessagenowhasacomputedfunction(thehashvalue)totelltheuserstoresendthemessageifitwasinterceptedandinterferedwith.Thishashvalueiscombinedwithasymmetriccryptographybytakingthemessage’shashvalueandencryptingitwiththeuser’sprivatekey.Thisletsanyonewiththeuser’spublickeydecryptthehashandcompareittothelocallycomputedhash,notonlyensuringtheintegrityofthemessagebutpositivelyidentifyingthesender.

AuthenticationAuthenticationisthematchingofausertoanaccountthroughpreviouslysharedcredentials.Thisinformationmustbeprotectedandacombinationofcryptographicmethodsarecommonlyemployed.Fromhashingtokeystretchingtoencryptionanddigitalsignatures,multipletechniquesareusedaspartoftheoperationsinvolvedinauthentication.

TryThis!

DocumentIntegrityDownloadahashcalculatorthatworksonyouroperatingsystem,suchasSlavaSoftHashCalc,availableatwww.slavasoft.com/hashcalc/index.htm.Thencreateasimpledocumentfilewithanytextthatyouprefer.Saveit,andthenusethehashingprogramtogeneratethehashandsavethehashvalue.Noweditthefile,evenbysimplyinsertingasingleblankspace,andresaveit.Recalculatethehashandcompare.

NonrepudiationAnitemofsomeconfusion,theconceptofnonrepudiationisactuallyfairlysimple.Nonrepudiationmeansthatthemessagesendercannotlaterdenythattheysentthemessage.Thisisimportantinelectronicexchangesofdata,becauseofthelackofface-to-facemeetings.Nonrepudiationisbaseduponpublickeycryptographyandtheprincipleofonlyyouknowingyourprivatekey.Thepresenceofamessagesignedbyyou,usingyourprivatekey,whichnobodyelseshouldknow,isanexampleofnonrepudiation.Whenathirdpartycancheckyoursignatureusingyourpublickey,thatdisprovesanyclaimthatyouwerenottheonewhoactuallysentthemessage.Nonrepudiationistiedtoasymmetriccryptographyandcannotbeimplementedwithsymmetricalgorithms.

TechTip

HOTPAnHMAC-basedOne-TimePassword(HOTP)algorithmisakeycomponentoftheOpenAuthenticationInitiative(OATH).YubiKeyisahardwareimplementationofHOTPthathassignificantuse.

CipherSuitesInmanyapplications,theuseofcryptographyoccursasacollectionoffunctions.Differentalgorithmscanbeusedforauthentication,

encryption/decryption,digitalsignatures,andhashing.Thetermciphersuitereferstoanarrangedgroupofalgorithms.Forinstance,TLShasapublishedTLSCipherSuiteRegistryatwww.iana.org/assignments/tls-parameters/tls-parameters.xhtml.

Strongvs.WeakCiphersThereisawiderangeofciphers,someoldandsomenew,eachwithitsownstrengthsandweaknesses.Overtime,newmethodsandcomputationalabilitieschangetheviabilityofciphers.Theconceptofstrongversusweakciphersisanacknowledgmentthat,overtime,cipherscanbecomevulnerabletoattacks.Theapplicationorselectionofciphersshouldtakeintoconsiderationthatnotallciphersarestillstrong.Whenselectingacipherforuse,itisimportanttomakeanappropriatechoice.

KeyExchangeCryptographicmechanismsusebothanalgorithmandakey,withthekeyrequiringcommunicationbetweenparties.Insymmetricencryption,thesecrecydependsuponthesecrecyofthekey,soinsecuretransportofthekeycanleadtofailuretoprotecttheinformationencryptedusingthekey.Keyexchangeisthecentralfoundationalelementofasecuresymmetricencryptionsystem.Maintainingthesecrecyofthesymmetrickeyisthebasisofsecretcommunications.Inasymmetricsystems,thekeyexchangeproblemisoneofkeypublication.Becausepublickeysaredesignedtobeshared,theproblemisreversedfromoneofsecrecytooneofpublicity.Earlykeyexchangeswereperformedbytrustedcouriers.Peoplecarried

thekeysfromsenderstoreceivers.Onecouldconsiderthisformofkeyexchangetobetheultimateinout-of-bandcommunication.Withtheadventofdigitalmethodsandsomemathematicalalgorithms,itispossibletopasskeysinasecurefashion.Thiscanoccurevenwhenallpacketsaresubjecttointerception.TheDiffie-Hellmankeyexchangeisoneexampleofthistypeofsecurekeyexchange.TheDiffie-Hellmankeyexchangedependsupontworandomnumbers,eachchosenbyoneoftheparties,and

keptsecret.Diffie-Hellmankeyexchangescanbeperformedin-band,andevenunderexternalobservation,asthesecretrandomnumbersareneverexposedtooutsideparties.

KeyEscrowTheimpressivegrowthoftheuseofencryptiontechnologyhasledtonewmethodsforhandlingkeys.Encryptionisadeptathidingallkindsofinformation,andwithprivacyandidentityprotectionbecomingmoreofaconcern,moreinformationisencrypted.Thelossofakeycanhappenforamultitudeofreasons:itmightsimplybelost,thekeyholdermightbeincapacitatedordead,softwareorhardwaremightfail,andsoon.Inmanycases,thatinformationislockedupuntilthecryptographycanbebroken,and,asyouhaveread,thatcouldbemillennia.Thishasraisedthetopicofkeyescrow,orkeepingacopyoftheencryptionkeywithatrustedthirdparty.Theoretically,thisthirdpartywouldonlyreleaseyourkeytoyouoryourofficialdesignateontheeventofyourbeingunabletogetthekeyyourself.However,justastheoldsayingfromBenjaminFranklingoes,“Threemaykeepasecretiftwoofthemaredead.”Anytimemorethanonecopyofthekeyexists,thesecurityofthesystemisbroken.Theextentoftheinsecurityofkeyescrowisasubjectopentodebate,andwillbehotlycontestedintheyearstocome.

TechTip

KeyEscrowHasBenefitsandHazardsKeyescrowcansolvemanyoftheproblemsthatresultwhenakeyislostorbecomesinaccessible,allowingaccesstodatathatotherwisewouldbeimpossibletoaccesswithoutkeyescrow,butitcanopenupprivateinformationtounauthorizedaccess.

Additionally,withcomputertechnologybeingminiaturizedintosmartphonesandotherrelativelyinexpensivedevices,criminalsandother

ill-willedpeoplehavebegunusingcryptographytoconcealcommunicationsandbusinessdealingsfromlawenforcementagencies.Becauselawenforcementagencieshavenotbeenabletobreaktheencryptioninmanycases,governmentagencieshavebegunaskingformandatorykeyescrowlegislation.Inthissense,keyescrowisasystembywhichyourprivatekeyiskeptbothbyyouandbythegovernment.Thisallowspeoplewithacourtordertoretrieveyourprivatekeytogainaccesstoanythingencryptedwithyourpublickey.Thedataisessentiallyencryptedbyyourkeyandthegovernmentkey,givingthegovernmentaccesstoyourplaintextdata.Thisprocessissimilartoasearchwarrantofyourhome,butisusedagainstyourcomputerdata.Whetherornotthisishowthingsshouldbeisalsoopentodebate,butitdoesraisetheinterestingpossibilityofencryptionsoftwarethatisincompatiblewithgovernmentkeyescrowbeingbanned.Thelastmajordiscussionforkeyescrowlegislationwasseveralyearsago,buttheprospectremainsouttherewaitingforahighprofilecasetobringencryptionintothespotlight.In2015,manyUSFederalofficialsagaincalledforformsofkeyescrowandbackdoorsinthenameofanti-terrorismandlawenforcement.Theresultofthisnewroundofargumentwilltakeyearstodecidethecorrectbalance.Keyescrowcannegativelyimpactthesecurityprovidedbyencryption,

becausethegovernmentrequiresahuge,complexinfrastructureofsystemstoholdeveryescrowedkey,andthesecurityofthosesystemsislessefficientthanthesecurityofyourmemorizingthekey.However,therearetwosidestothekeyescrowcoin.Withoutapracticalwaytorecoverakeyiforwhenitislostorthekeyholderdies,forexample,someimportantinformationwillbelostforever.Suchissueswillaffectthedesignandsecurityofencryptiontechnologiesfortheforeseeablefuture.

SessionKeysAsessionkeyisasymmetrickeyusedforencryptingmessagesduringacommunicationsession.Itisgeneratedfromrandomseedsandisusedfor

thedurationofacommunicationsession.Whencorrectlygeneratedandpropagatedduringsessionsetup,asessionkeyprovidessignificantlevelsofprotectionduringthecommunicationsessionandalsocanaffordperfectforwardsecrecy(describedlaterinthechapter).Sessionkeysoffertheadvantagesofsymmetricencryption,speed,strength,simplicity,and,withkeyexchangespossibleviadigitalmethods,significantlevelsofautomatedsecurity.

EphemeralKeysEphemeralkeysarecryptographickeysthatareusedonlyonceaftertheyaregenerated.WhenanephemeralkeyisusedaspartoftheDiffie-Hellmanscheme,itformsanEphemeralDiffie-Hellman(EDH)keyexchange.AnEDHmechanismgeneratesatemporarykeyforeachconnection,neverusingthesamekeytwice.Thisprovidesforperfectforwardsecrecy.IftheDiffie-Hellmaninvolvestheuseofellipticcurves,itiscalledEllipticCurveDiffie-HellmanEphemeral(ECDHE).

KeyStretchingKeystretchingisamechanismthattakeswhatwouldbeweakkeysand“stretches”themtomakethesystemmoresecureagainstbrute-forceattacks.Atypicalmethodologyusedforkeystretchinginvolvesincreasingthecomputationalcomplexitybyaddingiterativeroundsofcomputations.Toextendapasswordtoalongerlengthofkey,youcanrunitthroughmultipleroundsofvariable-lengthhashing,eachincreasingtheoutputbybitsovertime.Thismaytakehundredsorthousandsofrounds,butforsingle-usecomputations,thetimeisnotsignificant.Whenonewantstouseabrute-forceattack,theincreaseincomputationalworkloadbecomessignificantwhendonebillionsoftimes,makingthisformofattackmuchmoreexpensive.Thecommonformsofkeystretchingemployedinusetodayinclude

Password-BasedKeyDerivationFunction2andBcrypt.

PBKDF2Password-BasedKeyDerivationFunction2(PBKDF2)isakeyderivationfunctiondesignedtoproduceakeyderivedfromapassword.ThisfunctionusesapasswordorpassphraseandasaltandappliesanHMACtotheinputthousandsoftimes.Therepetitionmakesbrute-forceattackscomputationallyunfeasible.

BcryptBcryptisakey-stretchingmechanismthatusestheBlowfishcipherandsalting,andaddsanadaptivefunctiontoincreasethenumberofiterations.Theresultisthesameasotherkey-stretchingmechanisms(singleuseiscomputationallyfeasible),butwhenattemptingtobrute-forcethefunction,thebillionsofattemptsmakeitcomputationallyunfeasible.

SecrecyPrinciplesThereareseveralconditionsandprinciplesassociatedwithsecrecy.Twoofthese,confusionanddiffusion,arisefromClaudeShannon’sseminalworkincommunicationtheory.Theconceptofentropy,presentedearlier,isfromthesamesource.Whilethesearetheoretical-centricideas,thereareimplementationprinciplesaswell.Perfectforwardsecrecyisoneoftheseasitappliestofuturemessagesecrecy.

ConfusionConfusionisaprincipletoaffecttherandomnessofanoutput.Theconceptisoperationalizedbyensuringthateachcharacterofciphertextdependsonseveralpartsofthekey.Confusionplacesaconstraintontherelationshipbetweentheciphertextandthekeyemployed,forcinganeffectthatincreasesentropy.

DiffusionDiffusionisaprinciplethatthestatisticalanalysisofplaintextand

ciphertextresultsinaformofdispersionrenderingonestructurallyindependentoftheother.Inplainterms,achangeinonecharacterofplaintextshouldresultinmultiplechangesintheciphertextinamannerthatchangesinciphertextdonotrevealinformationastothestructureoftheplaintext.

PerfectForwardSecrecyPerfectforwardsecrecyisapropertyofapublickeysysteminwhichakeyderivedfromanotherkeyisnotcompromisedeveniftheoriginatingkeyiscompromisedinthefuture.Thisisespeciallyimportantinsessionkeygeneration,wherethecompromiseoffuturecommunicationsessionsmaybecomecompromised;ifperfectforwardsecrecywerenotinplace,thenpastmessagesthathadbeenrecordedcouldbedecrypted.

TransportEncryptionTransportencryptionisusedtoprotectdatathatisinmotion.Whendataisbeingtransportedacrossanetwork,itisatriskofinterception.AnexaminationoftheOSInetworkingmodelshowsalayerdedicatedtotransport,andthisabstractioncanbeusedtomanageend-to-endcryptographicfunctionsforacommunicationchannel.WhenutilizingtheTCP/IPprotocol,TLSisthepreferredmethodofmanagingthesecurityatthetransportlevel.

DigitalSignaturesDigitalsignatureshavebeentoutedasthekeytotrulypaperlessdocumentflow,andtheydohavepromiseforimprovingthesystem.Digitalsignaturesarebasedonbothhashingfunctionsandasymmetriccryptography.Bothencryptionmethodsplayanimportantroleinsigningdigitaldocuments.Unprotecteddigitaldocumentsareveryeasyforanyonetochange.Ifadocumentiseditedafteranindividualsignsit,itisimportantthatanymodificationcanbedetected.Toprotectagainst

documentediting,hashingfunctionsareusedtocreateadigestofthemessagethatisuniqueandeasilyreproduciblebybothparties.Thisensuresthatthemessageintegrityiscomplete.

Digitalsignaturesprovideameansofverifyingauthenticityandintegrityofamessage:youknowbothwhothesenderisandthatthemessagehasnotbeenaltered.Byitself,adigitalsignaturedoesnotprotectthecontentsfromunauthorizedreading.

Adigitalsignatureisacryptographicimplementationdesignedtodemonstrateauthenticityandidentityassociatedwithamessage.Usingpublickeycryptography,adigitalsignatureallowstraceabilitytothepersonsigningthemessagethroughtheuseoftheirprivatekey.Theadditionofhashcodesallowsfortheassuranceofintegrityofthemessageaswell.Theoperationofadigitalsignatureisacombinationofcryptographicelementstoachieveadesiredoutcome.ThestepsinvolvedindigitalsignaturegenerationanduseareillustratedinFigure5.11.Themessagetobesignedishashed,andthehashisencryptedusingthesender’sprivatekey.Uponreceipt,therecipientcandecryptthehashusingthesender’spublickey.Ifasubsequenthashingofthemessagerevealsanidenticalvalue,twothingsareknown:First,themessagehasnotbeenaltered.Second,thesenderpossessedtheprivatekeyofthenamedsender,soispresumablythesenderhim-orherself.

•Figure5.11Digitalsignatureoperation

Adigitalsignaturedoesnotbyitselfprotectthecontentsofthemessagefrominterception.Themessageisstillsentintheclear,soifconfidentialityofthemessageisarequirement,additionalstepsmustbetakentosecurethemessagefromeavesdropping.Thiscanbedonebyencryptingthemessageitself,orbyencryptingthechanneloverwhichitistransmitted.

DigitalRightsManagementDigitalrightsmanagement(DRM)istheprocessforprotectingintellectualpropertyfromunauthorizeduse.Thisisabroadarea,butthemostconcentratedfocusisonpreventingpiracyofsoftwareordigitalcontent.Beforeeasyaccesstocomputers,orthe“digitalrevolution,”thecontentwecameincontactwithwasanalogorprintbased.Whileitwaspossibletocopythiscontent,itwasdifficultandtime-consumingtodoso,andusuallyresultedinalossofquality.Itwasalsomuchmoredifficulttosend1000pagesofahandwrittencopyofabooktoEurope,forexample.ComputersandtheInternethavemadesuchtaskstrivial,andnowitisveryeasytocopyadocument,music,orvideoandquicklysenditthousandsofmilesaway.Cryptographyhasenteredthefrayasasolutiontoprotectdigitalrights,

thoughitiscurrentlybetterknownforitsfailuresthanitssuccesses.TheDVDContentScrambleSystem(CSS)wasanattempttomakeDVDsimpossibletocopybycomputer.CSSusedanencryptionalgorithmthatwaslicensedtoeveryDVDplayer;however,creativeprogrammerswereabletoretrievethekeytothisalgorithmbydisassemblingasoftware-basedDVDplayer.CSShasbeenreplacedbytheAdvancedAccessContentSystem(AACS),whichisusedonthenext-generationBlu-raydiscs.ThissystemencryptsvideocontentviathesymmetricAESalgorithmwithoneormorekeys.Severaldecryptionkeyshavebeen

crackedandreleasedtotheInternet,allowingpiratestofreelycopytheprotectedcontent.ThemusicandcomputergameindustrieshavealsoattemptedseveraldifferentDRMapplications,butnearlyallofthesehaveeventuallybeencracked,allowingpiracy.AcommonexampleofDRMthatismostlysuccessfulisthebroadcast

streamofdigitalsatelliteTV.SincethesignalisbeamedfromspacetoeveryhomeinNorthAmerica,thesatelliteTVprovidermustbeabletoprotectthesignalsothatitcanchargepeopletoreceiveit.Smartcardsareemployedtosecurelyholdthedecryptionkeysthatallowaccesstosomeorallofthecontentinthestream.Thissystemhasbeencrackedseveraltimes,allowingasubsetofusersfreeaccesstothecontent;however,thesatelliteTVproviderslearnedfromtheirearlymistakesandupgradednewsmartcardstocorrecttheoldproblems.DRMwillalsobecomeveryimportantintheindustryofSoftwareasa

Service(SaaS).SimilartocompaniesthatprovidesatelliteTVservice,companiesthatprovideSaaSrelyonasubscriptionbasisforprofitability.Ifsomeonecouldpayforasinglelicenseandthendistributethattohundredsofemployees,theproviderwouldsoongooutofbusiness.Manysystemsinthepasthavebeencrackedbecausethekeywashousedinsidethesoftware.Thishaspromptedsomesystemstousespecifichardwaretostoreandprotectthekey.ThesedevicesarecommonlyknownasHardwareSecurityModules,orHSMs.Theyareusuallydesignedtoprotectthekeyinhardwaresothatevenifthedeviceistamperedwith,itwillnotrevealkeymaterial.Smartcardsareoneexampleofthistechnology.AnotherexampleishardwaretokenUSBkeysthatmustbeinsertedintothemachineforthesoftwaretodecryptandrun.Placingthekeysinhardwaremakesanattacktoretrievethemmuchharder,aconceptthatisemployedintheTrustedPlatformModule;infact,oneoftheprimarycomplaintsagainsttheTPMisitsinabilitytoenforceDRMrestrictions.

CryptographicApplications

Afewapplicationscanbeusedtoencryptdataconvenientlyonyourpersonalcomputer.(Thisisbynomeansacompletelistofeveryapplication.)PrettyGoodPrivacy(PGP)ismentionedinthisbookbecauseitisausefulprotocolsuite.CreatedbyPhilipZimmermannin1991,itpassedthroughseveralversionsthatwereavailableforfreeunderanoncommerciallicense.PGPisnowanenterpriseencryptionproduct,acquiredbytheSymantecCorporationin2010.PGPcanbeappliedtopopulare-mailprogramstohandlethemajorityofday-to-dayencryptiontasksusingacombinationofsymmetricandasymmetricencryptionprotocols.OneoftheuniquefeaturesofPGPisitsabilitytousebothsymmetricandasymmetricencryptionmethods,accessingthestrengthsofeachmethodandavoidingtheweaknessesofeachaswell.Symmetrickeysareusedforbulkencryption,takingadvantageofthespeedandefficiencyofsymmetricencryption.Thesymmetrickeysarepassedusingasymmetricmethods,capitalizingontheflexibilityofthismethod.PGP-basedtechnologyisnowsoldaspartofacommercialapplication,withhomeandcorporateversions.

CrossCheckPGPInChapter7youwilllearnsomeadditionaldetailsaboutPGP.Whyistheabilitytouseasymmetricandsymmetricencryptioninthesameprogramimportant?

GnuPG,orGnuPrivacyGuard,isanopensourceimplementationoftheOpenPGPstandard.Thiscommandline–basedtoolisapublickeyencryptionprogramdesignedtoprotectelectroniccommunicationssuchase-mail.ItoperatessimilarlytoPGPandincludesamethodformanagingpublic/privatekeys.Filesystemencryptionisbecomingastandardmeansofprotectingdata

whileinstorage.Evenharddrivesareavailablewithbuilt-inAESencryption.MicrosoftexpandeditsEncryptingFileSystem(EFS),availablesincetheWindows2000operatingsystem,withBitLocker,a

boot-sectorencryptionmethodthatprotectsdatathatwasintroducedwiththeWindowsVistaoperatingsystem.BitLockerisalsousedinWindowsServer2008andtheWindows7andbeyondoperatingsystems.BitLockerutilizesAESencryptiontoencrypteveryfileontheharddriveautomatically.Allencryptionoccursinthebackground,anddecryptionoccursseamlesslywhendataisrequested.ThedecryptionkeycanbestoredintheTPMoronaUSBkey.

DatabaseEncryptionDuepartlytoincreasedregulatoryconcernsandpartlytomoretargetedattacks,databaseshavebeguntooffernativesupportforencryption.Protectingdataatrestintheenterprisefrequentlyinvolvesdatastoredindatabases.Buildingdataprotectionmechanismsintothedatabasesystemsisnotnew(ithasbeenaroundforalongtime),butenterpriseadoptionofthisfunctionalityhasbeenslow.Symmetricencryptionalgorithmssuchas3DESandAESareusedtoencryptdatainternallyinthedatabase.Protectionmechanismsthatcanbemanagedbyrowandbycolumnareincludedinmostmajordatabaseapplications;thechallengeisinconvincingorganizationstousethisprovenprotectionmethodology.Itdoesaddcomplexitytothesystem,butintoday’senvironmentofdatabreachesandcorporateespionage,thecomplexityiseasiertomanagethantheeffectsofadataloss.

UseofProvenTechnologiesWhensettingupacryptographicscheme,itisimportanttouseproventechnologies.Provencryptographiclibrariesandprovencryptographicallycorrectrandomnumbergeneratorsarethefoundationalelementsassociatedwithasolidprogram.Homegrownorcustomelementsintheseareascangreatlyincreaseriskassociatedwithabrokensystem.Developingyourowncryptographicalgorithmsisbeyondtheabilitiesofmostgroups.Algorithmsarecomplexanddifficulttocreate.Anyalgorithmthathasnothadpublicreviewcanhaveweaknessesinthe

algorithm.Mostgoodalgorithmsareapprovedforuseonlyafteralengthytestandpublicreviewphase.

Chapter5Review

ForMoreInformationAppliedCryptography,SecondEdition,BruceSchneier(JohnWiley&Sons)

Cryptool:https://www.cryptool.org/en/

BruceSchneierBlog:https://www.schneier.com/cryptography.html

LabBookExercisesThefollowinglabexercisesfromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providepracticalapplicationofmaterialcoveredinthischapter:

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutcryptography.

Understandthefundamentalsofcryptography

Understandthefundamentalmethods.

Understandhowtocomparestrengthsandperformanceofalgorithms.

Haveanappreciationofthehistoricalaspectsofcryptography.

Identifyanddescribethethreetypesofcryptography

Symmetriccryptographyisbasedupontheconceptofasharedsecretorkey.

Asymmetriccryptographyisbaseduponakeythatcanbemadeopenlyavailabletothepublic,yetstillprovidesecurity.

One-way,orhashing,cryptographytakesdataandenciphersit.However,thereisnowaytodecipheritandnokey.

Properrandomnumbergenerationisessentialforcryptographicuse,asthestrengthoftheimplementationfrequentlydependsuponitbeingtrulyrandomandunknown.

Listanddescribecurrentcryptographicalgorithms

Hashingistheuseofaone-wayfunctiontogenerateamessagesummaryfordataintegrity.

HashingalgorithmsincludeSHA(SecureHashAlgorithm)andMD(MessageDigest).

Symmetricencryptionisasharedsecretformofencryptingdataforconfidentiality;itisfastandreliable,butneedssecurekeymanagement.

SymmetricalgorithmsincludeDES(DataEncryptionStandard),3DES,AES(AdvancedEncryptionStandard),CAST,Blowfish,IDEA,andRC(RivestCipher)variants.

Asymmetricencryptionisapublic/privatekey-pairencryptionusedforauthentication,nonrepudiation,andconfidentiality.

AsymmetricalgorithmsincludeRSA,Diffie-Hellman,ElGamal,andECC.

Explainhowcryptographyisappliedforsecurity

Confidentialityisgainedbecauseencryptionisverygoodatscramblinginformationtomakeitlooklikerandomnoise,wheninfactakeycandecipherthemessageandreturnittoitsoriginalstate.

Integrityisgainedbecausehashingalgorithmsarespecificallydesignedtocheckintegrity.Theycanreduceamessagetoamathematicalvaluethatcanbeindependentlycalculated,guaranteeingthatanymessagealterationwouldchangethemathematicalvalue.

Nonrepudiationisthepropertyofnotbeingabletoclaimthatyoudidnotsendthedata.Thispropertyisgainedbecauseofthepropertiesofprivatekeys.

Authentication,orbeingabletoproveyouareyou,isachievedthroughtheprivatekeysinvolvedindigitalsignatures.

Theuseofkeygenerationmethodsincludingephemeralkeysandkeystretchingareimportanttoolsintheimplementationofstrongcryptosystems.

Digitalsignatures,combiningmultipletypesofencryption,provideanauthenticationmethodverifiedbyathirdparty,allowingyoutousethemasifyouwereactuallysigningthedocumentwithyourregularsignature.

Digitalrightsmanagement(DRM)usessomeformofasymmetricencryptionthatallowsanapplicationtodetermineifyouareanauthorizeduserofthedigitalcontentyouaretryingtoaccess.Forexample,thingslikeDVDsandcertaindigitalmusicformatssuchasAACSuseDRM.

Theprincipleofperfectforwardsecrecyprotectsfuturemessagesfrompreviousmessagekeydisclosures.

Provencryptographictechnologiesareimportantasmostcryptographicsystemsfailandonlyafewstandthetestoftime.Homebrewsystemsareripeforfailure.

Ciphersuitesprovideinformationtoassistdevelopersinchoosingthecorrectmethodstoachievedesiredlevelsofprotection.

KeyTermsalgorithm(96)blockcipher(104)ciphertext(94)collisionattack(99)confusion(120)cryptanalysis(90)cryptography(90)differentialcryptanalysis(91)diffusion(120)digitalrightsmanagement(121)digitalsignature(120)entropy(98)ephemeralkeys(119)eXclusiveOR(XOR)(97)hash(99)key(97)keyescrow(118)keymanagement(98)keyspace(93)keystretching(119)linearcryptanalysis(91)multipleencryption(104)perfectforwardsecrecy(120)plaintext(94)sharedsecret(103)shiftcipher(94)

steganography(114)streamcipher(107)substitution(92)transposition(92)transpositioncipher(93)trapdoorfunction(109)Vigenèrecipher(95)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.Makingtwoinputsresultintheexactsamecryptographichashiscalleda(n)_______________.

2.Asimplewaytohideinformation,the_______________movesaletterasetnumberofplacesdownthealphabet.

3.Toprovideforperfectforwardsecurity,oneshoulduse_______________.

4._______________isrequiredforsymmetricencryption.5._______________istheevaluationofacryptosystemtotestits

security.

6._______________referstoeverypossiblevalueforacryptographickey.

7._______________isthefunctionmostcommonlyseenincryptography,a“bitwiseexclusive”or.

8.Themeasureofrandomnessinadatastreamiscalled_______________.

9.Processingthroughanalgorithmmorethanoncewithdifferentkeys

iscalled_______________.

10.Thebasisforsymmetriccryptographyistheprincipleofa(n)_______________.

Multiple-ChoiceQuiz1.Whenamessageissent,nomatterwhatitsformat,whydowecare

aboutitsintegrity?

A.Toensureproperformatting

B.Toshowthattheencryptionkeysareundamaged

C.Toshowthatthemessagehasnotbeeneditedintransit

D.Toshowthatnoonehasviewedthemessage

2.Howis3DESdifferentfrommanyothertypesofencryptiondescribedinthischapter?

A.Itonlyencryptsthehash.

B.Ithashesthemessagebeforeencryption.

C.Itusesthreekeysandmultipleencryptionand/ordecryptionsets.

D.Itcandisplaythekeypublicly.

3.Ifamessagehasahash,howdoesthehashprotectthemessageintransit?

A.Ifthemessageisedited,thehashwillnolongermatch.

B.Hashingdestroysthemessagesothatitcannotbereadbyanyone.

C.Hashingencryptsthemessagesothatonlytheprivatekeyholdercanreadit.

D.Thehashmakesthemessageuneditable.

4.Whatisthebiggestdrawbacktosymmetricencryption?A.Itistooeasilybroken.

B.Itistooslowtobeeasilyusedonmobiledevices.

C.Itrequiresakeytobesecurelyshared.

D.ItisavailableonlyonUNIX.

5.WhatisDiffie-Hellmanmostcommonlyusedfor?A.Symmetricencryptionkeyexchange

B.Signingdigitalcontracts

C.Securee-mail

D.Storingencryptedpasswords

6.Whatispublickeycryptographyamorecommonnamefor?A.Asymmetricencryption

B.SHA

C.Symmetricencryption

D.Hashing

7.Whatalgorithmcanbeusedtoprovideforkeystretching?A.PBKDF2

B.SHA356

C.RIPEMD

D.3DES

8.Agoodhashfunctionisresistanttowhat?

A.Brute-forcing

B.Rainbowtables

C.Interception

D.Collisions

9.Howis3DESanimprovementovernormalDES?A.Itusespublicandprivatekeys.

B.Ithashesthemessagebeforeencryption.

C.Itusesthreekeysandmultipleencryptionand/ordecryptionsets.

D.ItisfasterthanDES.

10.Whatisthebestkindofkeytohave?A.Easytoremember

B.Longandrandom

C.Longandpredictable

D.Short

EssayQuiz1.Describehowpolyalphabeticsubstitutionworks.2.Explainwhyasymmetricencryptioniscalledpublickeyencryption.3.Describecryptanalysis.

LabProjects

•LabProject5.1Usingautilityprogram,demonstratehowsinglecharacterchangescanmakesubstantialchangestohashvalues.

•LabProject5.2Createakeysetanduseittotransferafilesecurely.

chapter6 PublicKeyInfrastructure

Withouttrust,thereisnothing.

—ANONYMOUS

P

Inthischapter,youwilllearnhowto

Implementthebasicsofpublickeyinfrastructures

Describetheroleofregistrationauthorities

Usedigitalcertificates

Understandthelifecycleofcertificates

Explaintherelationshipbetweentrustandcertificateverification

Describetherolesofcertificateauthoritiesandcertificaterepositories

Identifycentralizedanddecentralizedinfrastructures

Describepublicandin-housecertificateauthorities

ublickeyinfrastructures(PKIs)arebecomingacentralsecurityfoundationformanagingidentitycredentialsinmanycompanies.Thetechnologymanagestheissueofbindingpublickeysandidentities

acrossmultipleapplications.Theotherapproach,withoutPKIs,istoimplementmanydifferentsecuritysolutionsandhopeforinteroperabilityandequallevelsofprotection.PKIscompriseseveralcomponents,includingcertificates,registration

andcertificateauthorities,andastandardprocessforverification.PKIsareaboutmanagingthesharingoftrustandusingathirdpartytovouchforthetrustworthinessofaclaimofownershipoveracredentialdocument,calledacertificate.

TheBasicsofPublicKeyInfrastructuresApublickeyinfrastructure(PKI)providesallthecomponentsnecessaryfordifferenttypesofusersandentitiestobeabletocommunicatesecurelyandinapredictablemanner.APKIismadeupofhardware,applications,policies,services,programminginterfaces,cryptographicalgorithms,protocols,users,andutilities.Thesecomponentsworktogethertoallow

communicationtotakeplaceusingpublickeycryptographyandsymmetrickeysfordigitalsignatures,dataencryption,andintegrity.

CrossCheckPKIsandEncryptionThetechnologiesusedinPKIincludemanycryptographicalgorithmsandmechanisms.EncryptiontechnologiesandpublickeyprincipleswerecoveredinChapter5.Abasicunderstandingofpublicandprivatekeysandtheirrelationshiptopublickeyencryptionisaprerequisiteforthischapter.Ifneeded,reviewthatmaterialbeforeyouattemptthedetailsofPKIinthischapter.

Althoughmanydifferentapplicationsandprotocolscanprovidethesametypeoffunctionality,constructingandimplementingaPKIboilsdowntoestablishingaleveloftrust.If,forexample,JohnandDianewanttocommunicatesecurely,Johncangeneratehisownpublic/privatekeypairandsendhispublickeytoDiane,orhecanplacehispublickeyinadirectorythatisavailabletoeveryone.IfDianereceivesJohn’spublickey,eitherfromhimorfromapublicdirectory,howdoessheknowthekeyreallycamefromJohn?Maybeanotherindividual,Katie,ismasqueradingasJohnandhasreplacedJohn’spublickeywithherown,asshowninFigure6.1(referredtoasaman-in-the-middleattack).Ifthistookplace,DianewouldbelievethathermessagescouldbereadonlybyJohnandthatthereplieswereactuallyfromhim.However,shewouldactuallybecommunicatingwithKatie.Whatisneededisawaytoverifyanindividual’sidentity,toensurethataperson’spublickeyisboundtotheiridentityandthusensurethatthepreviousscenario(andothers)cannottakeplace.

•Figure6.1WithoutPKIs,individualscouldspoofothers’identities.

InPKIenvironments,entitiescalledregistrationauthorities(RAs)andcertificateauthorities(CAs)provideservicessimilartothoseoftheDepartmentofMotorVehicles(DMV).WhenJohngoestoregisterforadriver’slicense,hehastoprovehisidentitytotheDMVbyprovidinghispassport,birthcertificate,orotheridentificationdocumentation.IftheDMVissatisfiedwiththeproofJohnprovides(andJohnpassesadrivingtest),theDMVwillcreateadriver’slicensethatcanthenbeusedbyJohntoprovehisidentity.WheneverJohnneedstoidentifyhimself,hecanshowhisdriver’slicense.AlthoughmanypeoplemaynottrustJohntoidentifyhimselftruthfully,theydotrustthethirdparty,theDMV.InthePKIcontext,whilesomevariationsexistinspecificproducts,the

RAwillrequireproofofidentityfromtheindividualrequestingacertificateandwillvalidatethisinformation.TheRAwillthenadvisetheCAtogenerateacertificate,whichisanalogoustoadriver’slicense.TheCAwilldigitallysignthecertificateusingitsprivatekey.TheuseoftheprivatekeyensurestotherecipientthatthecertificatecamefromtheCA.WhenDianereceivesJohn’scertificateandverifiesthatitwasactuallydigitallysignedbyaCAthatshetrusts,shewillbelievethatthecertificateisactuallyJohn’s—notbecauseshetrustsJohn,butbecauseshetruststheentitythatisvouchingforhisidentity(theCA).

TechTip

PublicandPrivateKeysRecallfromChapter5thatthepublickeyistheonethatyougivetoothersandtheprivatekeyneverleavesyourpossession.Anythingonekeydoes,theotherundoes,soifyouencryptsomethingwiththepublickey,onlytheholderoftheprivatekeycandecryptit.Ifyouencryptsomethingwiththeprivatekey,theneveryonewhousesthepublickeyknowsthattheholderoftheprivatekeydidtheencryption.Certificatesdonotalteranyofthis;theyonlyofferastandardmeansoftransferringkeys.

Thisiscommonlyreferredtoasathird-partytrustmodel.Publickeysarecomponentsofdigitalcertificates,sowhenDianeverifiestheCA’sdigitalsignature,thisverifiesthatthecertificateistrulyJohn’sandthatthepublickeythecertificatecontainsisalsoJohn’s.ThisishowJohn’sidentityisboundtohispublickey.ThisprocessallowsJohntoauthenticatehimselftoDianeandothers.

Usingthethird-partycertificate,JohncancommunicatewithDiane,usingpublickeyencryption,withoutpriorcommunicationorapreexistingrelationship.OnceDianeisconvincedofthelegitimacyofJohn’spublickey,shecan

useittoencryptmessagesbetweenherselfandJohn,asillustratedinFigure6.2.

•Figure6.2Publickeysarecomponentsofdigitalcertificates.

Numerousapplicationsandprotocolscangeneratepublic/privatekeypairsandprovidefunctionalitysimilartowhataPKIprovides,butnotrustedthirdpartyisavailableforbothofthecommunicatingparties.Foreachpartytochoosetocommunicatethiswaywithoutathirdpartyvouchingfortheother’sidentity,thetwomustchoosetotrusteachother

andthecommunicationchanneltheyareusing.Inmanysituations,itisimpracticalanddangeroustoarbitrarilytrustanindividualyoudonotknow,andthisiswhenthecomponentsofaPKImustfallintoplace—toprovidethenecessaryleveloftrustyoucannot,orchoosenotto,provideonyourown.

ExamTip:PKIsarecomposedofseveralelements:

•Certificates(containingkeys)

•Certificateauthorities(CAs)•Registrationauthorities(RAs)•Certificaterevocationlists(CRLs)•Trustmodels

Whatdoesthe“infrastructure”in“publickeyinfrastructure”reallymean?Aninfrastructureprovidesasustaininggroundworkuponwhichotherthingscanbebuilt.Soaninfrastructureworksatalowleveltoprovideapredictableanduniformenvironmentthatallowsother,higher-leveltechnologiestoworktogetherthroughuniformaccesspoints.Theenvironmentthattheinfrastructureprovidesallowsthesehigher-levelapplicationstocommunicatewitheachotherandgivesthemtheunderlyingtoolstocarryouttheirtasks.

CertificateAuthoritiesAcertificateauthority(CA)isatrustedauthoritythatcertifiesindividuals’identitiesandcreateselectronicdocumentsindicatingthatindividualsarewhotheysaytheyare.Theelectronicdocumentisreferredtoasadigitalcertificate,anditestablishesanassociationbetweenthesubject’sidentityandapublickey.Theprivatekeythatispairedwiththepublickeyinthecertificateisstoredseparately.

AsnotedinChapter5,itisimportanttosafeguardtheprivatekey.Typically,itshouldneverleavethemachineordevicewhereitwascreated.

ACAismorethanjustapieceofsoftware,however;itisactuallymadeupofthesoftware,hardware,procedures,policies,andpeoplewhoareinvolvedinvalidatingindividuals’identitiesandgeneratingthecertificates.Thismeansthatifoneofthesecomponentsiscompromised,itcannegativelyaffecttheCAoverallandcanthreatentheintegrityofthecertificatesitproduces.

CrossCheckCertificatesStoredonaClientPCCertificatesarestoredonuserPCs.Chapter17coverstheuseoftheInternetandassociatedmaterials,includingtheuseofcertificatesbywebbrowsers.TakeamomenttoexplorethecertificatesstoredonyourPCbyyourbrowser.Tounderstandthedetailsbehindhowcertificatesarestoredandmanaged,thereaderisdirectedtothedetailsinChapter17.

EveryCAshouldhaveacertificationpracticesstatement(CPS)thatoutlineshowidentitiesareverified;thestepstheCAfollowstogenerate,maintain,andtransmitcertificates;andwhytheCAcanbetrustedtofulfillitsresponsibilities.TheCPSdescribeshowkeysaresecured,whatdataisplacedwithina

digitalcertificate,andhowrevocationswillbehandled.IfacompanyisgoingtouseanddependonapublicCA,thecompany’ssecurityofficers,administrators,andlegaldepartmentshouldreviewtheCA’sentireCPStoensurethatitwillproperlymeetthecompany’sneeds,andtomakesurethatthelevelofsecurityclaimedbytheCAishighenoughfortheiruseandenvironment.AcriticalaspectofaPKIisthetrustbetweentheusersandtheCA,sotheCPSshouldbereviewedandunderstoodtoensurethat

thisleveloftrustiswarranted.Thecertificateserveristheactualservicethatissuescertificatesbased

onthedataprovidedduringtheinitialregistrationprocess.Theserverconstructsandpopulatesthedigitalcertificatewiththenecessaryinformationandcombinestheuser’spublickeywiththeresultingcertificate.ThecertificateisthendigitallysignedwiththeCA’sprivatekey.

TechTip

TrustingCAsThequestionofwhetheraCAcanbetrustedispartofthecontinuingdebateonhowmuchsecurityPKIsactuallyprovide.Overall,peopleputalotoffaithinCAs.ThecompaniesthatprovideCAservicesunderstandthisandalsounderstandthattheirbusinessisbasedontheirreputation.IfaCAwascompromisedordidnotfollowthroughonitsvariousresponsibilities,wordwouldgetoutanditwouldquicklylosecustomersandbusiness.CAsworkdiligentlytoensurethatthereputationoftheirproductsandservicesremainsgoodbyimplementingverysecurefacilities,methods,procedures,andpersonnel.Butitisuptothecompanyorindividualtodeterminewhatdegreeoftrustcanactuallybegivenandwhatlevelofriskisacceptable.

RegistrationAuthoritiesAregistrationauthority(RA)isthePKIcomponentthatacceptsarequestforadigitalcertificateandperformsthenecessarystepsofregisteringandauthenticatingthepersonrequestingthecertificate.Theauthenticationrequirementsdifferdependingonthetypeofcertificatebeingrequested.MostCAsofferaseriesofclassesofcertificateswithincreasingtrustbyclass.ThespecificclassesaredescribedintheupcomingTechTipsidebar,“CertificateClasses.”Eachhigherclassofcertificatecancarryoutmorepowerfulandcritical

tasksthantheonebelowit.Thisiswhythedifferentclasseshavedifferentrequirementsforproofofidentity.IfyouwanttoreceiveaClass1

certificate,youmayonlybeaskedtoprovideyourname,e-mailaddress,andphysicaladdress.ForaClass2certification,youmayneedtoprovidetheRAwithmoredata,suchasyourdriver’slicense,passport,andcompanyinformation,thatcanbeverified.ToobtainaClass3certificate,youwillbeaskedtoprovideevenmoreinformationandmostlikelywillneedtogototheRA’sofficeforaface-to-facemeeting.EachCAwilloutlinethecertificationclassesitprovidesandtheidentificationrequirementsthatmustbemettoacquireeachtypeofcertificate.

TechTip

CertificateClassesThetypesofcertificatesavailablecanvarybetweendifferentCAs,butusuallyatleastthreedifferenttypesareavailable,andtheyarereferredtoasclasses:

Class1AClass1certificateisusuallyusedtoverifyanindividual’sidentitythroughe-mail.ApersonwhoreceivesaClass1certificatecanusehispublic/privatekeypairtodigitallysigne-mailandencryptmessagecontents.

Class2AClass2certificatecanbeusedforsoftwaresigning.Asoftwarevendorwouldregisterforthistypeofcertificatesothatitcoulddigitallysignitssoftware.Thisprovidesintegrityforthesoftwareafteritisdevelopedandreleased,anditallowsthereceiverofthesoftwaretoverifyfromwherethesoftwareactuallycame.

Class3AClass3certificatecanbeusedbyacompanytosetupitsownCA,whichwillallowittocarryoutitsownidentificationverificationandgeneratecertificatesinternally.

Inmostsituations,whenauserrequestsaClass1certificate,theregistrationprocesswillrequiretheusertoenterspecificinformationintoaweb-basedform.Thewebpagewillhaveasectionthatacceptstheuser’spublickey,oritwillsteptheuserthroughcreatingapublic/privatekeypair,whichwillallowtheusertochoosethesizeofthekeystobecreated.Oncethesestepshavebeencompleted,thepublickeyisattachedtothecertificateregistrationformandbothareforwardedtotheRAforprocessing.TheRAisresponsibleonlyfortheregistrationprocessandcannotactuallygenerateacertificate.OncetheRAisfinishedprocessing

therequestandverifyingtheindividual’sidentity,theRAsendstherequesttotheCA.TheCAusestheRA-providedinformationtogenerateadigitalcertificate,integratesthenecessarydataintothecertificatefields(useridentificationinformation,publickey,validitydates,properuseforthekeyandcertificate,andsoon),andsendsacopyofthecertificatetotheuser.ThesestepsareshowninFigure6.3.Thecertificatemayalsobepostedtoapubliclyaccessibledirectorysothatotherscanaccessit.

•Figure6.3Stepsforobtainingadigitalcertificate

Notethata1:1correspondencedoesnotnecessarilyexistbetweenidentitiesandcertificates.Anentitycanhavemultiplekeypairs,usingseparatepublickeysforseparatepurposes.Thus,anentitycanhavemultiplecertificates,eachattestingtoseparatepublickeyownership.Itisalsopossibletohavedifferentclassesofcertificates,againwithdifferentkeys.Thisflexibilityallowsentitiestotaldiscretioninhowtheymanagetheirkeys,andthePKImanagesthecomplexitybyusingaunifiedprocessthatallowskeyverificationthroughacommoninterface.Ifanapplicationcreatesakeystorethatcanbeaccessedbyother

applications,itwillprovideastandardizedinterface,calledtheapplicationprogramminginterface(API).Asanexample,Figure6.4showsthatapplicationAwentthroughtheprocessofregisteringacertificateandgeneratingakeypair.Itcreatedakeystorethatprovidesaninterfacetoallowotherapplicationstocommunicatewithitandusetheitemsheldwithinthestore.Thelocalkeystoreisjustonelocationwheretheseitemscanbeheld.

Oftenthedigitalcertificateandpublickeyarealsostoredinacertificaterepository(asdiscussedinthe“CertificateRepositories”sectionofthischapter)sothatitisavailabletoasubsetofindividuals.

•Figure6.4Somekeystorescanbesharedbydifferentapplications.

ExamTip:TheRAverifiestheidentityofthecertificaterequestoronbehalfoftheCA.TheCAgeneratesthecertificateusinginformationforwardedbytheRA.

LocalRegistrationAuthoritiesAlocalregistrationauthority(LRA)performsthesamefunctionsasan

RA,buttheLRAisclosertotheendusers.ThiscomponentisusuallyimplementedincompaniesthathavetheirowninternalPKIsandhavedistributedsites.EachsitehasusersthatneedRAservices,soinsteadofrequiringthemtocommunicatewithonecentralRA,eachsitecanhaveitsownLRA.Thisreducestheamountoftrafficthatwouldbecreatedbyseveralusersmakingrequestsacrosswideareanetwork(WAN)lines.TheLRAperformsidentification,verification,andregistrationfunctions.Itthensendstherequest,alongwiththeuser’spublickey,toacentralizedCAsothatthecertificatecanbegenerated.ItactsasaninterfacebetweentheusersandtheCA.LRAssimplifytheRA/CAprocessforentitiesthatdesirecertificatesonlyforin-houseuse.

TechTip

SharingKeyStoresDifferentapplicationsfromthesamevendormaysharekeystores.MicrosoftapplicationskeepuserkeysandcertificatesinaRegistryentrywithinthatuser’sprofile.Theapplicationscanthensaveandretrievethemfromthissinglelocationorkeystore.OtherapplicationscouldalsousethesamekeysiftheyknewwheretheywerestoredbyusingRegistryAPIcalls.

DigitalCertificatesAdigitalcertificatebindsanindividual’sidentitytoapublickey,anditcontainsalltheinformationareceiverneedstobeassuredoftheidentityofthepublickeyowner.AfteranRAverifiesanindividual’sidentity,theCAgeneratesthedigitalcertificate,buthowdoestheCAknowwhattypeofdatatoinsertintothecertificate?ThecertificatesarecreatedandformattedbasedontheX.509standard,

whichoutlinesthenecessaryfieldsofacertificateandthepossiblevaluesthatcanbeinsertedintothefields.Asofthiswriting,X.509version3isthemostcurrentversionofthestandard.X.509isastandardoftheInternationalTelecommunicationUnion(www.itu.int).TheIETF’sPublic

KeyInfrastructure(X.509),orPKIX,workinggrouphasadaptedtheX.509standardtothemoreflexibleorganizationoftheInternet,asspecifiedinRFC5280,andiscommonlyreferredtoasPKIXforPublicKeyInfrastructureX.509.Table6.1listsanddescribesthefieldsinanX.509certificate.

Table6.1 X.509CertificateFields

Figure6.5showstheactualvaluesofthedifferentcertificatefieldsforaparticularcertificateinInternetExplorer.TheversionofthiscertificateisV3(X.509v3)andtheserialnumberisalsolisted—thisnumberisuniqueforeachcertificatethatiscreatedbyaspecificCA.TheCAusedtheMD5hashingalgorithmtocreatethemessagedigestvalueandthensigneditusingtheCA’sprivatekeyusingtheRSAalgorithm.TheactualCAthatissuedthecertificateisRootSGCAuthority,andthevaliddatesindicatehowlongthiscertificateisvalid.ThesubjectisMSSGCAuthority,whichistheentitythatregisteredthiscertificateandthatisboundtotheembeddedpublickey.Theactualpublickeyisshowninthelowerwindowandisrepresentedinhexadecimal.

•Figure6.5Fieldswithinadigitalcertificate

Thesubjectofacertificateiscommonlyaperson,butitdoesnothavetobe.Thesubjectcanalsobeanetworkdevice(router,webserver,firewall,andsoon),anapplication,adepartment,oracompany.Eachhasitsownidentitythatneedstobeverifiedandproventoanotherentitybeforesecure,trustedcommunicationcanbeinitiated.Ifanetworkdeviceisusingacertificateforauthentication,thecertificatemaycontaintheidentityofthatdevice.Thisallowsauserofthedevicetoverifyitsauthenticitybasedonthesignedcertificateandtrustinthesigningauthority.Thistrustcanbetransferredtotheidentityofthedeviceindicatingauthenticity.

TechTip

X.509DigitalCertificateExtensionsFollowingaresomekeyexamplesofcertificateextensions:

DigitalSignatureThekeyusedtoverifyadigitalsignature

KeyEnciphermentThekeyusedtoencryptotherkeysusedforsecurekeydistribution

DataEnciphermentThekeyusedtoencryptdata,whichcannotbeusedtoencryptotherkeys

CRLSignThekeyusedtoverifyaCAsignatureonaCRL

KeyCertSignThekeyusedtoverifyCAsignaturesoncertificates

NonRepudiationThekeyusedwhenanonrepudiationserviceisbeingprovided

CertificateExtensionsCertificateextensionsallowforfurtherinformationtobeinsertedwithinthecertificate,whichcanbeusedtoprovidemorefunctionalityinaPKIimplementation.Certificateextensionscanbestandardorprivate.StandardcertificateextensionsareimplementedforeveryPKI

implementation.Privatecertificateextensionsaredefinedforspecificorganizations(ordomainswithinoneorganization),andtheyallowcompaniestofurtherdefinedifferent,specificusesfordigitalcertificatestobestfittheirbusinessneeds.Severaldifferentextensionscanbeimplemented,onebeingkeyusage

extensions,whichdictatehowthepublickeythatisheldwithinthecertificatecanbeused.Rememberthatpublickeyscanbeusedfordifferentfunctions:symmetrickeyencryption,dataencryption,verifyingdigitalsignatures,andmore.Anonrepudiationservicecanbeprovidedbyathird-partynotary.Inthis

situation,thesender’sdigitalsignatureisverifiedandthensignedbythenotarysothatthesendercannotlaterdenysigningandsendingthemessage.Thisisbasicallythesamefunctionperformedbyatraditionalnotaryusingpaper—validatethesender’sidentityandvalidatethetimeanddateofanitembeingsignedandsent.Thisisrequiredwhenthereceiverneedstobereallysureofthesender’sidentityandwantstobelegallyprotectedagainstpossiblefraudorforgery.Ifacompanyneedstobesurethataccountablenonrepudiationservices

willbeprovided,atrustedtimesourceneedstobeused,whichcanbeatrustedthirdpartycalledatimestampauthority(TSA).Usingatrustedtimesourcegivesusersahigherlevelofconfidenceastowhenspecificmessagesweredigitallysigned.Forexample,supposeBarrysendsRonamessageanddigitallysignsit,andRonlatercivillysuesBarryoveradispute.ThisdigitallysignedmessagemaybesubmittedbyRonasevidencepertainingtoanearlieragreementthatBarrynowisnotfulfilling.IfatrustedtimesourcewasnotusedintheirPKIenvironment,Barrycouldclaimthathisprivatekeyhadbeencompromisedbeforethatmessagewassent.Ifatrustedtimesourcewasimplemented,thenitcouldbeshownthatthemessagewassignedbeforethedateonwhichBarryclaimshiskeywascompromised.Ifatrustedtimesourceisnotused,noactivitythatwascarriedoutwithinaPKIenvironmentcanbetrulyprovenbecauseitissoeasytochangesystemandsoftwaretimesettings.

TechTip

CriticalFlagandCertificateUsageWhenanextensionismarkedascritical,itmeansthattheCAiscertifyingthekeyforonlythatspecificpurpose.IfJoereceivesacertificatewithaDigitalSignaturekeyusageextensionandthecriticalflagisset,Joecanusethepublickeyonlywithinthatcertificatetovalidatedigitalsignatures,andnomore.Iftheextensionwasmarkedasnoncritical,thekeycanbeusedforpurposesoutsideofthoselistedintheextensions,sointhiscaseitisuptoJoe(andhisapplications)todecidehowthekeywillbeused.

CriticalandNoncriticalExtensionsCertificateextensionsareconsideredeithercriticalornoncritical,whichisindicatedbyaspecificflagwithinthecertificateitself.Whenthisflagissettocritical,itmeansthattheextensionmustbeunderstoodandprocessedbythereceiver.Ifthereceiverisnotconfiguredtounderstandaparticularextensionmarkedascritical,andthuscannotprocessitproperly,thecertificatecannotbeusedforitsproposedpurpose.Iftheflagdoesnotindicatethattheextensioniscritical,thecertificatecanbeusedfortheintendedpurpose,evenifthereceiverdoesnotprocesstheappendedextension.

CertificateAttributesFourmaintypesofcertificatesareused:

End-entitycertificates

CAcertificates

Cross-certificationcertificates

Policycertificates

End-entitycertificatesareissuedbyaCAtoaspecificsubject,suchas

Joyce,theAccountingdepartment,orafirewall,asillustratedinFigure6.6.Anend-entitycertificateistheidentitydocumentprovidedbyPKIimplementations.

•Figure6.6End-entityandCAcertificates

ACAcertificatecanbeself-signed,inthecaseofastandaloneorrootCA,oritcanbeissuedbyasuperiorCAwithinahierarchicalmodel.InthemodelinFigure6.6,thesuperiorCAgivestheauthorityandallowsthesubordinateCAtoacceptcertificaterequestsandgeneratetheindividualcertificatesitself.ThismaybenecessarywhenacompanyneedstohavemultipleinternalCAs,anddifferentdepartmentswithinanorganizationneedtohavetheirownCAsservicingtheirspecificend-entitiesintheirsections.Inthesesituations,arepresentativefromeachdepartmentrequiringaCAregisterswiththehighertrustedCAandrequestsaCertificateAuthoritycertificate.(PublicandprivateCAsarediscussedinthe“PublicCertificateAuthorities”and“In-HouseCertificateAuthorities”sectionslaterinthischapter,asarethedifferenttrustmodelsthatareavailableforcompanies.)Across-certificationcertificate,orcross-certificate,isusedwhen

independentCAsestablishpeer-to-peertrustrelationships.Simplyput,cross-certificatesareamechanismthroughwhichoneCAcanissueacertificateallowingitsuserstotrustanotherCA.WithinsophisticatedCAsusedforhigh-securityapplications,a

mechanismisrequiredtoprovidecentrallycontrolledpolicyinformationtoPKIclients.Thisisoftendonebyplacingthepolicyinformationinapolicycertificate.

CertificateLifecyclesKeysandcertificatesshouldhavelifetimesettingsthatforcetheusertoregisterforanewcertificateafteracertainamountoftime.Determiningtheproperlengthoftheselifetimesisatrade-off:shorterlifetimeslimittheabilityofattackerstocrackthem,butlongerlifetimeslowersystemoverhead.More-sophisticatedPKIimplementationsperformautomatedandoftentransparentkeyupdatestoavoidthetimeandexpenseofhavingusersregisterfornewcertificateswhenoldonesexpire.

Thismeansthatthecertificateandkeypairhasalifecyclethatmustbemanaged.Certificatemanagementinvolvesadministratingandmanagingeachofthesephases,includingregistration,certificateandkeygeneration,renewal,andrevocation.AdditionalmanagementfunctionsincludeCRLdistribution,certificatesuspension,andkeydestruction.

Settingcertificatelifetimeswayintothefutureandusingthemforlongperiodsoftimeprovidesattackerswithextendedwindowstoattackthecryptography.AsstatedinChapter5,cryptographymerelybuystimeagainstanattacker;itisneveranabsoluteguarantee.

RegistrationandGenerationAkeypair(publicandprivatekeys)canbegeneratedlocallybyanapplicationandstoredinalocalkeystoreontheuser’sworkstation.Thekeypaircanalsobecreatedbyacentralkey-generationserver,whichwillrequiresecuretransmissionofthekeystotheuser.Thekeypairthatiscreatedonthecentralizedservercanbestoredontheuser’sworkstationorontheuser’ssmartcard,whichwillallowformoreflexibilityandmobility.Theactofverifyingthatanindividualindeedhasthecorresponding

privatekeyforagivenpublickeyisreferredtoasproofofpossession.Notallpublic/privatekeypairscanbeusedfordigitalsignatures,soaskingtheindividualtosignamessageandreturnittoprovethatshehasthenecessaryprivatekeywillnotalwayswork.Ifakeypairisusedforencryption,theRAcansendachallengevaluetotheindividual,who,inturn,canuseherprivatekeytoencryptthatvalueandreturnittotheRA.IftheRAcansuccessfullydecryptthisvaluewiththepublickeythatwasprovidedearlier,theRAcanbeconfidentthattheindividualhasthenecessaryprivatekeyandcancontinuethroughtherestoftheregistrationphase.

Keyregenerationandreplacementisusuallydonetoprotectagainstthesetypesofthreats,althoughastheprocessingpowerofcomputersincreasesandourknowledgeofcryptographyandnewpossiblecryptanalysis-basedattacksexpands,keylifetimesmaydrasticallydecrease.Aswitheverythingwithinthesecurityfield,itisbettertobesafenowthantobesurprisedlaterandsorry.

ExamTip:Goodkeymanagementandproperkeyreplacementintervalsprotectkeysfrombeingcompromisedthroughhumanerror.Choosingalargekeysizemakesabrute-forceattackmoredifficult.

ThePKIadministratorusuallyconfigurestheminimumrequiredkeysizethatusersmustusetohaveakeygeneratedforthefirsttime,andthenforeachrenewal.Inmostapplications,thereisadrop-downlistofpossiblealgorithmstochoosefrom,andpossiblekeysizes.Thekeysizeshouldprovidethenecessarylevelofsecurityforthecurrentenvironment.Thelifetimeofthekeyshouldbelongenoughthatcontinualrenewalwillnotnegativelyaffectproductivity,butshortenoughtoensurethatthekeycannotbesuccessfullycompromised.

TechTip

Centralizedvs.LocalKeyGenerationInmostmodernPKIimplementations,usershavetwokeypairs.Onekeypairisoftengeneratedbyacentralserverandusedforencryptionandkeytransfers.ThisallowsthecorporatePKItoretainacopyoftheencryptionkeypairforrecovery,ifnecessary.Thesecondkeypair,adigitalsignaturekeypair,isusuallygeneratedbytheusertomakesurethatsheistheonlyonewithacopyoftheprivatekey.Nonrepudiationcanbechallengedifthereisanydoubtaboutsomeoneelseobtainingacopyofanindividual’ssignatureprivatekey.Ifthekeypairwascreatedonacentralizedserver,thatcouldweakenthecasethattheindividualwastheonlyonewhohadacopyofherprivatekey.Ifacopyofauser’ssignatureprivatekeyisstoredanywhereotherthaninherpossession,orifthereisapossibilityofsomeoneobtainingtheuser’skey,thentruenonrepudiationcannotbeprovided.

CSRAcertificatesigningrequest(CSR)istheactualrequesttoaCAcontainingapublickeyandtherequisiteinformationneededtogenerateacertificate.TheCSRcontainsalloftheidentifyinginformationthatistobeboundtothekeybythecertificategenerationprocess.

RenewalThecertificateitselfhasitsownlifetime,whichcanbedifferentfromthekeypair’slifetime.Thecertificate’slifetimeisspecifiedbythevaliditydatesinsertedintothedigitalcertificate.Thesearebeginningandendingdatesindicatingthetimeperiodduringwhichthecertificateisvalid.Thecertificatecannotbeusedbeforethestartdate,andoncetheenddateismet,thecertificateisexpiredandanewcertificatewillneedtobeissued.ArenewalprocessisdifferentfromtheregistrationphaseinthattheRA

assumesthattheindividualhasalreadysuccessfullycompletedoneregistrationround.Ifthecertificatehasnotactuallybeenrevoked,theoriginalkeysandcertificatecanbeusedtoprovidethenecessaryauthenticationinformationandproofofidentityfortherenewalphase.Thecertificatemayormaynotneedtochangeduringtherenewal

process;thisusuallydependsonwhytherenewalistakingplace.Ifthecertificatejustexpiredandthekeyswillstillbeusedforthesamepurpose,anewcertificatecanbegeneratedwithnewvaliditydates.If,however,thekeypairfunctionalityneedstobeexpandedorrestricted,newattributesandextensionsmayneedtobeintegratedintothenewcertificate.Thesenewfunctionalitiesmayrequiremoreinformationtobegatheredfromtheindividualrenewingthecertificate,especiallyiftheclasschangesorthenewkeyusesallowformorepowerfulabilities.Thisrenewalprocessisrequiredwhenthecertificatehasfulfilledits

lifetimeanditsendvaliditydatehasbeenmet.

SuspensionWhentheownerofacertificatewishestomarkacertificateasnolongervalidpriortoitsnaturalexpiration,twochoicesexist:revocationandsuspension.Revocation,discussedinthenextsection,isanactionwithapermanentoutcome.Insteadofbeingrevoked,acertificatecanbesuspended,meaningitistemporarilyputonhold.If,forexample,Bobistakinganextendedvacationandwantstoensurethathiscertificatewillnotbecompromisedorusedduringthattime,hecanmakeasuspensionrequesttotheCA.TheCRLwouldlistthiscertificateanditsserialnumber,andinthefieldthatdescribeswhythecertificateisrevoked,itwouldinsteadindicateaholdstate.OnceBobreturnstowork,hecanmakearequesttotheCAtoremovehiscertificatefromthelist.

ExamTip:Acertificatesuspensioncanbeausefulprocesstoolwhileinvestigatingwhetherornotacertificateshouldbeconsideredtobevalid.

Anotherreasontosuspendacertificateisifanadministratorissuspiciousthataprivatekeymighthavebeencompromised.Whiletheissueisunderinvestigation,thecertificatecanbesuspendedtoensurethatitcannotbeused.

Relyingonanexpirationdateonacertificateto“destroy”theutilityofakeywillnotwork.Anewcertificatecanbeissuedwithan“extendeddate.”Toendtheuseofakeyset,anentryinaCRListheonlysurewaytopreventreissuanceandre-datingofacertificate.

Revocation

Acertificatecanberevokedwhenitsvalidityneedstobeendedbeforeitsactualexpirationdateismet,andthiscanoccurformanyreasons:forexample,ausermayhavelostalaptoporasmartcardthatstoredaprivatekey;animpropersoftwareimplementationmayhavebeenuncoveredthatdirectlyaffectedthesecurityofaprivatekey;ausermayhavefallenvictimtoasocialengineeringattackandinadvertentlygivenupaprivatekey;dataheldwithinthecertificatemaynolongerapplytothespecifiedindividual;orperhapsanemployeeleftacompanyandshouldnotbeidentifiedasamemberofanin-housePKIanylonger.Inthelastinstance,thecertificate,whichwasboundtotheuser’skeypair,identifiedtheuserasanemployeeofthecompany,andtheadministratorwouldwanttoensurethatthekeypaircouldnotbeusedinthefuturetovalidatethisperson’saffiliationwiththecompany.Revokingthecertificatedoesthis.

Oncerevoked,acertificatecannotbereinstated.Thisistopreventanunauthorizedreinstatementbysomeonewhohasunauthorizedaccesstothekey(s).Akeypaircanbereinstatedforusebyissuinganewcertificateifatalatertimethekeysarefoundtobesecure.Theoldcertificatewouldstillbevoid,butthenewonewouldbevalid.

Ifanyofthesethingshappens,auser’sprivatekeyhasbeencompromisedorshouldnolongerbemappedtotheowner’sidentity.Adifferentindividualmayhaveaccesstothatuser’sprivatekeyandcoulduseittoimpersonateandauthenticateastheoriginaluser.Iftheimpersonatorusedthekeytodigitallysignamessage,thereceiverwouldverifytheauthenticityofthesenderbyverifyingthesignaturebyusingtheoriginaluser’spublickey,andtheverificationwouldgothroughperfectly—thereceiverwouldbelieveitcamefromthepropersenderandnottheimpersonator.Ifreceiverscouldlookatalistofcertificatesthathadbeenrevokedbeforeverifyingthedigitalsignature,however,theywouldknownottotrustthedigitalsignaturesonthelist.Becauseofissuesassociatedwiththeprivatekeybeingcompromised,revocationispermanentandfinal

—oncerevoked,acertificatecannotbereinstated.Ifreinstatementwasallowedandauserrevokedhiscertificate,thentheunauthorizedholderoftheprivatekeycoulduseittorestorethecertificatevalidity.

ExamTip:Acertificatecannotbeassumedtobevalidwithoutcheckingforrevocationbeforeeachuse.

CertificateRevocationListTheCAprovidesprotectionagainstimpersonationandsimilarfraudbymaintainingacertificaterevocationlist(CRL),alistofserialnumbersofcertificatesthathavebeenrevoked.TheCRLalsocontainsastatementindicatingwhytheindividualcertificateswererevokedandadatewhentherevocationtookplace.ThelistusuallycontainsallcertificatesthathavebeenrevokedwithinthelifetimeoftheCA.Certificatesthathaveexpiredarenotthesameasthosethathavebeenrevoked.Ifacertificatehasexpired,itmeansthatitsendvaliditydatewasreached.TheformatoftheCRLmessageisalsodefinedbyX.509.Thelistissigned,topreventtampering,andcontainsinformationoncertificatesthathavebeenrevokedandthereasonsfortheirrevocation.Theselistscangrowquitelong,andassuch,thereareprovisionsfordatetimestampingthelistandforissuingdeltalists,whichshowchangessincethelastlistwasissued.

TechTip

CRLReasonCodesPertheX.509v2CRLstandard,thefollowingreasonsforrevocationareused:

TheCAistheentitythatisresponsibleforthestatusofthecertificatesitgenerates;itneedstobetoldofarevocation,anditmustprovidethisinformationtoothers.TheCAisresponsibleformaintainingtheCRLandpostingitinapubliclyavailabledirectory.

ExamTip:Thecertificaterevocationlistisanessentialitemtoensureacertificateisstillvalid.CAspostCRLsinpubliclyavailabledirectoriestopermitautomatedcheckingofcertificatesagainstthelistbeforecertificateusebyaclient.AusershouldnevertrustacertificatethathasnotbeencheckedagainsttheappropriateCRL.

Weneedtohavesomesysteminplacetomakesurepeoplecannot

arbitrarilyhaveothers’certificatesrevoked,whetherforrevengeorformaliciouspurposes.Whenarevocationrequestissubmitted,theindividualsubmittingtherequestmustbeauthenticated.Otherwise,thiscouldpermitatypeofdenial-of-serviceattack,inwhichsomeonehasanotherperson’scertificaterevoked.Theauthenticationcaninvolveanagreed-uponpasswordthatwascreatedduringtheregistrationprocess,butauthenticationshouldnotbebasedontheindividualprovingthathehasthecorrespondingprivatekey,becauseitmayhavebeenstolen,andtheCAwouldbeauthenticatinganimposter.TheCRL’sintegrityneedstobeprotectedtoensurethatattackers

cannotmodifydatapertainingtoarevokedcertificationonthelist.Ifthiswereallowedtotakeplace,anyonewhostoleaprivatekeycouldjustdeletethatkeyfromtheCRLandcontinuetousetheprivatekeyfraudulently.Theintegrityofthelistalsoneedstobeprotectedtoensurethatbogusdataisnotaddedtoit.Otherwise,anyonecouldaddanotherperson’scertificatetothelistandeffectivelyrevokethatperson’scertificate.TheonlyentitythatshouldbeabletomodifyanyinformationontheCRListheCA.ThemechanismusedtoprotecttheintegrityofaCRLisadigital

signature.TheCA’srevocationservicecreatesadigitalsignaturefortheCRL,asshowninFigure6.7.Tovalidateacertificate,theuseraccessesthedirectorywheretheCRLisposted,downloadsthelist,andverifiestheCA’sdigitalsignaturetoensurethattheproperauthoritysignedthelistandtoensurethatthelistwasnotmodifiedinanunauthorizedmanner.Theuserthenlooksthroughthelisttodeterminewhethertheserialnumberofthecertificatethatheistryingtovalidateislisted.Iftheserialnumberisonthelist,theprivatekeyshouldnolongerbetrusted,andthepublickeyshouldnolongerbeused.Thiscanbeacumbersomeprocess,soithasbeenautomatedinseveralways,whicharedescribedinthenextsection.

•Figure6.7TheCAdigitallysignstheCRLtoprotectitsintegrity.

Oneconcernishowup-to-datetheCRLis—howoftenisitupdatedanddoesitactuallyreflectallthecertificatescurrentlyrevoked?TheactualfrequencywithwhichthelistisupdateddependsupontheCAanditscertificationpracticesstatement(CPS).Itisimportantthatthelistisupdatedinatimelymannersothatanyoneusingthelisthasthemostcurrentinformation.

CRLDistributionCRLfilescanberequestedbyindividualswhoneedtoverifyandvalidateanewlyreceivedcertificate,orthefilescanbeperiodicallypusheddown

(sent)toallusersparticipatingwithinaspecificPKI.ThismeanstheCRLcanbepulled(downloaded)byindividualuserswhenneededorpusheddowntoalluserswithinthePKIonatimedinterval.TheactualCRLfilecangrowsubstantially,andtransmittingthisfile

andrequiringPKIclientsoftwareoneachworkstationtosaveandmaintainitcanusealotofresources,sothesmallertheCRLis,thebetter.ItisalsopossibletofirstpushdownthefullCRLandsubsequentlypushdownonlydeltaCRLs,whichcontainonlythechangestotheoriginalorbaseCRL.ThiscangreatlyreducetheamountofbandwidthconsumedwhenupdatingCRLs.

TechTip

AuthorityRevocationListsInsomePKIimplementations,aseparaterevocationlistismaintainedforCAkeysthathavebeencompromisedorshouldnolongerbetrusted.Thislistisknownasanauthorityrevocationlist(ARL).IntheeventthataCA’sprivatekeyiscompromisedoracross-certificationiscancelled,therelevantcertificate’sserialnumberisincludedintheARL.AclientcanreviewanARLtomakesuretheCA’spublickeycanstillbetrusted.

InimplementationswheretheCRLsarenotpusheddowntoindividualsystems,theusers’PKIsoftwareneedstoknowwheretolookforthepostedCRLthatrelatestothecertificateitistryingtovalidate.ThecertificatemighthaveanextensionthatpointsthevalidatingusertothenecessaryCRLdistributionpoint.Thenetworkadministratorsetsupthedistributionpoints,andoneormorepointscanexistforaparticularPKI.Thedistributionpointholdsoneormorelistscontainingtheserialnumbersofrevokedcertificates,andtheuser’sPKIsoftwarescansthelist(s)fortheserialnumberofthecertificatetheuserisattemptingtovalidate.Iftheserialnumberisnotpresent,theuserisassuredthatithasnotbeenrevoked.Thisapproachhelpspointuserstotherightresourceandalsoreducestheamountofinformationthatneedstobescannedwhencheckingthatacertificatehasnotbeenrevoked.

OnlineCertificateStatusProtocol(OCSP)OnelastoptionforcheckingdistributedCRLsisanonlineservice.Whenaclientuserneedstovalidateacertificateandensurethatithasnotbeenrevoked,hecancommunicatewithanonlineservicethatwillquerythenecessaryCRLsavailablewithintheenvironment.ThisservicecanquerythelistsfortheclientinsteadofpushingdownthefullCRLtoeachandeverysystem.SoifJoereceivesacertificatefromStacy,hecancontactanonlineserviceandsendtoittheserialnumberlistedinthecertificateStacysent.TheonlineservicewouldquerythenecessaryCRLsandrespondtoJoe,indicatingwhetherornotthatserialnumberwaslistedasbeingrevoked.OneoftheprotocolsusedforonlinerevocationservicesistheOnline

CertificateStatusProtocol(OCSP),arequestandresponseprotocolthatobtainstheserialnumberofthecertificatethatisbeingvalidatedandreviewsrevocationlistsfortheclient.Theprotocolhasaresponderservicethatreportsthestatusofthecertificatebacktotheclient,indicatingwhetherithasbeenrevoked,isvalid,orhasanunknownstatus.Thisprotocolandservicesavestheclientfromhavingtofind,download,andprocesstherightlists.

ExamTip:CertificaterevocationchecksaredoneeitherbyexaminingtheCRLorbyusingOCSPtoseeifacertificatehasbeenrevoked.

KeyDestructionKeypairsandcertificateshavesetlifetimes,meaningthattheywillexpireatsomespecifiedtime.Itisimportantthatthecertificatesandkeysareproperlydestroyedwhenthattimecomes,whereverthekeysarestored(onusers’workstations,centralizedkeyservers,USBtokendevices,smartcards,andsoon).

TechTip

HistoricalRetentionofCertificatesNotethatinmodernPKIs,encryptionkeypairsusuallymustberetainedlongaftertheyexpiresothatuserscandecryptinformationthatwasencryptedwiththeoldkeys.Forexample,ifBobencryptsadocumentusinghiscurrentkeyandthekeysareupdatedthreemonthslater,Bob’ssoftwaremustmaintainacopyoftheoldkeysohecanstilldecryptthedocument.InthePKIworld,thisissueisreferredtoaskeyhistorymaintenance.

Thegoalistomakesurethatnoonecangainaccesstoakeyafteritslifetimehasendedandusethatkeyformaliciouspurposes.Anattackermightusethekeytodigitallysignorencryptamessagewiththehopesoftrickingsomeoneelseabouthisidentity(thiswouldbeanexampleofaman-in-themiddleattack).Also,iftheattackerisperformingsometypeofbrute-forceattackonyourcryptosystem,tryingtofigureoutspecifickeysthatwereusedforencryptionprocesses,obtaininganoldkeycouldgivehimmoreinsightintohowyourcryptosystemgenerateskeys.Thelessinformationyousupplytopotentialhackers,thebetter.

CertificateRepositoriesOncetherequestor’sidentityhasbeenproven,acertificateisregisteredwiththepublicsideofthekeypairprovidedbytherequestor.PublickeysmustbeavailabletoanybodywhorequiresthemtocommunicatewithinaPKIenvironment.Thesekeys,andtheircorrespondingcertificates,areusuallyheldinapubliclyavailablerepository.Certificaterepositoryisageneraltermthatdescribesacentralizeddirectorythatcanbeaccessedbyasubsetofindividuals.ThedirectoriesareusuallyLightweightDirectoryAccessProtocol(LDAP)–compliant,meaningthattheycanbeaccessedandsearchedviaanLDAPqueryfromanLDAPclient.Whenanindividualinitializescommunicationwithanother,thesender

cansendhercertificateandpublickeytothereceiver,whichwillallowthe

receivertocommunicatewiththesenderusingencryptionordigitalsignatures(orboth)withoutneedingtotrackdownthenecessarypublickeyinacertificaterepository.Thisisequivalenttothesendersaying,“Ifyouwouldliketoencryptanyfuturemessagesyousendtome,orifyouwouldliketheabilitytoverifymydigitalsignature,herearethenecessarycomponents.”Butifapersonwantstoencryptthefirstmessagesenttothereceiver,thesenderneedstofindthereceiver’spublickeyinacertificaterepository.

CrossCheckCertificatesandKeysCertificatesareastandardizedmethodofexchangingasymmetrickeyinformation.Tounderstandtheneedforcertificates,youshouldfirstbeabletoanswerthequestions:

WhatdoIneedapublickeyfor?

HowcanIgetsomeone’spublickey,andhowdoIknowitistheirs?

Forarefresheronhowpublicandprivatekeyscomeintoplaywithencryptionanddigitalsignatures,refertoChapter5.

Acertificaterepositoryisaholdingplaceforindividuals’certificatesandpublickeysthatareparticipatinginaparticularPKIenvironment.ThesecurityrequirementsforrepositoriesthemselvesarenotashighasthoseneededforactualCAsandfortheequipmentandsoftwareusedtocarryoutCAfunctions.SinceeachcertificateisdigitallysignedbytheCA,ifacertificatestoredinthecertificaterepositoryismodified,therecipientwillbeabletodetectthischangeandknownottoacceptthecertificateasvalid.

TrustandCertificateVerificationWeneedtouseaPKIifwedonotautomaticallytrustindividualswedonotknow.Securityisaboutbeingsuspiciousandbeingsafe,soweneeda

thirdpartythatwedotrusttovouchfortheotherindividualbeforeconfidencecanbeinstilledandsensitivecommunicationcantakeplace.ButwhatdoesitmeanthatwetrustaCA,andhowcanweusethistoouradvantage?WhenauserchoosestotrustaCA,shewilldownloadthatCA’sdigital

certificateandpublickey,whichwillbestoredonherlocalcomputer.MostbrowsershavealistofCAsconfiguredtobetrustedbydefault,sowhenauserinstallsanewwebbrowser,severalofthemostwell-knownandmosttrustedCAswillbetrustedwithoutanychangeofsettings.AnexampleofthislistingisshowninFigure6.8.

•Figure6.8BrowsershavealonglistofCAsconfiguredtobetrustedbydefault.

IntheMicrosoftCAPIenvironment,theusercanaddandremoveCAsfromthislistasneeded.Inproductionenvironmentsthatrequireahigherdegreeofprotection,thislistwillbepruned,andpossiblytheonlyCAslistedwillbethecompany’sinternalCAs.Thisensuresthatdigitallysignedsoftwarewillbeautomaticallyinstalledonlyifitwassignedbythecompany’sCA.Otherproducts,suchasEntrust,usecentrallycontrolledpoliciestodeterminewhichCAsaretobetrusted,insteadofexpectingtheusertomakethesecriticaldecisions.

TechTip

DistinguishedNamesAdistinguishednameisalabelthatfollowstheX.500standard.Thisstandarddefinesanamingconventionthatcanbeemployedsothateachsubjectwithinanorganizationhasauniquename.Anexampleis{Country=US,Organization=RealSecure,OrganizationalUnit=R&D,Location=Washington}.CAsusedistinguishednamestoidentifytheownersofspecificcertificates.

Anumberofstepsareinvolvedincheckingthevalidityofamessage.Suppose,forexample,thatMaynardreceivesadigitallysignedmessagefromJoyce,whohedoesnotknowortrust.Joycehasalsoincludedherdigitalcertificatewithhermessage,whichhasherpublickeyembeddedwithinit.BeforeMaynardcanbesureoftheauthenticityofthismessage,hehassomeworktodo.ThestepsareillustratedinFigure6.9.

•Figure6.9Stepsforverifyingtheauthenticityandintegrityofacertificate

First,MaynardseeswhichCAsignedJoyce’scertificateandcomparesittothelistofCAshehasconfiguredwithinhiscomputer.HetruststheCAsinhislistandnoothers.(IfthecertificatewassignedbyaCAthathedoesnothaveinthelist,hewouldnotacceptthecertificateasbeingvalid,andthushecouldnotbesurethatthismessagewasactuallysentfromJoyceorthattheattachedkeywasactuallyherpublickey.)

Becausecertificatesproducechainsoftrust,havinganunnecessarycertificateinyourcertificatestorecouldleadtotrustproblems.Bestpracticesindicatethatyoushouldunderstandthecertificatesinyourstore,andtheneedforeach.Whenindoubt,removeit.Ifitisneeded,youcanadditbacklater.

MaynardseesthattheCAthatsignedJoyce’scertificateisindeedinhislistoftrustedCAs,sohenowneedstoverifythatthecertificatehasnotbeenaltered.UsingtheCA’spublickeyandthedigestofthecertificate,Maynardcanverifytheintegrityofthecertificate.ThenMaynardcanbeassuredthatthisCAdidactuallycreatethecertificate,sohecannowtrusttheoriginofJoyce’scertificate.Theuseofdigitalsignaturesallowscertificatestobesavedinpublicdirectorieswithouttheconcernofthembeingaccidentallyorintentionallyaltered.Ifauserextractsacertificatefromarepositoryandcreatesamessagedigestvaluethatdoesnotmatchthedigitalsignatureembeddedwithinthecertificateitself,thatuserwillknowthatthecertificatehasbeenmodifiedbysomeoneotherthantheCA,andhewillknownottoacceptthevalidityofthecorrespondingpublickey.Similarly,anattackercouldnotcreateanewmessagedigest,encryptit,andembeditwithinthecertificatebecausehewouldnothaveaccesstotheCA’sprivatekey.

ButMaynardisnotdoneyet.HeneedstobesurethattheissuingCAhasnotrevokedthiscertificate.Thecertificatealsohasstartandstopdates,indicatingatimeduringwhichthecertificateisvalid.Ifthestartdatehasn’thappenedyetorthestopdatehasbeenpassed,thecertificateisnotvalid.Maynardreviewsthesedatestomakesurethecertificateisstilldeemedvalid.AnotherstepMaynardmaygothroughistocheckwhetherthis

certificatehasbeenrevokedforanyreason.Todoso,hewillrefertothecertificaterevocationlist(CRL)toseeifJoyce’scertificateislisted.HecouldchecktheCRLdirectlywiththeCAthatissuedthecertificateorviaaspecializedonlineservicethatsupportstheOnlineCertificateStatusProtocol(OCSP).(Certificaterevocationandlistdistributionwereexplainedinthe“CertificateLifecycles”section,earlierinthischapter.)

TechTip

ValidatingaCertificateThefollowingstepsarerequiredforvalidatingacertificate:

1.ComparetheCAthatdigitallysignedthecertificatetoalistofCAsthathavealreadybeenloadedintothereceiver’scomputer.

2.Calculateamessagedigestforthecertificate.3.UsetheCA’spublickeytodecryptthedigitalsignatureandrecoverwhatisclaimedtobe

theoriginalmessagedigestembeddedwithinthecertificate(validatingthedigitalsignature).

4.Comparethetworesultingmessagedigestvaluestoensuretheintegrityofthecertificate.5.Reviewtheidentificationinformationwithinthecertificate,suchasthee-mailaddress.6.Reviewthevaliditydates.7.Checkarevocationlisttoseeifthecertificatehasbeenrevoked.

MaynardnowtruststhatthiscertificateislegitimateandthatitbelongstoJoyce.Nowwhatdoesheneedtodo?ThecertificateholdsJoyce’spublickey,whichheneedstovalidatethedigitalsignaturesheappendedtohermessage,soMaynardextractsJoyce’spublickeyfromher

certificate,runshermessagethroughahashingalgorithm,andcalculatesamessagedigestvalueofX.HethenusesJoyce’spublickeytodecryptherdigitalsignature(rememberthatadigitalsignatureisjustamessagedigestencryptedwithaprivatekey).ThisdecryptionprocessprovideshimwithanothermessagedigestofvalueY.MaynardcomparesvaluesXandY,andiftheyarethesame,heisassuredthatthemessagehasnotbeenmodifiedduringtransmission.Thushehasconfidenceintheintegrityofthemessage.ButhowdoesMaynardknowthatthemessageactuallycamefromJoyce?Becausehecandecryptthedigitalsignatureusingherpublickey,whichindicatesthatonlytheassociatedprivatekeycouldhavebeenused.Thereisaminisculeriskthatsomeonecouldcreateanidenticalkeypair,butgiventheenormouskeyspaceforpublickeys,thisisimpractical.Thepublickeycanonlydecryptsomethingthatwasencryptedwiththerelatedprivatekey,andonlytheowneroftheprivatekeyissupposedtohaveaccesstoit.MaynardcanbesurethatthismessagecamefromJoyce.Afterallofthishereadshermessage,whichsays,“Hi.Howareyou?”

Allofthatworkjustforthismessage?Maynard’sbloodpressurewouldsurelygothroughtheroofifhehadtodoallofthisworkonlytoendupwithashortandnotveryusefulmessage.Fortunately,allofthisPKIworkisperformedwithoutuserinterventionandhappensbehindthescenes.Maynarddidn’thavetoexertanyenergy.Hesimplyreplies,“Fine.Howareyou?”

CentralizedandDecentralizedInfrastructuresKeysusedforauthenticationandencryptionwithinaPKIenvironmentcanbegeneratedinacentralizedordecentralizedmanner.Inadecentralizedapproach,softwareonindividualcomputersgeneratesandstorescryptographickeyslocaltothesystemsthemselves.Inacentralizedinfrastructure,thekeysaregeneratedandstoredonacentralserver,andthekeysaretransmittedtotheindividualsystemsasneeded.Youmightchooseonetypeovertheotherforseveralreasons.Ifacompanyusesanasymmetricalgorithmthatisresource-intensiveto

generatethepublic/privatekeypair,andiflarge(andresource-intensive)keysizesareneeded,thentheindividualcomputersmaynothavethenecessaryprocessingpowertoproducethekeysinanacceptablefashion.Inthissituation,thecompanycanchooseacentralizedapproachinwhichaveryhigh-endserverwithpowerfulprocessingabilitiesisused,probablyalongwithahardware-basedrandomnumbergenerator.Centralkeygenerationandstorageoffersotherbenefitsaswell.For

example,itismucheasiertobackupthekeysandimplementkeyrecoveryprocedureswithcentralstoragethanwithadecentralizedapproach.Implementingakeyrecoveryprocedureoneachandeverycomputerholdingoneormorekeypairsisdifficult,andmanyapplicationsthatgeneratetheirownkeypairsdonotusuallyinterfacewellwithacentralizedarchivesystem.Thismeansthatifacompanychoosestoallowitsindividualuserstocreateandmaintaintheirownkeypairsontheirseparateworkstations,norealkeyrecoveryprocedurecanbeputinplace.Thisputsthecompanyatrisk.Ifanemployeeleavestheorganizationorisunavailableforonereasonoranother,thecompanymaynotbeabletoaccessitsownbusinessinformationthatwasencryptedbythatemployee.Soacentralizedapproachseemslikethebestapproach,right?Well,the

centralizedmethodhassomedrawbackstoconsider,too.Securekeydistributionisatrickyevent.Thiscanbemoredifficultthanitsounds.Atechnologyneedstobeemployedthatwillsendthekeysinanencryptedmanner,ensurethekeys’integrity,andmakesurethatonlytheintendeduserisreceivingthekey.Also,theserverthatcentrallystoresthekeysneedstobehighly

availableandisapotentialsinglepointoffailure,sosometypeoffaulttoleranceorredundancymechanismmayneedtobeputintoplace.Ifthatoneservergoesdown,userscouldnotaccesstheirkeys,whichmightpreventthemfromproperlyauthenticatingtothenetwork,resources,andapplications.Also,sinceallthekeysareinoneplace,theserverisaprimetargetforanattacker—ifthecentralkeyserveriscompromised,thewholeenvironmentiscompromised.Oneotherissuepertainstohowthekeyswillactuallybeused.Ifa

public/privatekeypairisbeinggeneratedfordigitalsignatures,andifthecompanywantstoensurethatitcanbeusedtoprovidetrueauthenticityandnonrepudiation,thekeysshouldnotbegeneratedatacentralizedserver.Thiswouldintroducedoubtthatonlytheonepersonhadaccesstoaspecificprivatekey.Itisbettertogenerateend-userkeysonalocalmachinetoeliminatedoubtaboutwhodidtheworkand“owns”thekeys.Ifacompanyusessmartcardstoholdusers’privatekeys,eachprivate

keyoftenhastobegeneratedonthecarditselfandcannotbecopiedforarchivingpurposes.Thisisadisadvantageofthecentralizedapproach.Inaddition,sometypesofapplicationshavebeendevelopedtocreatetheirownpublic/privatekeypairsanddonotallowotherkeystobeimportedandused.Thismeansthekeyswouldhavetobecreatedlocallybytheseapplications,andkeysfromacentralservercouldnotbeused.Thesearejustsomeoftheconsiderationsthatneedtobeevaluatedbeforeanydecisionismadeandimplementationbegins.

HardwareSecurityModulesPKIscanbeconstructedinsoftwarewithoutspecialcryptographichardware,andthisisperfectlysuitableformanyenvironments.Butsoftwarecanbevulnerabletoviruses,hackers,andhacking.Ifacompanyrequiresahigherlevelofprotectionthanapurelysoftware-basedsolutioncanprovide,severalhardware-basedsolutionsareavailable.Ahardwaresecuritymodule(HSM)isaphysicaldevicethatsafeguardscryptographickeys.HSMsenableahigherlevelofsecurityfortheuseofkeys,includinggenerationandauthentication.Inmostsituations,HSMsolutionsareusedonlyforthemostcriticaland

sensitivekeys,whicharetherootkeyandpossiblytheintermediateCAprivatekeys.Ifthosekeysarecompromised,thewholesecurityofthePKIisgravelythreatened.IfapersonobtainedarootCAprivatekey,shecoulddigitallysignanycertificate,andthatcertificatewouldbequicklyacceptedbyallentitieswithintheenvironment.Suchanattackermightbeabletocreateacertificatethathasextremelyhighprivileges,perhapsallowingher

tomodifybankaccountinformationinafinancialinstitution,andnoalertsorwarningswouldbeinitiatedbecausetheultimateCA,therootCA,signedit.

TechTip

StoringCriticalKeysHSMstakemanydifferentforms,includingembeddedcards,network-attacheddevices,andevenUSBflashdrives.HSMsassistintheuseofcryptographickeysacrossthelifecycle.Theycanprovidededicatedsupportforcentralizedlifecyclemanagement,fromgenerationtodistribution,storage,termination,archiving,andrecordkeeping.HSMscanincreasetheefficiencyofcryptographicoperationsandassistincomplianceefforts.CommonusesincludeuseinPCIDSSsolutions,DNSSEC,signingoperationsincludingcertificates,code,documents,ande-mail,andlarge-scaledataencryptionefforts.

PrivateKeyProtectionAlthoughaPKIimplementationcanbecomplex,withmanydifferentcomponentsandoptions,acriticalconceptcommontoallPKIsmustbeunderstoodandenforced:theprivatekeyneedstostayprivate.Adigitalsignatureiscreatedsolelyforthepurposeofprovingwhosentaparticularmessagebyusingaprivatekey.Thisrestsontheassumptionthatonlyonepersonhasaccesstothisprivatekey.Ifanimposterobtainsauser’sprivatekey,authenticityandnonrepudiationcannolongerbeclaimedorproven.Whenaprivatekeyisgeneratedforthefirsttime,itmustbestored

somewhereforfutureuse.Thisstorageareaisreferredtoasakeystore,anditisusuallycreatedbytheapplicationregisteringforacertificate,suchasawebbrowser,smartcardsoftware,orotherapplication.Inmostimplementations,theapplicationwillprompttheuserforapassword,whichwillbeusedtocreateanencryptionkeythatprotectsthekeystore.So,forexample,ifCherylusedherwebbrowsertoregisterforacertificate,herprivatekeywouldbegeneratedandstoredinthekeystore.Cherylwouldthenbepromptedforapassword,whichthesoftwarewould

usetocreateakeythatwillencryptthekeystore.WhenCherylneedstoaccessthisprivatekeylaterthatday,shewillbepromptedforthesamepassword,whichwilldecryptthekeystoreandallowheraccesstoherprivatekey.Unfortunately,manyapplicationsdonotrequirethatastrongpassword

becreatedtoprotectthekeystore,andinsomeimplementationstheusercanchoosenottoprovideapasswordatall.Theuserstillhasaprivatekeyavailable,anditisboundtotheuser’sidentity,sowhyisapasswordevennecessary?If,forexample,Cheryldecidednottouseapassword,andanotherpersonsatdownathercomputer,hecoulduseherwebbrowserandherprivatekeyanddigitallysignamessagethatcontainsanastyvirus.IfCheryl’scoworkerCliffreceivedthismessage,hewouldthinkitcamefromCheryl,openthemessage,anddownloadthevirus.Themoraltothisstoryisthatusersshouldberequiredtoprovidesometypeofauthenticationinformation(password,smartcard,PIN,orthelike)beforebeingabletouseprivatekeys.Otherwise,thekeyscouldbeusedbyotherindividualsorimposters,andauthenticationandnonrepudiationwouldbeofnouse.BecauseaprivatekeyisacrucialcomponentofanyPKI

implementation,thekeyitselfshouldcontainthenecessarycharacteristicsandbeprotectedateachstageofitslife.Thefollowinglistsumsupthecharacteristicsandrequirementsofproperprivatekeyuse:

Thesecurityassociatedwiththeuseofpublickeycryptographyrevolvesaroundthesecurityoftheprivatekey.Nonrepudiationdependsupontheprinciplethattheprivatekeyisonlyaccessibletotheholderofthekey.Ifanotherpersonhasaccesstotheprivatekey,theycanimpersonatetheproperkeyholder.

Thekeysizeshouldprovidethenecessarylevelofprotectionfortheenvironment.

Thelifetimeofthekeyshouldcorrespondwithhowoftenitisused

andthesensitivityofthedataitisprotecting.

Thekeyshouldbechangedattheendofitslifetimeandnotusedpastitsallowedlifetime.

Whereappropriate,thekeyshouldbeproperlydestroyedattheendofitslifetime.

Thekeyshouldneverbeexposedincleartext.

Nocopiesoftheprivatekeyshouldbemadeifitisbeingusedfordigitalsignatures.

Thekeyshouldnotbeshared.

Thekeyshouldbestoredsecurely.

Authenticationshouldberequiredbeforethekeycanbeused.

Thekeyshouldbetransportedsecurely.

Softwareimplementationsthatstoreandusethekeyshouldbeevaluatedtoensuretheyprovidethenecessarylevelofprotection.

Ifdigitalsignatureswillbeusedforlegalpurposes,thesepointsandothersmayneedtobeauditedtoensurethattrueauthenticityandnonrepudiationareprovided.

Themostsensitiveandcriticalpublic/privatekeypairsarethoseusedbyCAstodigitallysigncertificates.Theseneedtobehighlyprotectedbecauseiftheywereevercompromised,thetrustrelationshipbetweentheCAandalloftheend-entitieswouldbethreatened.Inhigh-securityenvironments,thesekeysareoftenkeptinatamper-proofhardwareencryptionstore,suchasanHSM,andareaccessibleonlytoindividualswithaneedtoknow.

KeyRecovery

Oneindividualcouldhaveone,two,ormanykeypairsthataretiedtohisorheridentity.Thatisbecauseusersmayhavedifferentneedsandrequirementsforpublic/privatekeypairs.Asmentionedearlier,certificatescanhavespecificattributesandusagerequirementsdictatinghowtheircorrespondingkeyscanandcannotbeused.Forexample,Davidcanhaveonekeypairheusestoencryptandtransmitsymmetrickeys,anotherkeypairthatallowshimtoencryptdata,andyetanotherkeypairtoperformdigitalsignatures.Davidcanalsohaveadigitalsignaturekeypairforhiswork-relatedactivitiesandanotherkeypairforpersonalactivities,suchase-mailinghisfriends.Thesekeypairsneedtobeusedonlyfortheirintendedpurposes,andthisisenforcedthroughcertificateattributesandusagevalues.Ifacompanyisgoingtoperformkeyrecoveryandmaintainakey

recoverysystem,itwillgenerallybackuponlythekeypairusedtoencryptdata,notthekeypairsthatareusedtogeneratedigitalsignatures.Thereasonthatacompanyarchiveskeysistoensurethatifapersonleavesthecompany,fallsoffacliff,orforsomereasonisunavailabletodecryptimportantcompanyinformation,thecompanycanstillgettoitscompany-owneddata.Thisisjustamatteroftheorganizationprotectingitself.Acompanywouldnotneedtobeabletorecoverakeypairthatisusedfordigitalsignatures,sincethosekeysaretobeusedonlytoprovetheauthenticityoftheindividualwhosentamessage.Acompanywouldnotbenefitfromhavingaccesstothosekeysandreallyshouldnothaveaccesstothem,sincetheyaretiedtooneindividualforaspecificpurpose.Twosystemsareimportantforbackingupandrestoringcryptographic

keys:keyarchivingandkeyrecovery.Keyarchivingisawayofbackingupkeysandsecurelystoringtheminarepository;keyrecoveryistheprocessofrestoringlostkeystotheusersorthecompany.

ExamTip:Keyarchivingistheprocessofstoringasetofkeystobeusedasabackupshouldsomethinghappentotheoriginalset.Keyrecoveryistheprocessofusingthebackupkeys.

Ifkeysarebackedupandstoredinacentralizedcomputer,thissystemmustbetightlycontrolled,becauseifitwerecompromised,anattackerwouldhaveaccesstoallkeysfortheentireinfrastructure.Also,itisusuallyunwisetoauthorizeasinglepersontobeabletorecoverallthekeyswithintheenvironment,becausethatpersoncouldusethispowerforevilpurposesinsteadofjustrecoveringkeyswhentheyareneededforlegitimatepurposes.Insecuritysystems,itisbestnottofullytrustanyone.Dualcontrolcanbeusedaspartofasystemtobackupandarchivedata

encryptionkeys.PKIsystemscanbeconfiguredtorequiremultipleindividualstobeinvolvedinanykeyrecoveryprocess.Whenakeyrecoveryisrequired,atleasttwopeoplecanberequiredtoauthenticatebythekeyrecoverysoftwarebeforetherecoveryprocedureisperformed.Thisenforcesseparationofduties,whichmeansthatonepersoncannotcompleteacriticaltaskbyhimself.Requiringtwoindividualstorecoveralostkeytogetheriscalleddualcontrol,whichsimplymeansthattwopeoplehavetobepresenttocarryoutaspecifictask.

TechTip

KeysplittingSecretsplittingusingmofnauthenticationschemescanimprovesecuritybyrequiringthatmultiplepeopleperformcriticalfunctions,preventingasinglepartyfromcompromisingasecret.BesuretounderstandtheconceptofmofnfortheCompTIASecurity+exam.

Thisapproachtokeyrecoveryisreferredtoasthemofnauthentication,wherennumberofpeoplecanbeinvolvedinthekeyrecoveryprocess,butatleastm(whichisasmallernumberthann)mustbeinvolvedbeforethetaskcanbecompleted.Thegoalistominimizefraudulentorimproperuseofaccessandpermissions.Acompanywouldnotrequireallpossibleindividualstobeinvolvedintherecoveryprocess,becausegettingallthepeopletogetheratthesametimecouldbeimpossibleconsideringmeetings,vacations,sicktime,andtravel.Atleastsomeofallpossible

individualsmustbeavailabletoparticipate,andthisisthesubsetmofthenumbern.Thisformofsecretsplittingcanincreasesecuritybyrequiringmultiplepeopletoperformaspecificfunction.Requiringtoomanypeopleforthemsubsetincreasesissuesassociatedwithavailability,whereasrequiringtoofewincreasestheriskofasmallnumberofpeoplecolludingtocompromiseasecret.

ExamTip:Recoveryagentisthetermforanentitythatisgivenapublickeycertificateforrecoveringuserdatathatisencrypted.ThisisthemostcommontypeofrecoverypolicyusedinPKIbutaddstheriskoftherecoveryagenthavingaccesstosecuredinformation.

Allkeyrecoveryproceduresshouldbehighlyaudited.Theauditlogsshouldcaptureatleastwhatkeyswererecovered,whowasinvolvedintheprocess,andthetimeanddate.KeysareanintegralpieceofanyencryptioncryptosystemandarecriticaltoaPKIenvironment,soyouneedtotrackwhodoeswhatwiththem.

KeyEscrowKeyrecoveryandkeyescrowaretermsthatareoftenusedinterchangeably,buttheyactuallydescribetwodifferentthings.Youshouldnotusetheminterchangeablyafteryouhavereadthissection.

ExamTip:Keyrecoveryisaprocessthatallowsforlostkeystoberecovered.Keyescrowisaprocessofgivingkeystoathirdpartysothattheycandecryptandreadsensitiveinformationwhenthisneedarises.

Keyescrowistheprocessofgivingkeystoathirdpartysothattheycandecryptandreadsensitiveinformationiftheneedarises.Keyescrow

almostalwayspertainstohandingoverencryptionkeystothegovernment,ortoanotherhigherauthority,sothatthekeyscanbeusedtocollectevidenceduringinvestigations.Akeypairusedinaperson’splaceofworkmayberequiredtobeescrowedbytheemployerfortworeasons.First,thekeysarepropertyoftheenterprise,issuedtotheworkerforuse.Second,thefirmmayhaveneedforthemafteranemployeeleavesthefirm.

ExamTip:Keyescrow,allowinganothertrustedpartytoholdacopyofakey,haslongbeenacontroversialtopic.Thisessentialbusinessprocessprovidescontinuityshouldtheauthorizedkey-holdingpartyleaveanorganizationwithoutdisclosingkeys.Thesecurityoftheescrowedkeyisaconcern,anditneedstobemanagedatthesamesecuritylevelasfortheoriginalkey.

Severalmovements,supportedbypartsoftheU.S.government,wouldrequireallormanypeopleresidingintheUnitedStatestohandovercopiesofthekeystheyusetoencryptcommunicationchannels.Themovementinthelate1990sbehindtheClipperchipisthemostwell-knownefforttoimplementthisrequirementandprocedure.ItwassuggestedthatallAmerican-madecommunicationdevicesshouldhaveahardwareencryptionchipwithinthem.Thechipcouldbeusedtoencryptdatagoingbackandforthbetweentwoindividuals,butifagovernmentagencydecidedthatitshouldbeabletoeavesdroponthisdialog,itwouldjustneedtoobtainacourtorder.Ifthecourtorderwasapproved,alawenforcementagentwouldtaketheordertotwoescrowagencies,eachofwhichwouldhaveapieceofthekeythatwasnecessarytodecryptthiscommunicationinformation.Theagentwouldobtainbothpiecesofthekeyandcombinethem,whichwouldallowtheagenttolisteninontheencryptedcommunicationoutlinedinthecourtorder.TheClipperchipstandardneversawthelightofdaybecauseitseemed

too“BigBrother”tomanyAmericancitizens.Buttheideawasthattheencryptionkeyswouldbeescrowedtotwoagencies,meaningthateachagencywouldholdonepieceofthekey.Oneagencycouldnotholdthe

wholekey,becauseitcouldthenusethiskeytowiretappeople’sconversationsillegally.Splittingupthekeyisanexampleofseparationofduties,putintoplacetotryandpreventfraudulentactivities.ThecurrentissueofgovernmentsdemandingaccesstokeystodecryptinformationiscoveredinChapter24.

PublicCertificateAuthoritiesAnindividualorcompanymaydecidetorelyonaCAthatisalreadyestablishedandbeingusedbymanyotherindividualsandcompanies—apublicCA.Acompany,ontheotherhand,maydecidethatitneedsitsownCAforinternaluse,whichgivesthecompanymorecontroloverthecertificateregistrationandgenerationprocessandallowsittoconfigureitemsspecificallyforitsownneeds.ThissecondtypeofCAisreferredtoasaprivateCA(orin-houseCA),discussedinthenextsection.ApublicCAspecializesinverifyingindividualidentitiesandcreating

andmaintainingtheircertificates.Thesecompaniesissuecertificatesthatarenotboundtospecificcompaniesorintracompanydepartments.Instead,theirservicesaretobeusedbyalargerandmorediversifiedgroupofpeopleandorganizations.IfacompanyusesapublicCA,thecompanywillpaytheCAorganizationforindividualcertificatesandfortheserviceofmaintainingthesecertificates.SomeexamplesofpublicCAsareVeriSign(includingGeoTrustandThawte),Entrust,andGoDaddy.

UserscanremoveCAsfromtheirbrowserlistiftheywanttohavemorecontroloverwhotheirsystemtrustsandwhoitdoesn’t.Unfortunately,systemupdatescanrestorethem,requiringregularcertificatestoremaintenance.

OneadvantageofusingapublicCAisthatitisusuallywellknownandeasilyaccessibletomanypeople.MostwebbrowsershavealistofpublicCAsinstalledandconfiguredbydefault,alongwiththeircorresponding

rootcertificates.Thismeansthatifyouinstallawebbrowseronyourcomputer,itisalreadyconfiguredtotrustcertainCAs,eventhoughyoumighthaveneverheardofthembefore.So,ifyoureceiveacertificatefromBob,andhiscertificatewasdigitallysignedbyaCAlistedinyourbrowser,youautomaticallytrusttheCAandcaneasilywalkthroughtheprocessofverifyingBob’scertificate.Thishasraisedsomeeyebrowsamongsecurityprofessionals,however,sincetrustisinstalledbydefault,buttheindustryhasdeemedthisisanecessaryapproachthatprovidesuserswithtransparencyandincreasedfunctionality.Earlierinthechapter,thedifferentcertificateclassesandtheiruseswere

explained.Noglobalstandarddefinestheseclasses,theexactrequirementsforobtainingthesedifferentcertificates,ortheiruses.Standardsareinplace,usuallyforaparticularcountryorindustry,butthismeansthatpublicCAscandefinetheirowncertificateclassifications.ThisisnotnecessarilyagoodthingforcompaniesthatdependonpublicCAs,becauseitdoesnotprovidetothecompanyenoughcontroloverhowitshouldinterpretcertificateclassificationsandhowtheyshouldbeused.Thismeansanothercomponentneedstobecarefullydevelopedfor

companiesthatuseanddependonpublicCAs,andthiscomponentisreferredtoasthecertificatepolicy(CP).Thispolicyallowsthecompanytodecidewhatcertificationclassesareacceptableandhowtheywillbeusedwithintheorganization.ThisisdifferentfromtheCPS,whichexplainshowtheCAverifiesentities,generatescertificates,andmaintainsthesecertificates.TheCPisgeneratedandownedbyanindividualcompanythatusesanexternalCA,anditallowsthecompanytoenforceitssecuritydecisionsandcontrolhowcertificatesareusedwithitsapplications.

In-HouseCertificateAuthoritiesAnin-houseCAisimplemented,maintained,andcontrolledbythecompanythatimplementedit.ThistypeofCAcanbeusedtocreatecertificatesforinternalemployees,devices,applications,partners,and

customers.Thisapproachgivesthecompanycompletecontroloverhowindividualsareidentified,whatcertificationclassificationsarecreated,whocanandcannothaveaccesstotheCA,andhowthecertificationscanbeused.

TechTip

WhyIn-HouseCAs?In-houseCAsprovidemoreflexibilityforcompanies,whichoftenintegratethemintocurrentinfrastructuresandintoapplicationsforauthentication,encryption,andnonrepudiationpurposes.IftheCAisgoingtobeusedoveranextendedperiodoftime,thiscanbeacheapermethodofgeneratingandusingcertificatesthanhavingtopurchasethemthroughapublicCA.Settingupin-housecertificateserversisrelativelyeasyandcanbedonewithsimplesoftwarethattargetsbothWindowsandLinuxservers.

ChoosingBetweenaPublicCAandanIn-HouseCAWhendecidingbetweenanin-houseandpublicCA,variousfactorsneedtobeidentifiedandaccountedfor.Manycompanieshaveembarkeduponimplementinganin-housePKIenvironmentwitharoughestimatethatwouldbeimplementedwithinxnumberofmonthsandwouldcostapproximatelyyamountindollars.Withoutdoingtheproperhomework,companiesmightnotunderstandthecurrentenvironment,mightnotcompletelyhammerouttheintendedpurposeofthePKI,andmightnothaveenoughskilledstaffsupportingtheproject;timeestimatescandoubleortripleandtherequiredfundsandresourcescanbecomeunacceptable.SeveralcompanieshavestartedonaPKIimplementation,onlytoquithalfwaythrough,resultinginwastedtimeandmoney,withnothingtoshowforitexceptheapsoffrustrationandmanyulcers.Insomesituations,itisbetterforacompanytouseapublicCA,since

publicCAsalreadyhavethenecessaryequipment,skills,andtechnologies.

Inothersituations,companiesmaydecideitisabetterbusinessdecisiontotakeontheseeffortsthemselves.Thisisnotalwaysastrictlymonetarydecision—aspecificlevelofsecuritymightberequired.Somecompaniesdonotbelievethattheycantrustanoutsideauthoritytogenerateandmaintaintheirusers’andcompany’scertificates.Inthissituation,thescalemaytiptowardanin-houseCA.

Certificateauthoritiescomeinmanytypes:public,in-house,andoutsourced.Allofthemperformthesamefunctions,withtheonlydifferencebeinganorganizationalone.Thiscanhaveabearingontrustrelationships,asoneismorelikelytotrustin-houseCAsoverothersforwhichthereisarguablylesscontrol.

Eachcompanyisunique,withvariousgoals,securityrequirements,functionalityneeds,budgetaryrestraints,andideologies.ThedecisionofwhethertouseaprivateCAoranin-houseCAdependsontheexpansivenessofthePKIwithintheorganization,howintegrateditwillbewithdifferentbusinessneedsandgoals,itsinteroperabilitywithacompany’scurrenttechnologies,thenumberofindividualswhowillbeparticipating,andhowitwillworkwithoutsideentities.Thiscouldbequitealargeundertakingthattiesupstaff,resources,andfunds,soalotofstrategicplanningisrequired,andwhatwillandwon’tbegainedfromaPKIshouldbefullyunderstoodbeforethefirstdollarisspentontheimplementation.

OutsourcedCertificateAuthoritiesThelastavailableoptionforusingPKIcomponentswithinacompanyistooutsourcedifferentpartsofittoaspecificserviceprovider.Usually,themorecomplexpartsareoutsourced,suchastheCA,RA,CRL,andkeyrecoverymechanisms.ThisoccursifacompanydoesnothavethenecessaryskillstoimplementandcarryoutafullPKIenvironment.

TechTip

OutsourcedCAvs.PublicCAAnoutsourcedCAisdifferentfromapublicCAinthatitprovidesdedicatedservices,andpossiblyequipment,toanindividualcompany.ApublicCA,incontrast,canbeusedbyhundredsorthousandsofcompanies—theCAdoesn’tmaintainspecificserversandinfrastructuresforindividualcompanies.

Althoughoutsourcedservicesmightbeeasierforyourcompanytoimplement,youneedtoreviewseveralfactorsbeforemakingthistypeofcommitment.Youneedtodeterminewhatleveloftrustthecompanyiswillingtogivetotheserviceproviderandwhatlevelofriskitiswillingtoaccept.OftenaPKIanditscomponentsserveaslargesecuritycomponentswithinacompany’senterprise,andallowingathirdpartytomaintainthePKIcanintroducetoomanyrisksandliabilitiesthatyourcompanyisnotwillingtoundertake.Theliabilitiestheserviceprovideriswillingtoaccept,thesecurityprecautionsandprocedurestheoutsourcedCAsprovide,andthesurroundinglegalissuesneedtobeexaminedbeforethistypeofagreementismade.SomelargeverticalmarketshavetheirownoutsourcedPKI

environmentssetupbecausetheysharesimilarneedsandusuallyhavethesamerequirementsforcertificationtypesanduses.Thisallowsseveralcompanieswithinthesamemarkettosplitthecostsofthenecessaryequipment,anditallowsforindustry-specificstandardstobedrawnupandfollowed.Forexample,althoughmanymedicalfacilitiesworkdifferentlyandhavedifferentenvironments,theyhavealotofthesamefunctionalityandsecurityneeds.Ifseveralofthemcametogether,purchasedthenecessaryequipmenttoprovideCA,RA,andCRLfunctionality,employedonepersontomaintainit,andtheneachconnecteditsdifferentsitestothecentralizedcomponents,themedicalfacilitiescouldsavealotofmoneyandresources.Inthiscase,noteveryfacilitywouldneedtostrategicallyplanitsownfullPKI,andeachwouldnotneed

topurchaseredundantequipmentoremployredundantstaffmembers.Figure6.10illustrateshowoneoutsourcedserviceprovidercanofferdifferentPKIcomponentsandservicestodifferentcompanies,andhowcompanieswithinoneverticalmarketcansharethesameresources.

•Figure6.10APKIserviceprovider(representedbythefourboxes)canofferdifferentPKIcomponentstocompanies.

AsetofstandardscanbedrawnupabouthoweachdifferentfacilityshouldintegrateitsowninfrastructureandhowitshouldintegratewiththecentralizedPKIcomponents.Thisalsoallowsforless-complicatedintercommunicationtotakeplacebetweenthedifferentmedicalfacilities,whichwilleaseinformation-sharingattempts.

TyingDifferentPKIsTogetherInsomecases,morethanoneCAmaybeneededforaspecificPKItoworkproperly,andseveralrequirementsmustbemetfordifferentPKIstointercommunicate.Herearesomeexamples:

Acompanywantstobeabletocommunicateseamlesslywithitssuppliers,customers,orbusinesspartnersviaaPKI.

OnedepartmentwithinacompanyhashighersecurityrequirementsthanallotherdepartmentsandthusneedstoconfigureandcontrolitsownCA.

Onedepartmentneedstohavespeciallyconstructedcertificateswithuniquefieldsandusages.

DifferentpartsofanorganizationwanttocontroltheirownpiecesofthenetworkandtheCAthatisencompassedwithinit.

ThenumberofcertificatesthatneedtobegeneratedandmaintainedwouldoverwhelmoneCA,somultipleCAsmustbedeployed.

Thepoliticalcultureofacompanyinhibitsonedepartmentfrombeingabletocontrolelementsofanotherdepartment.

Enterprisesarepartitionedgeographically,anddifferentsitesneedtheirownlocalCA.

Thesesituationscanaddmuchmorecomplexitytotheoverallinfrastructure,intercommunicationcapabilities,andproceduresforcertificategenerationandvalidation.Tocontrolthiscomplexityproperlyfromthebeginning,theserequirementsneedtobeunderstood,addressed,andplannedfor.Thenthenecessarytrustmodelneedstobechosenandmoldedforthecompanytobuildupon.Selectingtherighttrustmodelwillgivethecompanyasolidfoundationfromthebeginning,insteadoftryingtoaddstructuretoaninaccurateandinadequateplanlateron.

TrustModelsPotentialscenariosexistotherthanjusthavingmorethanoneCA—eachofthecompaniesoreachdepartmentofanenterprisecanactuallyrepresentatrustdomainitself.Atrustdomainisaconstructofsystems,personnel,applications,protocols,technologies,andpoliciesthatworktogethertoprovideacertainlevelofprotection.Allofthesecomponentscanworktogetherseamlesslywithinthesametrustdomainbecausetheyareknowntotheothercomponentswithinthedomainandaretrustedtosomedegree.Differenttrustdomainsareusuallymanagedbydifferentgroupsofadministrators,havedifferentsecuritypolicies,andrestrictoutsidersfromprivilegedaccess.

TechTip

TrustModelsThereareseveralformsoftrustmodelsassociatedwithcertificates.Hierarchical,peer-to-peer,andhybridaretheprimaryforms,withtheweboftrustbeingaformofhybrid.EachofthesemodelshasausefulplaceinthePKIarchitectureunderdifferentcircumstances.

Mosttrustdomains(whetherindividualcompaniesordepartments)usuallyarenotislandscutofffromtheworld—theyneedtocommunicatewithother,less-trusteddomains.Thetrickistofigureouthowmuchtwo

differentdomainsshouldtrusteachother,andhowtoimplementandconfigureaninfrastructurethatwouldallowthesetwodomainstocommunicateinawaythatwillnotallowsecuritycompromisesorbreaches.Thiscanbemoredifficultthanitsounds.Inthenondigitalworld,itisdifficulttofigureoutwhototrust,howto

carryoutlegitimatebusinessfunctions,andhowtoensurethatoneisnotbeingtakenadvantageoforliedto.Jumpintothedigitalworldandaddprotocols,services,encryption,CAs,RAs,CRLs,anddifferingtechnologiesandapplications,andthebusinessriskscanbecomeoverwhelmingandconfusing.Sostartwithabasicquestion:Whatcriteriawillweusetodeterminewhowetrustandtowhatdegree?Oneexampleoftrustconsideredearlierinthechapteristhedriver’s

licenseissuedbytheDMV.Suppose,forexample,thatBobisbuyingalampfromCarolandhewantstopaybycheck.SinceCaroldoesnotknowBob,shedoesnotknowifshecantrusthimorhavemuchfaithinhischeck.ButifBobshowsCarolhisdriver’slicense,shecancomparethenametowhatappearsonthecheck,andshecanchoosetoacceptit.Thetrustanchor(theagreed-upontrustedthirdparty)inthisscenarioistheDMV,sincebothCarolandBobtrustitmorethantheytrusteachother.BobhadtoprovidedocumentationtotheDMVtoprovehisidentity,thatorganizationtrustedhimenoughtogeneratealicense,andCaroltruststheDMV,soshedecidestotrustBob’scheck.Consideranotherexampleofatrustanchor.IfJoeandStacyneedto

communicatethroughe-mailandwouldliketouseencryptionanddigitalsignatures,theywillnottrusteachother’scertificatealone.Butwheneachreceivestheother’scertificateandseesthatithasbeendigitallysignedbyanentitytheybothdotrust—theCA—theyhaveadeeperleveloftrustineachother.ThetrustanchorhereistheCA.Thisiseasyenough,butwhenweneedtoestablishtrustanchorsbetweendifferentCAsandPKIenvironments,itgetsalittlemorecomplicated.IftwocompaniesneedtocommunicateusingtheirindividualPKIs,orif

twodepartmentswithinthesamecompanyusedifferentCAs,twoseparatetrustdomainsareinvolved.Theusersanddevicesfromthesedifferent

trustdomainsneedtocommunicatewitheachother,andtheyneedtoexchangecertificatesandpublickeys,whichmeansthattrustanchorsneedtobeidentifiedandacommunicationchannelmustbeconstructedandmaintained.Atrustrelationshipmustbeestablishedbetweentwoissuingauthorities

(CAs).ThishappenswhenoneorbothoftheCAsissueacertificatefortheotherCA’spublickey,asshowninFigure6.11.ThismeansthateachCAregistersforacertificateandpublickeyfromtheotherCA.EachCAvalidatestheotherCA’sidentificationinformationandgeneratesacertificatecontainingapublickeyforthatCAtouse.Thisestablishesatrustpathbetweenthetwoentitiesthatcanthenbeusedwhenusersneedtoverifyotherusers’certificatesthatfallwithinthedifferenttrustdomains.Thetrustpathcanbeunidirectionalorbidirectional,soeitherthetwoCAstrusteachother(bidirectional)oronlyonetruststheother(unidirectional).

•Figure6.11Atrustrelationshipcanbebuiltbetweentwotrustdomainstosetupacommunicationchannel.

ExamTip:ThreeformsoftrustmodelsarecommonlyfoundinPKIs:

•Hierarchical•Peer-to-peer•Hybrid

AsillustratedinFigure6.11,alltheusersanddevicesintrustdomain1trusttheirownCA,CA1,whichistheirtrustanchor.Allusersanddevicesintrustdomain2havetheirowntrustanchor,CA2.ThetwoCAshaveexchangedcertificatesandtrusteachother,buttheydonothaveacommontrustanchorbetweenthem.Thetrustmodelsdescribeandoutlinethetrustrelationshipsbetweenthe

differentCAsanddifferentenvironments,whichwillindicatewherethetrustpathsreside.Thetrustmodelsandpathsneedtobethoughtoutbeforeimplementationtorestrictandcontrolaccessproperlyandtoensurethatasfewtrustpathsaspossibleareused.Severaldifferenttrustmodelscanbeused:thehierarchical,peer-to-peer,andhybridmodelsarediscussedinthefollowingsections.

HierarchicalTrustModelThehierarchicaltrustmodelisabasichierarchicalstructurethatcontainsarootCA,intermediateCAs,leafCAs,andend-entities.Theconfigurationisthatofaninvertedtree,asshowninFigure6.12.TherootCAistheultimatetrustanchorforallotherentitiesinthisinfrastructure,anditgeneratescertificatesfortheintermediateCAs,whichinturngeneratecertificatesfortheleafCAs,andtheleafCAsgeneratecertificatesfortheend-entities(users,networkdevices,andapplications).

•Figure6.12Thehierarchicaltrustmodeloutlinestrustpaths.

IntermediateCAsfunctiontotransfertrustbetweendifferentCAs.TheseCAsarereferredtoassubordinateCAsbecausetheyaresubordinatetotheCAthattheyreference.ThepathoftrustiswalkedupfromthesubordinateCAtothehigher-levelCA;inessencethesubordinateCAisusingthehigher-levelCAasareference.AsshowninFigure6.12,nobidirectionaltrustsexist—theyareall

unidirectionaltrusts,asindicatedbytheone-wayarrows.Sincenoother

entitycancertifyandgeneratecertificatesfortherootCA,itcreatesaself-signedcertificate.Thismeansthatthecertificate’sIssuerandSubjectfieldsholdthesameinformation,bothrepresentingtherootCA,andtherootCA’spublickeywillbeusedtoverifythiscertificatewhenthattimecomes.ThisrootCAcertificateandpublickeyaredistributedtoallentitieswithinthistrustmodel.

TechTip

RootCAIftherootCA’sprivatekeywereevercompromised,allentitieswithinthehierarchicaltrustmodelwouldbedrasticallyaffected,becausethisistheirsoletrustanchor.TherootCAusuallyhasasmallamountofinteractionwiththeintermediateCAsandend-entities,andcanthereforebetakenofflinemuchofthetime.ThisprovidesagreaterdegreeofprotectionfortherootCA,becausewhenitisofflineitisbasicallyinaccessible.

WalkingtheCertificatePathWhenauserinonetrustdomainneedstocommunicatewithauserinanothertrustdomain,oneuserwillneedtovalidatetheother’scertificate.Thissoundssimpleenough,butwhatitreallymeansisthateachcertificateforeachCA,allthewayuptoasharedtrustedanchor,alsomustbevalidated.IfDebbieneedstovalidateSam’scertificate,asshowninFigure6.12,sheactuallyalsoneedstovalidatetheLeafDCAandIntermediateBCAcertificates,aswellasSam’s.SoinFigure6.12,wehaveauser,Sam,whodigitallysignsamessage

andsendsitandhiscertificatetoDebbie.DebbieneedstovalidatethiscertificatebeforeshecantrustSam’sdigitalsignature.IncludedinSam’scertificateisanIssuerfield,whichindicatesthatthecertificatewasissuedbyLeafDCA.DebbiehastoobtainLeafDCA’sdigitalcertificateandpublickeytovalidateSam’scertificate.RememberthatDebbievalidatesthecertificatebyverifyingitsdigitalsignature.Thedigitalsignaturewascreatedbythecertificateissuerusingitsprivatekey,soDebbieneedsto

verifythesignatureusingtheissuer’spublickey.DebbietracksdownLeafDCA’scertificateandpublickey,butshe

nowneedstoverifythisCA’scertificate,soshelooksattheIssuerfield,whichindicatesthatLeafDCA’scertificatewasissuedbyIntermediateBCA.DebbienowneedstogetIntermediateBCA’scertificateandpublickey.Debbie’sclientsoftwaretracksthisdownandseesthattheissuerfor

IntermediateBCAistherootCA,forwhichshealreadyhasacertificateandpublickey.SoDebbie’sclientsoftwarehadtofollowthecertificatepath,meaningithadtocontinuetotrackdownandcollectcertificatesuntilitcameuponaself-signedcertificate.Aself-signedcertificateindicatesthatitwassignedbyarootCA,andDebbie’ssoftwarehasbeenconfiguredtotrustthisentityashertrustanchor,soshecanstopthere.Figure6.13illustratesthestepsDebbie’ssoftwarehadtocarryoutjusttobeabletoverifySam’scertificate.

•Figure6.13Verifyingeachcertificateinacertificatepath

Thistypeofsimplistictrustmodelworkswellwithinanenterprisethateasilyfollowsahierarchicalorganizationalchart,butmanycompaniescannotusethistypeoftrustmodelbecausedifferentdepartmentsorofficesrequiretheirowntrustanchors.Thesedemandscanbederivedfromdirectbusinessneedsorfrominterorganizationalpolitics.Thishierarchicalmodelmightnotbepossiblewhentwoormorecompaniesneedtocommunicatewitheachother.Neithercompanywilllettheother’sCAbetherootCA,becauseeachdoesnotnecessarilytrusttheotherentitytothatdegree.Inthesesituations,theCAswillneedtoworkinapeer-to-peerrelationshipinsteadofinahierarchicalrelationship.

Peer-to-PeerModel

Inapeer-to-peertrustmodel,oneCAisnotsubordinatetoanotherCA,andnoestablishedtrustedanchorbetweentheCAsisinvolved.Theend-entitieswilllooktotheirissuingCAastheirtrustedanchor,butthedifferentCAswillnothaveacommonanchor.Figure6.14illustratesthistypeoftrustmodel.ThetwodifferentCAs

willcertifythepublickeyforeachother,whichcreatesabidirectionaltrust.Thisisreferredtoascross-certification,sincetheCAsarenotreceivingtheircertificatesandpublickeysfromasuperiorCA,butinsteadarecreatingthemforeachother.

•Figure6.14Cross-certificationcreatesapeer-to-peerPKImodel.

Oneofthemaindrawbackstothismodelisscalability.EachCAmustcertifyeveryotherCAthatisparticipating,andabidirectionaltrustpathmustbeimplemented,asshowninFigure6.15.IfonerootCAwerecertifyingalltheintermediateCAs,scalabilitywouldnotbeasmuchofanissue.

•Figure6.15Scalabilityisadrawbackincross-certificationmodels.

Figure6.15representsafullyconnectedmesharchitecture,meaningthateachCAisdirectlyconnectedtoandhasabidirectionaltrustrelationshipwitheveryotherCA.Asyoucanseeinthisillustration,thecomplexityofthissetupcanbecomeoverwhelming.

Inanynetworkmodel,fullyconnectedmesharchitecturesarewastefulandexpensive.Intrusttransfermodels,theextralevelofredundancyisjustthat:redundantandunnecessary.

HybridTrustModel

Acompanycanbeinternallycomplex,andwhentheneedarisestocommunicateproperlywithoutsidepartners,suppliers,andcustomersinanauthorizedandsecuredmanner,thiscomplexitycanmakestickingtoeitherthehierarchicalorpeer-to-peertrustmodeldifficult,ifnotimpossible.Inmanyimplementations,thedifferentmodeltypeshavetobecombinedtoprovidethenecessarycommunicationlinesandlevelsoftrust.Inahybridtrustmodel,thetwocompanieshavetheirowninternalhierarchicalmodelsandareconnectedthroughapeer-to-peermodelusingcross-certification.AnotheroptioninthishybridconfigurationistoimplementabridgeCA.

Figure6.16illustratestherolethatabridgeCAcouldplay—itisresponsibleforissuingcross-certificatesforallconnectedCAsandtrustdomains.Thebridgeisnotconsideredarootortrustanchor,butmerelytheentitythatgeneratesandmaintainsthecross-certificationfortheconnectedenvironments.

•Figure6.16AbridgeCAcancontrolthecross-certificationprocedures.

ExamTip:Threetrustmodelsexist:hierarchical,peer-to-peer,andhybrid.Hierarchicaltrustislikeanupside-downtree,peer-to-peerisalateralseriesofreferences,andhybridisacombinationofhierarchicalandpeer-to-peertrust.

Certificate-BasedThreatsAlthoughcertificatesbringmuchcapabilitytosecuritythroughpracticalmanagementoftrust,theyalsocanpresentthreats.Becausemuchoftheactualworkisdonebehindthescenes,withoutdirectuserinvolvement,afalsesenseofsecuritymightensue.EndusersmightassumethatifanHTTPSconnectionwasmadewithaserver,theyaresecurelyconnectedtotheproperserver.Spoofing,phishing,pharming,andawiderangeofsophisticatedattackspreyonthisassumption.Today,industryhasrespondedwithahigh-assurancecertificatethatissignedandrecognizedbybrowsers.Usingthisexample,wecanexaminehowanattackermightpreyonauser’strustinsoftwaregettingthingscorrect.Ifahackerwishestohavesomethingrecognizedaslegitimate,hemay

havetoobtainacertificatethatprovesthispointtotheend-usermachine.Oneavenuewouldbetoforgeafalsecertificate,butthisischallengingbecauseofthepublickeysigningofcertificatesbyCAs.Toovercomethisproblem,thehackerneedstoinstallafalse,self-signedrootcertificateontheend-userPC.Thisfalsekeycanthenbeusedtovalidatemalicioussoftwareascomingfromatrustedsource.Thisattackpreysonthefactthatendusersdonotknowthecontentsoftheirrootcertificatestore,nordotheyhaveameanstovalidatechanges.Inanenterpriseenvironment,thisattackcanbethwartedbylockingdownthecertificatestoreandvalidatingchangesagainstawhitelist.Thisoptionreallyisnotverypracticalforendusersoutsideofanenterprise.

StolenCertificatesCertificatesactasaformoftrustedIDandaretypicallyhandledwithoutend-userintervention.Toensuretheveracityofacertificate,aseriesofcryptographiccontrolsisemployed,includingdigitalsignaturestoprovideproofofauthenticity.Thisstatementaside,stolencertificateshavebeenusedinmultiplecasesofcomputerintrusions/systemattacks.Speciallycraftedmalwarehasbeendesignedtostealbothprivatekeysanddigitalcertificatesfrommachines.Oneofthemostinfamousmalwareprograms,theZeusbot,hasfunctionalitytoperformthistask.

Astolencertificateand/orprivatekeycanbeusedtobypassmanysecuritymeasures.ConcernoverstolenSSL/TLScredentialsledtothecreationofhigh-assurancecertificates,whicharediscussedinChapter17.

Stolencertificateshavebeenimplementedinawiderangeofattacks.Malwaredesignedtoimitateantivirussoftwarehasbeenfounddatingbackto2009.TheStuxnetattackontheIraniannuclearproductionfacilityusedstolencertificatesfromthirdpartiesthatwerenotinvolvedinanywayotherthantheunwittingcontributionofapasskeyintheformofacertificate.InlessthanamonthaftertheSonyPicturesEntertainmentattackbecamepublicin2014,malwareusingSonycertificatesappeared.Whetherthecertificatescamefromthebreak-inoroneofthepreviousSonyhacksisunknown,buttheresultisthesame.

Chapter6Review

LabBookExercise

Thefollowinglabexercisefromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providespracticalapplicationofmaterialcoveredinthischapter:

Lab8.5wUsingIPsecinWindows

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutpublickeyinfrastructures.

Implementthebasicsofpublickeyinfrastructures

PKIsolutionsincludecertificateauthorities(CAs)andregistrationauthorities(RAs).

PKIsformthecentralmanagementfunctionalityusedtoenableencryptiontechnologies.

Thestepsauserperformstoobtainacertificateforusearelistedinthetextandareimportanttomemorize.

Describetheroleofregistrationauthorities

RAsverifyidentitiestobeusedoncertificates.

RAspassidentityinformationtoCAsforuseinbindingtoacertificate.

Usedigitalcertificates

Certificatesarehandledviaacertificateserverandclientsoftware.

Therearethreeclassesofcertificatesandtheyhavethefollowingtypicaluses:

Class1Personale-mailuseClass2Softwaresigning

Class3SettingupaCAUnderstandthelifecycleofcertificates

Certificatesaregenerated,registered,andhistoricallyverifiedbytheoriginatingCA.

Therearetwomainmechanismstomanagetherevocationofacertificate:CRLandOCSP.

Keys,andhencecertificates,havealifecycle;theyarecreated,usedforadefinedperiodoftime,andthendestroyed.

Explaintherelationshipbetweentrustandcertificateverification

Trustisbasedonanunderstandingoftheneedsoftheuserandwhattheitembeingtrustedoffers.

Certificateverificationprovidesassurancethatthedatainthecertificateisvalid,notwhetheritmeetstheneedsoftheuser.

Describetherolesofcertificateauthoritiesandcertificaterepositories

CAscreatecertificatesforidentifiedentitiesandmaintainrecordsoftheirissuanceandrevocation.

CRLsprovideameansoflettingusersknowwhencertificateshavebeenrevokedbeforetheirend-of-lifedate.

Identifycentralizedanddecentralizedinfrastructures

TherearethreedifferentarchitecturesofCAs:

Hierarchical

Peer-to-peer

Hybrid

MultipleCAscanbeusedtogethertocreateaweboftrust.

Describepublicandin-housecertificateauthorities

PublicCAsexistasaservicethatallowsentitiestoobtaincertificatesfromatrustedthirdparty.

In-housecertificatesprovidecertificatesthatallowafirmameanstousecertificateswithincompanyborders.

KeyTermsauthorityrevocationlist(ARL)(142)CAcertificate(136)certificate(128)certificateauthority(CA)(130)certificatepath(158)certificaterepository(143)certificaterevocationlist(CRL)(140)certificateserver(131)certificatesigningrequest(CSR)(138)certificationpracticesstatement(CPS)(131)cross-certificationcertificate(137)digitalcertificate(130)dualcontrol(150)end-entitycertificate(136)hardwaresecuritymodule(HSM)(147)hierarchicaltrustmodel(157)hybridtrustmodel(159)keyarchiving(150)keyescrow(150)keyrecovery(150)localregistrationauthority(LRA)(132)OnlineCertificateStatusProtocol(OCSP)(142)

peer-to-peertrustmodel(158)policycertificate(137)publickeyinfrastructure(PKI)(129)registrationauthority(RA)(131)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.The_______________isthetrustedauthorityforcertifyingindividuals’identitiesandcreatinganelectronicdocumentindicatingthatindividualsarewhotheysaytheyare.

2.A(n)_______________istheactualrequesttoaCAcontainingapublickeyandtherequisiteinformationneededtogenerateacertificate.

3.The_______________isamethodofdeterminingwhetheracertificatehasbeenrevokedthatdoesnotrequirelocalmachinestorageofCRLs.

4.The_______________istheactualservicethatissuescertificatesbasedonthedataprovidedduringtheinitialregistrationprocess.

5.Aphysicaldevicethatsafeguardscryptographickeysiscalleda(n)_______________.

6.A(n)_______________isaholdingplaceforindividuals’certificatesandpublickeysthatareparticipatinginaparticularPKIenvironment.

7.A(n)_______________isusedwhenindependentCAsestablishpeer-to-peertrustrelationships.

8.A(n)_______________isastructurethatprovidesallofthenecessarycomponentsfordifferenttypesofusersandentitiestobe

abletocommunicatesecurelyandinapredictablemanner.

9._______________istheprocessofgivingkeystoathirdpartysothattheycandecryptandreadsensitiveinformationiftheneedarises.

10.Ina(n)_______________,oneCAisnotsubordinatetoanotherCA,andthereisnoestablishedtrustanchorbetweentheCAsinvolved.

Multiple-ChoiceQuiz1.WhenauserwantstoparticipateinaPKI,whatcomponentdoeshe

orsheneedtoobtain,andhowdoesthathappen?

A.TheusersubmitsacertificaterequesttotheCA.

B.TheusersubmitsakeypairrequesttotheCRL.

C.TheusersubmitsacertificaterequesttotheRA.

D.TheusersubmitsproofofidentificationtotheCA.

2.Howdoesauservalidateadigitalcertificatethatisreceivedfromanotheruser?

A.TheuserfirstseeswhetherhersystemhasbeenconfiguredtotrusttheCAthatdigitallysignedtheotheruser’scertificateandthenvalidatesthatCA’sdigitalsignature.

B.Theusercalculatesamessagedigestandcomparesittotheoneattachedtothemessage.

C.TheuserfirstseeswhetherhersystemhasbeenconfiguredtotrusttheCAthatdigitallysignedthecertificateandthenvalidatesthepublickeythatisembeddedwithinthecertificate.

D.Theuservalidatesthesender’sdigitalsignatureonthemessage.

3.Whatisthepurposeofadigitalcertificate?

A.ItbindsaCAtoauser’sidentity.

B.ItbindsaCA’sidentitytothecorrectRA.

C.ItbindsanindividualidentitytoanRA.

D.Itbindsanindividualidentitytoapublickey.

4.Whatstepsdoesauser’ssoftwaretaketovalidateaCA’sdigitalsignatureonadigitalcertificate?

A.Theuser’ssoftwarecreatesamessagedigestforthedigitalcertificateanddecryptstheencryptedmessagedigestincludedwithinthedigitalcertificate.Ifthedecryptionperformsproperlyandthemessagedigestvaluesarethesame,thecertificateisvalidated.

B.Theuser’ssoftwarecreatesamessagedigestforthedigitalsignatureandencryptsthemessagedigestincludedwithinthedigitalcertificate.Iftheencryptionperformsproperlyandthemessagedigestvaluesarethesame,thecertificateisvalidated.

C.Theuser’ssoftwarecreatesamessagedigestforthedigitalcertificateanddecryptstheencryptedmessagedigestincludedwithinthedigitalcertificate.IftheusercanencryptthemessagedigestproperlywiththeCA’sprivatekeyandthemessagedigestvaluesarethesame,thecertificateisvalidated.

D.Theuser’ssoftwarecreatesamessagedigestforthedigitalsignatureandencryptsthemessagedigestwithitsprivatekey.Ifthedecryptionperformsproperlyandthemessagedigestvaluesarethesame,thecertificateisvalidated.

5.Whywouldacompanyimplementakeyarchivingandrecoverysystemwithintheorganization?

A.Tomakesurealldataencryptionkeysareavailableforthecompanyifandwhenitneedsthem

B.Tomakesurealldigitalsignaturekeysareavailableforthecompanyifandwhenitneedsthem

C.Tocreatesessionkeysforuserstobeabletoaccesswhentheyneedtoencryptbulkdata

D.TobackuptheRA’sprivatekeyforretrievalpurposes

6.WithinaPKIenvironment,wheredoesthemajorityofthetrustactuallylie?

A.AllusersanddeviceswithinanenvironmenttrusttheRA,whichallowsthemtoindirectlytrusteachother.

B.AllusersanddeviceswithinanenvironmenttrusttheCA,whichallowsthemtoindirectlytrusteachother.

C.AllusersanddeviceswithinanenvironmenttrusttheCRL,whichallowsthemtoindirectlytrusteachother.

D.AllusersanddeviceswithinanenvironmenttrusttheCPS,whichallowsthemtoindirectlytrusteachother.

7.Whichofthefollowingproperlydescribeswhatapublickeyinfrastructure(PKI)actuallyis?

A.Aprotocolwrittentoworkwithalargesubsetofalgorithms,applications,andprotocols

B.Analgorithmthatcreatespublic/privatekeypairs

C.Aframeworkthatoutlinesspecifictechnologiesandalgorithmsthatmustbeused

D.Aframeworkthatdoesnotspecifyanytechnologiesbutprovidesafoundationforconfidentiality,integrity,andavailabilityservices

8.Onceanindividualvalidatesanotherindividual’scertificate,whatistheuseofthepublickeythatisextractedfromthisdigital

certificate?

A.Thepublickeyisnowavailabletousetocreatedigitalsignatures.

B.Theusercannowencryptsessionkeysandmessageswiththispublickeyandcanvalidatethesender’sdigitalsignatures.

C.Thepublickeyisnowavailabletoencryptfuturedigitalcertificatesthatneedtobevalidated.

D.Theusercannowencryptprivatekeysthatneedtobetransmittedsecurely.

9.Whywouldadigitalcertificatebeaddedtoacertificaterevocationlist(CRL)?

A.Ifthepublickeyhadbecomecompromisedinapublicrepository

B.Iftheprivatekeyhadbecomecompromised

C.Ifanewemployeejoinedthecompanyandreceivedanewcertificate

D.Ifthecertificateexpired

10.HowcanusershavefaiththattheCRLwasnotmodifiedtopresentincorrectinformation?

A.TheCRLisdigitallysignedbytheCA.

B.TheCRLisencryptedbytheCA.

C.TheCRLisopenforanyonetopostcertificateinformationto.

D.TheCRLisaccessibleonlytotheCA.

EssayQuiz

1.Describetheprosandconsofestablishingakeyarchivingsystemprogramforasmall-tomedium-sizedbusiness.

2.Whywouldasmall-tomedium-sizedfirmimplementaPKIsolution?Whatbusinessbenefitswouldensuefromsuchacourseofaction?

3.Describethestepsinvolvedinverifyingacertificate’svalidity.4.Describethestepsinobtainingacertificate.5.Compareandcontrastthehierarchicaltrustmodel,peer-to-peertrust

model,andhybridtrustmodel.

LabProjects

•LabProject6.1InvestigatetheprocessofobtainingapersonalcertificateordigitalIDfore-mailusage.Whatinformationisneeded,whatarethecosts,andwhatprotectionisaffordedbasedonthevendor?

•LabProject6.2Determinewhatcertificatesareregisteredwiththebrowserinstanceonyourcomputer.

chapter7 PKIStandardsandProtocols

Thenicethingaboutstandardsisthatyouhavesomanytochoosefrom.

—ANDREWS.TANENBAUM

N

Inthischapter,youwilllearnhowto

IdentifythestandardsinvolvedinestablishinganinteroperableInternetPKI

ExplaininteroperabilityissueswithPKIstandards

DescribehowthecommonInternetprotocolsimplementthePKIstandards

oneofthestillsteadilygrowingInternetcommercewouldbepossiblewithouttheuseofstandardsandprotocolsthatprovideacommon,interoperableenvironmentforexchanginginformationsecurely.Due

tothewidedistributionofInternetusersandbusinesses,themostpracticalsolutiontodatehasbeenthecommercialimplementationofpublickeyinfrastructures(PKIs).Thischapterexaminesthestandardsandprotocolsinvolvedinsecure

Internettransactionsande-businessusingaPKI.Althoughyoumayuseonlyaportionoftherelatedstandardsandprotocolsonadailybasis,youshouldunderstandhowtheyinteracttoprovidetheservicesthatarecriticalforsecurity:confidentiality,integrity,availability,authentication,andnonrepudiation.Thischapterwillalsoincludesomerelatedstandards,suchasFIPSandtheCommonCriteria.

Chapter6introducedthealgorithmsandtechniquesusedtoimplementapublicPKI,but,asyouprobablynoticed,thereisalotofroomforinterpretation.VariousorganizationshavedevelopedandimplementedstandardsandprotocolsthathavebeenacceptedasthebasisforsecureinteractioninaPKIenvironment.Thesestandardsfallintothreegeneralcategories:

TechTip

RevolutionaryTechnologiesThe1976publicdisclosureofasymmetrickeyalgorithmsbyDiffie,Hellman,Rivest,Shamir,

andAdlemanchangedsecurecommunicationsinaworld-shatteringway.Itwasatechnologythatmettheneedofanotheremergingtechnology;thedevelopmentoftheInternetduringthissametimeledtotheneedforsecurecommunicationsbetweenanonymousparties—combined,atechnologicallyrevolutionaryevent.

StandardsthatdefinethePKIThesestandardsdefinethedataanddatastructuresexchangedandthemeansformanagingthatdatatoprovidethefunctionsofthePKI(certificateissuance,storage,revocation,registration,andmanagement).

StandardsthatdefinetheinterfacebetweenapplicationsandtheunderlyingPKIThesestandardsusethePKItoestablishtheservicesrequiredbyapplications(S/MIME,SSL,andTLS).

OtherstandardsThesestandardsdon’tfitneatlyineitheroftheothertwocategories.Theyprovidebitsandpiecesthatglueeverythingtogether;theynotonlycanaddressthePKIstructureandthemethodsandprotocolsforusingit,butcanalsoprovideanoverarchingbusinessprocessenvironmentforPKIimplementation(forexample,ISO/IEC27002,CommonCriteria,andtheFederalInformationProcessingStandardsPublications[FIPSPUBS]).

Figure7.1showstherelationshipsbetweenthesestandardsandprotocolsandconveystheinterdependenceofthestandardsandprotocolsdiscussedinthischapter.TheInternetpublickeyinfrastructure(PKI)reliesonthreemainstandardsforestablishinginteroperablePKIservices:PKIX.509(PKIX),PublicKeyCryptographyStandards(PKCS),andX.509.OtherprotocolsandstandardshelpdefinethemanagementandoperationofthePKIandrelatedservices—InternetSecurityAssociationandKeyManagementProtocol(ISAKMP)andXMLKeyManagementSpecification(XKMS)arebothkeymanagementprotocols,whileCertificateManagementProtocol(CMP)isusedformanagingcertificates.CertificateEnrollmentProtocol(CEP)isanalternativecertificateissuance,distribution,andrevocationmechanism.Finally,PrettyGoodPrivacy(PGP)providesanalternativemethodspanningtheprotocoland

applicationlevels.

•Figure7.1RelationshipsbetweenPKIstandardsandprotocols

Thischapterexamineseachstandardfromthebottomup,startingwithbuildinganinfrastructurethroughprotocolsandapplications,andfinishingwithsomeoftheinherentweaknessesofandpotentialattacksonaPKI.

PKIXandPKCSTwomainstandardshaveevolvedovertimetoimplementPKIsonapracticallevelontheInternet.BotharebasedontheX.509certificatestandard(discussedshortlyinthe“X.509”section)andestablishcomplementarystandardsforimplementingPKIs.PKIXandPKCSintertwinetodefinethemostcommonlyusedsetofstandards.PKIXwasproducedbytheInternetEngineeringTaskForce(IETF)and

definesstandardsforinteractionsandoperationsforfourcomponenttypes:theuser(end-entity),certificateauthority(CA),registrationauthority(RA),andtherepositoryforcertificatesandcertificaterevocationlists(CRLs).PKCSdefinesmanyofthelower-levelstandardsformessagesyntax,cryptographicalgorithms,andthelike.ThePKCSsetofstandardsisaproductofRSASecurity.ThePKIXworkinggroupwasformedin1995todevelopthestandards

necessarytosupportPKIs.Atthetime,theX.509PublicKeyCertificate(PKC)formatwasproposedasthebasisforaPKI.X.509includesinformationregardingdataformatsandproceduresusedforCA-signedPKCs,butitdoesn’tspecifyvaluesorformatsformanyofthefieldswithinthePKC.PKIXprovidesstandardsforextendingandusingX.509v3certificatesandformanagingthem,enablinginteroperabilitybetweenPKIsfollowingthestandards.PKIXusesthemodelshowninFigure7.2forrepresentingthe

componentsandusersofaPKI.Theuser,calledanend-entity,isnotpartofthePKI,butend-entitiesareeitherusersofthePKIcertificates,thesubjectofacertificate(anentityidentifiedbyit),orboth.Thecertificateauthority(CA)isresponsibleforissuing,storing,andrevokingcertificates—bothPKCsandAttributeCertificates(ACs).TheRAisresponsibleformanagementactivitiesdesignatedbytheCA.TheRAcan,infact,beacomponentoftheCAratherthanaseparatecomponent.ThefinalcomponentofthePKIXmodelistherepository,asystemorgroupofdistributedsystemsthatprovidescertificatesandCRLstotheend-entities.Thecertificaterevocationlist(CRL)isadigitallysignedobjectthatlists

allofthecurrentbutrevokedcertificatesissuedbyaCA.

•Figure7.2ThePKIXmodel

TechTip

PKIEssentialsAPKIbringstogetherpolicies,procedures,hardware,software,andenduserstocreate,manage,store,distribute,andrevokedigitalcertificates.

PKIXStandardsNowthatwehavelookedathowPKIXisorganized,let’stakealookat

whatPKIXdoes.UsingX.509v3,thePKIXworkinggroupaddressesfivemajorareas:

PKIXoutlinescertificateextensionsandcontentnotcoveredbyX.509v3andtheformatofversion2CRLs,thusprovidingcompatibilitystandardsforsharingcertificatesandCRLsbetweenCAsandend-entitiesindifferentPKIs.ThePKIXprofileoftheX.509v3PKCdescribesthecontents,requiredextensions,optionalextensions,andextensionsthatneednotbeimplemented.ThePKIXprofilesuggestsarangeofvaluesformanyextensions.Inaddition,PKIXprovidesaprofileforversion2CRLs,allowingdifferentPKIstosharerevocationinformation.

PKIXprovidescertificatemanagementmessageformatsandprotocols,definingthedatastructures,managementmessages,andmanagementfunctionsforPKIs.Theworkinggroupalsoaddressestheassumptionsandrestrictionsoftheirprotocols.ThisstandardidentifiestheprotocolsnecessarytosupportonlineinteractionsbetweenentitiesinthePKIXmodel.Themanagementprotocolssupportfunctionsforentityregistration,initializationofthecertificate(possiblykey-pairgeneration),issuanceofthecertificate,key-pairupdate,certificaterevocation,cross-certification(betweenCAs),andkey-pairrecoveryifavailable.

PKIXoutlinescertificatepoliciesandcertificationpracticesstatements(CPSs),establishingtherelationshipbetweenpoliciesandCPSs.Apolicyisasetofrulesthathelpsdeterminetheapplicabilityofacertificatetoanend-entity.Forexample,acertificateforhandlingroutineinformationwouldprobablyhaveapolicyoncreation,storage,andmanagementofkeypairsquitedifferentfromapolicyforcertificatesusedinfinancialtransactions,duetothesensitivityofthefinancialinformation.ACPSexplainsthepracticesusedbyaCAtoissuecertificates.Inotherwords,theCPSisthemethodusedtogetthecertificate,whilethepolicydefinessomecharacteristicsofthecertificateandhowitwillbehandledandused.

PKIXspecifiesoperationalprotocols,definingtheprotocolsforcertificatehandling.Inparticular,protocoldefinitionsarespecifiedforusingFileTransferProtocol(FTP)andHypertextTransferProtocol(HTTP)toretrievecertificatesfromrepositories.Thesearethemostcommonprotocolsforapplicationstousewhenretrievingcertificates.

PKIXincludestime-stampinganddatacertificationandvalidationservices,whichareareasofinteresttothePKIXworkinggroup,andwhichwillprobablygrowinuseovertime.Atimestampauthority(TSA)certifiesthataparticularentityexistedataparticulartime.ADataValidationandCertificationServer(DVCS)certifiesthevalidityofsigneddocuments,PKCs,andthepossessionorexistenceofdata.Thesecapabilitiessupportnonrepudiationrequirementsandareconsideredbuildingblocksforanonrepudiationservice.

PKCsarethemostcommonlyusedcertificates,butthePKIXworkinggrouphasbeenworkingontwoothertypesofcertificates:AttributeCertificatesandQualifiedCertificates.AnAttributeCertificate(AC)isusedtograntpermissionsusingrule-based,role-based,andrank-basedaccesscontrols.ACsareusedtoimplementaprivilegemanagementinfrastructure(PMI).InaPMI,anentity(user,program,system,andsoon)istypicallyidentifiedasaclienttoaserverusingaPKC.Therearethentwopossibilities:eithertheidentifiedclientpushesanACtotheserver,ortheservercanqueryatrustedrepositorytoretrievetheattributesoftheclient.ThissituationismodeledinFigure7.3.

•Figure7.3ThePKIXPMImodel

TheclientpushoftheAChastheeffectofimprovingperformance,butnoindependentverificationoftheclient’spermissionsisinitiatedbytheserver.ThealternativeistohavetheserverpulltheinformationfromanACissuerorarepository.Thismethodispreferablefromasecuritystandpoint,becausetheserverorserver’sdomaindeterminestheclient’saccessrights.Thepullmethodhastheaddedbenefitofrequiringnochangestotheclientsoftware.TheQualifiedCertificate(QC)isbasedonthetermusedwithinthe

EuropeanCommissiontoidentifycertificateswithspecificlegislativeuses.ThisconceptisgeneralizedinthePKIXQCprofiletoindicateacertificateusedtoidentifyaspecificindividual(asinglehumanratherthantheentityofthePKC)withahighlevelofassuranceinanonrepudiationservice.TherearedozensofIETFRequestsforComment(RFCs)thathavebeen

producedbythePKIXworkinggroupforeachofthesefiveareas.

ForacompletelistofcurrentandpendingdocumentsassociatedwithPKIX,seetheInternetdraftforthePKIXworkinggrouproadmap(https://www.ietf.org/archive/id/draft-ietf-pkix-roadmap-09.txt/).

PKCSRSALaboratoriescreatedthePublicKeyCryptographyStandards(PKCS)tofillsomeofthegapsinthestandardsthatexistedinPKIimplementation.AstheyhavewiththePKIXstandards,PKIdevelopershaveadoptedmanyofthesestandardsasabasisforachievinginteroperabilitybetweendifferentCAs.PKCSiscomposedofasetof(currently)13activestandards,with2otherstandardsthatarenolongeractive.ThestandardsarereferredtoasPKCS#1throughPKCS#15,aslistedinTable7.1.ThestandardscombinetoestablishacommonbaseforservicesrequiredinaPKI.

Table7.1 PKCSStandards

ThoughadoptedearlyinthedevelopmentofPKIs,someofthesestandardsarebeingphasedout.Forexample,PKCS#6isbeingreplacedbyX.509v3(coveredshortlyinthe“X.509”section)andPKCS#7andPKCS#10arebeingusedless,astheirPKIXcounterpartsarebeingadopted.

WhyYouNeedtoKnowthePKIXandPKCSStandardsIfyourcompanyisplanningtouseoneoftheexistingcertificateserverstosupporte-commerce,youmaynotneedtoknowthespecificsofthesestandards(exceptperhapsfortheCompTIASecurity+exam).However,ifyouplantoimplementaprivatePKItosupportsecureserviceswithinyourorganization,youneedtounderstandwhatstandardsareoutthereandhowthedecisiontouseaparticularPKIimplementation(eitherhomegrownorcommercial)mayleadtoincompatibilitieswithothercertificate-issuingentities.Youmustconsideryourbusiness-to-businessrequirementswhenyou’redecidinghowtoimplementaPKIwithinyourorganization.

ExamTip:Allofthestandardsandprotocolsdiscussedinthischapterarethe“vocabulary”ofthecomputersecurityindustry.Youshouldbewellversedinallthesetitlesandtheirpurposesandoperations.

TechTip

X.509EssentialsX.509specifiesstandardformatsforpublickeycertificates,certificaterevocationlists,andAttributeCertificates.

X.509Whatisacertificate?AsexplainedinChapter6,acertificateismerelyadatastructurethatbindsapublickeytosubjects(uniquenames,DNSentries,ore-mails)andisusedtoauthenticatethatapublickeyindeedbelongstothesubject.Inthelate1980s,theX.500OSIDirectoryStandardwasdefinedbytheInternationalOrganizationforStandardization(ISO)andtheInternationalTelecommunicationUnion(ITU).Itwasdevelopedforimplementinganetworkdirectorysystem,andpartofthisdirectorystandardwastheconceptofauthenticationofentitieswithinthedirectory.X.509istheportionoftheX.500standardthataddressesthestructureofcertificatesusedforauthentication.SeveralversionsoftheX.509certificateshavebeencreated,with

version3beingthecurrentversion(asthisisbeingwritten).EachversionhasextendedthecontentsofthecertificatestoincludeadditionalinformationnecessarytousecertificatesinaPKI.TheoriginalITUX.509definitionwaspublishedin1988,wasformerlyreferredtoasCCITTX.509,andissometimesreferredtoasISO/IEC/ITU9594-8.Version3addedadditionaloptionalextensionsformoresubjectidentificationinformation,keyattributeinformation,policyinformation,andcertificationpathconstraints.Inaddition,version3allowsadditionalextensionstobedefinedinstandardsortobedefinedandregisteredbyorganizationsorcommunities.Certificatesareusedtoencapsulatetheinformationneededto

authenticateanentity.TheX.509specificationdefinesahierarchicalcertificationstructurethatreliesonarootCAthatisself-certifying(meaningitissuesitsowncertificate).Allothercertificatescanbetracedbacktosucharootthroughapath.ACAissuesacertificatetoauniquelyidentifiableentity(person,corporation,computer,andsoon)—issuingacertificateto“JohnSmith”wouldcausesomerealproblemsifthatwerealltheinformationtheCAhadwhenissuingthecertificate.WearesavedsomewhatbytherequirementthattheCAdetermineswhatidentifierisunique(thedistinguishedname),butwhencertificatesandtrustare

extendedbetweenCAs,theuniqueidentificationbecomescritical.

CrossCheckCertificatesAdetaileddescriptionofcertificatesandthesupportingpublickeyinfrastructureisprovidedinChapter6.

SSL/TLSSecureSocketsLayer(SSL)andTransportLayerSecurity(TLS)providethemostcommonmeansofinteractingwithaPKIandcertificates.Theolder,SSLprotocolwasintroducedbyNetscapeasameansofprovidingsecureconnectionsforwebtransfersusingencryption.Thesetwoprotocolsprovidesecureconnectionsbetweentheclientandserverforexchanginginformation.Theyalsoprovideserverauthentication(andoptionally,clientauthentication)andconfidentialityofinformationtransfers.SeeChapter17foradetailedexplanation.

TechTip

SSL/TLSSimplifiedSSLandTLSarecryptographicprotocolstoprovidedataintegrityandsecurityovernetworksbyencryptingnetworkconnectionsatthetransportlayer.InmanycasespeopleusethetermSSLevenwhenTLSisinfacttheprotocolbeingused.

TheIETFestablishedtheTLSworkinggroupin1996todevelopastandardtransportlayersecurityprotocol.TheworkinggroupbeganwithSSLversion3.0asitsbasisandreleasedRFC2246,“TheTLSProtocolVersion1.0,”in1999asaproposedstandard.TheworkinggroupalsopublishedRFC2712,“AdditionofKerberosCipherSuitestoTransport

LayerSecurity(TLS),”asaproposedstandard,andtwoRFCsontheuseofTLSwithHTTP.Likeitspredecessor,TLSisaprotocolthatensuresprivacybetweencommunicatingapplicationsandtheirusersontheInternet.Whenaserverandclientcommunicate,TLSensuresthatnothirdpartycaneavesdroportamperwithanymessage.

SSLisdeprecated.AllversionsofSSL,includingv3,haveexploitablevulnerabilitiesthatmaketheprotocolnolongerconsideredsecure.Foralltrafficwhereconfidentialityisimportant,youshoulduseTLS.

TLSiscomposedoftwoparts:theTLSRecordProtocolandtheTLSHandshakeProtocol.TheTLSRecordProtocolprovidesconnectionsecuritybyusingsupportedencryptionmethods.TheTLSRecordProtocolcanalsobeusedwithoutencryption.TheTLSHandshakeProtocolallowstheserverandclienttoauthenticateeachotherandtonegotiateasessionencryptionalgorithmandcryptographickeysbeforedataisexchanged.ThoughTLSisbasedonSSLandissometimesreferredtoasSSL,they

arenotinteroperable.However,theTLSprotocoldoescontainamechanismthatallowsaTLSimplementationtobackdowntoSSL3.0.Thedifferencebetweenthetwoisthewaytheyperformkeyexpansionandmessageauthenticationcomputations.TheTLSRecordProtocolisalayeredprotocol.Ateachlayer,messagesmayincludefieldsforlength,description,andcontent.TheRecordProtocoltakesmessagestobetransmitted,fragmentsthedataintomanageableblocks,optionallycompressesthedata,appliesamessageauthenticationcode(HMAC)tothedata,encryptsit,andtransmitstheresult.Receiveddataisdecrypted,verified,decompressed,andreassembled,andthendeliveredtohigher-levelclients.TheTLSHandshakeProtocolinvolvesthefollowingsteps,whichare

summarizedinFigure7.4:

•Figure7.4TLSHandshakeProtocol

1.Exchangehellomessagestoagreeonalgorithms,exchangerandomvalues,andcheckforsessionresumption.

2.Exchangethenecessarycryptographicparameterstoallowtheclientandservertoagreeonapre-mastersecret.

3.Exchangecertificatesandcryptographicinformationtoallowtheclientandservertoauthenticatethemselves.

4.Generateamastersecretfromthepre-mastersecretandexchangerandomvalues.

5.Providesecurityparameterstotherecordlayer.6.Allowtheclientandservertoverifythattheirpeerhascalculated

thesamesecurityparametersandthatthehandshakeoccurredwithouttamperingbyanattacker.

Thoughithasbeendesignedtominimizethisrisk,TLSstillhaspotentialvulnerabilitiestoaman-in-the-middleattack.Ahighlyskilledandwell-placedattackercanforceTLStooperateatlowersecuritylevels.Regardless,throughtheuseofvalidatedandtrustedcertificates,asecureciphersuitecanbeselectedfortheexchangeofdata.Onceestablished,aTLSsessionremainsactiveaslongasdataisbeing

exchanged.Ifsufficientinactivetimehaselapsedforthesecureconnectiontotimeout,itcanbereinitiated.

TechTip

DisablingSSLBecauseallversionsofSSL,includingv3,haveexploitablevulnerabilitiesthatmaketheprotocolnolongerconsideredsecure,usersshouldnotrelyonitforsecurity.ChromenolongerusesSSL.ForInternetExplorer,youneedtounchecktheSSLboxesunderInternetOptions.

CipherSuitesInmanyapplications,theuseofcryptographyoccursasacollectionoffunctions.Differentalgorithmscanbeusedforauthentication,encryption/decryption,digitalsignatures,andhashing.Thetermciphersuitereferstoanarrangedgroupofalgorithms.Forinstance,TLShasapublishedTLSCipherSuiteRegistryatwww.iana.org/assignments/tls-

parameters/tls-parameters.xhtml.Thereisawiderangeofciphers,someoldandsomenew,eachwithits

ownstrengthsandweaknesses.Overtime,newmethodsandcomputationalabilitieschangetheviabilityofciphers.Theconceptofstrongversusweakciphersisanacknowledgmentthat,overtime,cipherscanbecomevulnerabletoattacks.Theapplicationorselectionofciphersshouldtakeintoconsiderationthatnotallciphersarestillstrong.Whenselectingacipherforuse,itisimportanttomakeanappropriatechoice.Forexample,ifaserveroffersSSLv3andTLS,youshouldchooseTLSonly,asSSLv3hasbeenshowntobevulnerable.

ISAKMPTheInternetSecurityAssociationandKeyManagementProtocol(ISAKMP)providesamethodforimplementingakeyexchangeprotocolandfornegotiatingasecuritypolicy.Itdefinesproceduresandpacketformatstonegotiate,establish,modify,anddeletesecurityassociates.Becauseitisaframework,itdoesn’tdefineimplementation-specificprotocols,suchasthekeyexchangeprotocolorhashfunctions.ExamplesofISAKMParetheInternetKeyExchange(IKE)protocolandIPsec,whichareusedwidelythroughouttheindustry.AnimportantdefinitionforunderstandingISAKMPisthatoftheterm

securityassociation.Asecurityassociation(SA)isarelationshipinwhichtwoormoreentitiesdefinehowtheywillcommunicatesecurely.ISAKMPisintendedtosupportSAsatalllayersofthenetworkstack.Forthisreason,ISAKMPcanbeimplementedonthetransportlayerusingTCPorUserDatagramProtocol(UDP),oritcanbeimplementedonIPdirectly.NegotiationofanSAbetweenserversoccursintwostages.First,the

entitiesagreeonhowtosecurenegotiationmessages(theISAKMPSA).Oncetheentitieshavesecuredtheirnegotiationtraffic,theythendeterminetheSAsfortheprotocolsusedfortheremainderoftheircommunications.Figure7.5showsthestructureoftheISAKMPheader.ThisheaderisusedduringbothpartsoftheISAKMPnegotiation.

•Figure7.5ISAKMPheaderformat

TheInitiatorCookieissetbytheentityrequestingtheSA,andtherespondersetstheResponderCookie.ThePayloadbyteindicatesthetypeofthefirstpayloadtobeencapsulated.Payloadtypesincludesecurityassociations,proposals,keytransforms,keyexchanges,vendoridentities,andotherthings.TheMajorandMinorRevisionfieldsrefertothemajorversionnumberandminorversionnumberfortheISAKMP.TheExchangeTypehelpsdeterminetheorderofmessagesandpayloads.TheFlagsbitsindicateoptionsfortheISAKMPexchange,includingwhetherthepayloadisencrypted,whethertheinitiatorandresponderhave“committed”totheSA,andwhetherthepacketistobeauthenticatedonly(andisnotencrypted).ThefinalfieldsoftheISAKMPheaderindicatetheMessageIdentifierandaMessageLength.PayloadsencapsulatedwithinISAKMPuseagenericheader,andeachpayloadhasitsownheaderformat.OncetheISAKMPSAisestablished,multipleprotocolSAscanbe

establishedusingthesingleISAKMPSA.Thisfeatureisvaluableduetotheoverheadassociatedwiththetwo-stagenegotiation.SAsarevalidforspecificperiodsoftime,andoncethetimeexpires,theSAmustberenegotiated.ManyresourcesarealsoavailableforspecificimplementationsofISAKMPwithintheIPsecprotocol.

CMPThePKIXCertificateManagementProtocol(CMP)isspecifiedinRFC4210.ThisprotocoldefinesthemessagesandoperationsrequiredtoprovidecertificatemanagementserviceswithinthePKIXmodel.ThoughpartoftheIETFPKIXeffort,CMPprovidesaframeworkthatworkswellwithotherstandards,suchasPKCS#7andPKCS#10.

TechTip

CMPSummarizedCMPisaprotocoltoobtainX.509certificatesinaPKI.

CMPprovidesforthefollowingcertificateoperations:CAestablishment,includingcreationoftheinitialCRLandexportofthepublickeyfortheCA

Certificationofanend-entity,includingthefollowing:

Initialregistrationandcertificationoftheend-entity(registration,certificateissuance,andplacementofthecertificateinarepository)

Updatestothekeypairforend-entities,requiredperiodicallyandwhenakeypairiscompromisedorkeyscannotberecovered

End-entitycertificateupdates,requiredwhenacertificateexpires

PeriodicCAkey-pairupdates,similartoend-entitykey-pair

updates

Cross-certificationrequests,placedbyotherCAs

CertificateandCRLpublication,performedundertheappropriateconditionsofcertificateissuanceandcertificaterevocation

Key-pairrecovery,aservicetorestorekey-pairinformationforanend-entity;forexample,ifacertificatepasswordislostorthecertificatefileislost

Revocationrequests,supportingrequestsbyauthorizedentitiestorevokeacertificate

CMPalsodefinesmechanismsforperformingtheseoperations,eitheronlineorofflineusingfiles,e-mail,tokens,orweboperations.

XKMSTheXMLKeyManagementSpecificationdefinesservicestomanagePKIoperationswithintheExtensibleMarkupLanguage(XML)environment.TheseservicesareprovidedforhandlingPKIkeysandcertificatesautomatically.DevelopedbytheWorldWideWebConsortium(W3C),XKMSisintendedtosimplifyintegrationofPKIsandmanagementofcertificatesinapplications.Aswellasrespondingtoproblemsofauthenticationandverificationofelectronicsignatures,XKMSalsoallowscertificatestobemanaged,registered,orrevoked.XKMSservicesresideonaseparateserverthatinteractswithan

establishedPKI.TheservicesareaccessibleviaasimpleXMLprotocol.DeveloperscanrelyontheXKMSservices,makingitlesscomplextointerfacewiththePKI.Theservicesprovideforretrievingkeyinformation(owner,keyvalue,keyissuer,andthelike)andkeymanagement(suchaskeyregistrationandrevocation).RetrievaloperationsrelyontheXMLsignatureforthenecessary

information.Threetiersofservicearebasedontheclientrequestsandapplicationrequirements.Tier0providesameansofretrievingkey

informationbyembeddingreferencestothekeywithintheXMLsignature.Thesignaturecontainsanelementcalledaretrievalmethodthatindicateswaystoresolvethekey.Inthiscase,theclientsendsarequest,usingtheretrievalmethod,toobtainthedesiredkeyinformation.Forexample,iftheverificationkeycontainsalongchainofX.509v3certificates,aretrievalmethodcouldbeincludedtoavoidsendingthecertificateswiththedocument.Theclientwouldusetheretrievalmethodtoobtainthechainofcertificates.Fortier0,theserverindicatedintheretrievalmethodrespondsdirectlytotherequestforthekey,possiblybypassingtheXKMSserver.Thetier0processisshowninFigure7.6.

•Figure7.6XKMStier0retrieval

Withtier1operations,theclientforwardsthekey-informationportionsoftheXMLsignaturetotheXKMSserver,relyingontheservertoperformtheretrievalofthedesiredkeyinformation.ThedesiredinformationcanbelocaltotheXKMSserver,oritcanresideonanexternalPKIsystem.TheXKMSserverprovidesnoadditionalvalidationofthekeyinformation,suchascheckingwhetherthecertificatehasbeenrevokedorisstillvalid.Justasintier0,theclientperformsfinalvalidationofthedocument.Tier1iscalledthelocateservicebecauseitlocatestheappropriatekeyinformationfortheclient,asshowninFigure7.7.

•Figure7.7XKMStier1locateservice

Tier2iscalledthevalidateserviceandisillustratedinFigure7.8.Inthiscase,justasintier1,theclientreliesontheXKMSservicetoretrievetherelevantkeyinformationfromtheexternalPKI.TheXKMSserveralsoperformsdatavalidationonaportionofthekeyinformationprovidedbytheclientforthispurpose.ThisvalidationverifiesthebindingofthekeyinformationwiththedataindicatedbythekeyinformationcontainedintheXMLsignature.

•Figure7.8XKMStier2validateservice

Theprimarydifferencebetweentier1andtier2isthelevelofinvolvementoftheXKMSserver.Intier1,itcanserveonlyasarelayorgatewaybetweentheclientandthePKI.Intier2,theXKMSserverisactivelyinvolvedinverifyingtherelationbetweenthePKIinformationandthedocumentcontainingtheXMLsignature.XKMSreliesontheclientorunderlyingcommunicationsmechanismto

provideforthesecurityofthecommunicationswiththeXKMSserver.Thespecificationsuggestsusingoneofthreemethodsforensuringserverauthentication,responseintegrity,andrelevanceoftheresponsetotherequest:digitallysignedcorrespondence,atransportlayersecurityprotocol(suchasSSL,TLS,orWTLS),orapacketlayersecurityprotocol(suchasIPsec).Obviously,digitallysignedcorrespondenceintroducesitsownissuesregardingvalidationofthesignature,whichisthepurposeofXKMS.Itispossibletodefineothertiersofservice.Tiers3and4,anassertion

serviceandanassertionstatusservice,respectively,arementionedinthedefiningXKMSspecification,buttheyarenotdefined.Thespecificationstatesthey“could”bedefinedinotherdocuments.XKMSalsoprovidesservicesforkeyregistration,keyrevocation,and

keyrecovery.Authenticationfortheseactionsisbasedonapasswordorpassphrase,whichisprovidedwhenthekeysareregisteredandwhentheymustberecovered.

S/MIMETheSecure/MultipurposeInternetMailExtensions(S/MIME)messagespecificationisanextensiontotheMIMEstandardthatprovidesawaytosendandreceivesignedandencryptedMIMEdata.RSASecuritycreatedthefirstversionoftheS/MIMEstandard,usingtheRSAencryptionalgorithmandthePKCSseriesofstandards.Thesecondversiondatesfrom1998buthadanumberofseriousrestrictions,includingtherestrictionto40-bitDataEncryptionStandard(DES).ThecurrentversionoftheIETFstandardisdatedJuly2004andrequirestheuseofAdvanced

EncryptionStandard(AES).

CrossCheckE-mailEncryptionWanttounderstande-mailencryption?FlipaheadtoChapter16one-mailandinstantmessagingformoredetailsone-mailencryption.Thenanswerthesequestions:

Whyisitimportanttoencrypte-mail?Whatimpactscanmaliciouscodehaveonabusiness?

Whyisinstantmessagingahigherriskthane-mail?

ThechangesintheS/MIMEstandardhavebeensofrequentthatthestandardhasbecomedifficulttoimplementuntilv3.Farfromhavingastablestandardforseveralyearsthatproductmanufacturerscouldhavetimetogainexperiencewith,thereweremanychangestotheencryptionalgorithmsbeingused.Justasimportantly,andnotimmediatelyclearfromtheIETFdocuments,thestandardplacesrelianceuponmorethanoneotherstandardforittofunction.KeyamongtheseistheformatofapublickeycertificateasexpressedintheX.509standard.

IETFS/MIMEHistoryTheS/MIMEv2specificationsoutlineabasicstrategyforprovidingsecurityservicesfore-mailbutlackmanysecurityfeaturesrequiredbytheDepartmentofDefense(DoD)forusebythemilitary.ShortlyafterthedecisionwasmadetorevisetheS/MIMEv2specifications,theDoD,itsvendorcommunity,andcommercialindustrymettobegindevelopmentoftheenhancedspecifications.ThesenewspecificationswouldbeknownasS/MIMEv3.ParticipantsagreedthatbackwardcompatibilitybetweenS/MIMEv3andv2shouldbepreserved;otherwise,S/MIMEv3–compatibleapplicationswouldnotbeabletoworkwitholderS/MIMEv2–compatibleapplications.

AminimumsetofcryptographicalgorithmswasmandatedsothatdifferentimplementationsofthenewS/MIMEv3setofspecificationscouldbeinteroperable.ThisminimumsetmustbeimplementedinanapplicationforittobeconsideredS/MIME-compliant.Applicationscanimplementadditionalcryptographicalgorithmstomeettheircustomers’needs,buttheminimumsetmustalsobepresentintheapplicationsforinteroperabilitywithotherS/MIMEapplications.Thus,usersarenotforcedtouseS/MIME-specifiedalgorithms;theycanchoosetheirown,butiftheapplicationistobeconsideredS/MIME-compliant,thestandardalgorithmsmustalsobepresent.

IETFS/MIMEv3SpecificationsBuildingupontheoriginalworkbytheIMC-organizedgroup,theIETFhasworkedhardtoenhancetheS/MIMEv3specifications.TheultimategoalistohavetheS/MIMEv3specificationsreceiverecognitionasanInternetstandard.ThecurrentIETFS/MIMEv3setofspecificationsincludesthefollowing:

CryptographicMessageSyntax(CMS)

S/MIMEv3messagespecification

S/MIMEv3certificate-handlingspecification

Enhancedsecurityservices(ESS)forS/MIME

TechTip

S/MIMEinaNutshellS/MIMEprovidestwosecurityservicestoe-mail:digitalsignaturesandmessageencryption.Digitalsignaturesverifysenderidentity,andencryptioncankeepcontentsprivateduringtransmission.Theseservicescanbeusedindependentlyofeachother,andprovidethefoundationalbasisformessagesecurity.

TheCMSdefinesastandardsyntaxfortransmittingcryptographicinformationaboutcontentsofaprotectedmessage.OriginallybasedonthePKCS#7version1.5specification,theCMSspecificationwasenhancedbytheIETFS/MIMEworkinggrouptoincludeoptionalsecuritycomponents.JustastheS/MIMEv3providesbackwardcompatibilitywithv2,CMSprovidesbackwardcompatibilitywithPKCS#7,soapplicationswillbeinteroperableevenifthenewcomponentsarenotimplementedinaspecificapplication.Integrity,authentication,andnonrepudiationsecurityfeaturesare

providedbyusingdigitalsignaturesusingtheSignedDatasyntaxdescribedbytheCMS.CMSalsodescribeswhatisknownastheEnvelopedDatasyntaxtoprovideconfidentialityofthemessage’scontentthroughtheuseofencryption.ThePKCS#7specificationsupportskeyencryptionalgorithms,suchasRSA.AlgorithmindependenceispromotedthroughtheadditionofseveralfieldstotheEnvelopedDatasyntaxinCMS,whichisthemajordifferencebetweenthePKCS#7andCMSspecifications.ThegoalwastobeabletosupportspecificalgorithmssuchasDiffie-HellmanandtheKeyExchangeAlgorithm(KEA),whichisimplementedontheFortezzaCryptoCarddevelopedfortheDoD.OnefinalsignificantchangetotheoriginalspecificationsistheabilitytoincludeX.509AttributeCertificatesintheSignedDataandEnvelopedDatasyntaxesforCMS.

CMSTriple-EncapsulatedMessageAninterestingfeatureofCMSistheabilitytonestsecurityenvelopestoprovideacombinationofsecurityfeatures.Asanexample,aCMStriple-encapsulatedmessagecanbecreatedinwhichtheoriginalcontentandassociatedattributesaresignedandencapsulatedwithintheinnerSigned-Dataobject.TheinnerSignedDataobjectisinturnencryptedandencapsulatedwithinanEnvelopedDataobject.TheresultingEnvelopedDataobjectisthenalsosignedandfinallyencapsulatedwithinasecondSignedDataobject,theouterSignedDataobject.UsuallytheinnerSignedDataobjectissignedbytheoriginaluserandtheouterSignedDataobjectissignedbyanotherentity,suchasafirewalloramaillistagent,

providinganadditionallevelofsecurity.ThistripleencapsulationisnotrequiredofeveryCMSobject.Allthatis

requiredisasingleSignedDataobjectcreatedbytheusertosignamessageoranEnvelopedDataobjectiftheuserdesiredtoencryptamessage.

OpenPGPisawidelyusede-mailencryptionstandard.Anonproprietaryprotocolforencryptinge-mailusingpublickeycryptography,itisbasedonPGPasoriginallydevelopedbyPhilZimmermann,andisdefinedbytheOpenPGPworkinggroupoftheIETFproposedstandardRFC4880.

PGPPrettyGoodPrivacy(PGP)isapopularprogramthatisusedtoencryptanddecrypte-mailandfiles.Italsoprovidestheabilitytodigitallysignamessagesothereceivercanbecertainofthesender’sidentity.Takentogether,encryptingandsigningamessageallowsthereceivertobeassuredofwhosentthemessageandtoknowthatitwasnotmodifiedduringtransmission.Public-domainversionsofPGPhavebeenavailableforyears,ashaveinexpensivecommercialversions.PGPwasoneofthemostwidelyusedprogramsandwasfrequentlyused

bybothindividualsandbusinessestoensuredataande-mailprivacy.ItwasdevelopedbyPhilipR.Zimmermannin1991andquicklybecameadefactostandardfore-mailsecurity.ThepopularityofPGPleadtotheOpenPGPInternetstandard,RFC4880,andopensourcesolutions.GNUPrivacyGuard(GPG)isacommonalternativetoPGPinusetoday.

TechTip

APGPPersonalNote

AfterdistributingPGPin1991,including(indirectly)internationally,ZimmermannbecameaformaltargetofacriminalinvestigationbytheU.S.governmentin1993forexportingmunitionswithoutalicense,becausecryptosystemsusingkeyslargerthan40bitswereconsidered“munitions”underU.S.exportlaw.ZimmermannproceededtopublishtheentiresourcecodeofPGPinahardbackbook,which,unlikesoftware,isprotectedfromexportlawsbytheFirstAmendmentoftheU.S.Constitution.TheinvestigationofZimmermannwasdroppedafterseveralyears.

HowPGPWorksPGPusesavariationofthestandardpublickeyencryptionprocess.Inpublickeyencryption,anindividual(herecalledthecreator)usestheencryptionprogramtocreateapairofkeys.Onekeyisknownasthepublickeyandisdesignedtobegivenfreelytoothers.Theotherkeyiscalledtheprivatekeyandisdesignedtobeknownonlybythecreator.Individualswhowanttosendaprivatemessagetothecreatorencryptthemessageusingthecreator’spublickey.Thealgorithmisdesignedsuchthatonlytheprivatekeycandecryptthemessage,soonlythecreatorwillbeabletodecryptit.Thismethod,knownaspublickeyorasymmetricencryption,istime

consuming.Symmetricencryptionusesonlyasinglekeyandisgenerallyfaster.ItisbecauseofthisthatPGPisdesignedthewayitis.PGPusesasymmetricencryptionalgorithmtoencryptthemessagetobesent.Itthenencryptsthesymmetrickeyusedtoencryptthismessagewiththepublickeyoftheintendedrecipient.Boththeencryptedkeyandmessagearethensent.Thereceiver’sversionofPGPfirstdecryptsthesymmetrickeywiththeprivatekeysuppliedbytherecipientandthenusestheresultingdecryptedkeytodecrypttherestofthemessage.PGPcanusetwodifferentpublickeyalgorithms:Rivest-Shamir-

Adleman(RSA)andDiffie-Hellman.TheRSAversionusestheInternationalDataEncryptionAlgorithm(IDEA)andashortsymmetrickeytoencryptthemessageandthenusesRSAtoencrypttheshortIDEAkeyusingtherecipient’spublickey.TheDiffie-HellmanversionusestheCarlisleAdamsandStaffordTavares(CAST)algorithmtoencryptthe

messageandtheDiffie-HellmanalgorithmtoencrypttheCASTkey.Todecryptthemessage,thereverseisperformed.TherecipientusestheirprivatekeytodecrypttheIDEAorCASTkey,andthenusesthatdecryptedkeytodecryptthemessage.ThesearebothillustratedinFigure7.9.

•Figure7.9HowPGPworksforencryption

Togenerateadigitalsignature,PGPtakesadvantageofanotherpropertyofpublickeyencryptionschemes.Normally,thesenderencryptsusingthereceiver’spublickeyandthemessageisdecryptedattheotherendusingthereceiver’sprivatekey.Theprocesscanbereversedsothatthesenderencrypts(signs)withhisownprivatekey.Thereceiverthendecryptsthemessagewiththesender’spublickey.Sincethesenderistheonlyindividualwhohasakeythatwillcorrectlybedecryptedwiththesender’spublickey,thereceiverknowsthatthemessagewascreatedbythesenderwhoclaimstohavesentit.ThewayPGPaccomplishesthistaskistogenerateahashvaluefromtheuser’snameandothersignatureinformation.Thishashvalueisthenencryptedwiththesender’sprivatekeyknownonlybythesender.Thereceiverusesthesender’spublickey,whichisavailabletoeveryone,todecryptthehashvalue.Ifthedecryptedhashvaluematchesthehashvaluesentasthedigitalsignatureforthemessage,thenthereceiverisassuredthatthemessagewassentbythesenderwhoclaimstohavesentit.Typically,versionsofPGPcontainauserinterfacethatworkswith

commone-mailprogramssuchasMicrosoftOutlook.Ifyouwantotherstobeabletosendyouanencryptedmessage,youneedtoregisteryourpublickey,generatedbyyourPGPprogram,withaPGPpublickeyserver.Alternatively,youhavetoeithersendyourpublickeytoallthosewhowanttosendyouanencryptedmessageorpostyourkeytosomelocationfromwhichtheycandownloadit,suchasyourwebpage.Notethatusingapublickeyserveristhebettermethod,forallthereasonsoftrustdescribedinthediscussionofPKIsinChapter6.

TechTip

WhereCanYouUsePGP?

FormanyyearstheU.S.governmentwagedafightovertheexportationofPGPtechnology,andformanyyearsitsexportationwasillegal.Today,however,PGP-encryptede-mailcanbeexchangedwithmostusersoutsidetheUnitedStates,andmanyversionsofPGPareavailablefromnumerousinternationalsites.Ofcourse,beingabletoexchangePGP-encryptede-mailrequiresthattheindividualsonbothsidesofthecommunicationhavevalidversionsofPGP.Interestingly,internationalversionsofPGParejustassecureasdomesticversions—afeaturethatisnottrueofotherencryptionproducts.ItshouldbenotedthatthefreewareversionsofPGParenotlicensedforcommercialpurposes.

HTTPSMostwebactivityoccursusingHTTP,butthisprotocolispronetointerception.HTTPSuseseitherSSLorTLStosecurethecommunicationchannel.OriginallydevelopedbyNetscapeCommunicationsandimplementedinitsbrowser,HTTPShassincebeenincorporatedintomostcommonbrowsers.HTTPSusesthestandardTCPport443forTCP/IPcommunicationsratherthanthestandardport80usedforHTTP.Aspreviouslydiscussed,becauseofvulnerabilitiesinSSL,onlyTLSisrecommendedforHTTPStoday.

IPsecIPsecisacollectionofIPsecurityfeaturesdesignedtointroducesecurityatthenetworkorpacket-processinglayerinnetworkcommunication.OtherapproacheshaveattemptedtoincorporatesecurityathigherlevelsoftheTCP/IPsuitesuchasatthelevelwhereapplicationsreside.IPsecisdesignedtoprovidesecureIPcommunicationsovertheInternet.Inessence,IPsecprovidesasecureversionoftheIPbyintroducingauthenticationandencryptiontoprotectLayer4protocols.IPsecisoptionalforIPv4butisrequiredforIPv6.Obviously,bothendsofthecommunicationneedtouseIPsecfortheencryption/decryptionprocesstooccur.IPsecprovidestwotypesofsecurityservicetoensureauthenticationand

confidentialityforeitherthedataalone(referredtoasIPsectransportmode)orforboththedataandheader(referredtoastunnelmode).SeeChapter11formoredetailontunnelingandIPsecoperation.IPsecintroducesseveralnewprotocols,includingtheAuthenticationHeader(AH),whichbasicallyprovidesauthenticationofthesender,andtheEncapsulatingSecurityPayload(ESP),whichaddsencryptionofthedatatoensureconfidentiality.IPsecalsoprovidesforpayloadcompressionbeforeencryptionusingtheIPPayloadCompressionProtocol(IPcomp).Frequently,encryptionnegativelyimpactstheabilityofcompressionalgorithmstofullycompressdatafortransmission.Byprovidingtheabilitytocompressthedatabeforeencryption,IPsecaddressesthisissue.

CEPCertificateEnrollmentProtocol(CEP)wasoriginallydevelopedbyVeriSignforCiscoSystems.Itwasdesignedtosupportcertificateissuance,distribution,andrevocationusingexistingtechnologies.ItsusehasgrowninclientandCAapplications.TheoperationssupportedincludeCAandRApublickeydistribution,certificateenrollment,certificaterevocation,certificatequery,andCRLquery.OneofthekeygoalsofCEPwastouseexistingtechnologywhenever

possible.ItusesbothPKCS#7(CryptographicMessageSyntaxStandard)andPKCS#10(CertificationRequestSyntaxStandard)todefineacommonmessagesyntax.ItsupportsaccesstocertificatesandCRLsusingeithertheLightweightDirectoryAccessProtocol(LDAP)ortheCEP-definedcertificatequery.

OtherStandardsTherearemanyadditionalstandardsassociatedwithinformationsecuritythatarenotspecificallyorsolelyassociatedwithPKIand/orcryptography.Theremainderofthechapterwillintroducethesestandardsandprotocols.

FIPSTheFederalInformationProcessingStandardsPublications(FIPSPUBSorsimplyFIPS)describevariousstandardsfordatacommunicationissues.ThesedocumentsareissuedbytheU.S.governmentthroughtheNationalInstituteofStandardsandTechnology(NIST),whichistaskedwiththeirdevelopment.NISTcreatesthesepublicationswhenacompellinggovernmentneedrequiresastandardforuseinareassuchassecurityorsysteminteroperabilityandnorecognizedindustrystandardexists.ThreecategoriesofFIPSPUBSarecurrentlymaintainedbyNIST:

Hardwareandsoftwarestandards/guidelines

Datastandards/guidelines

Computersecuritystandards/guidelines

ThesedocumentsrequirethatproductssoldtotheU.S.governmentcomplywithone(ormore)oftheFIPSstandards.Thestandardscanbeobtainedfromwww.nist.gov/itl/fips.cfm.

FIPS140-2relatestospecificcryptographicstandardsforthevalidationofcomponentsusedinU.S.governmentsystems.SystemscanbeaccreditedtotheFIPS140-2standardtodemonstratelevelsofsecurityfrom“approvedalgorithms”tohigherlevelsthatincludeadditionalprotectionsuptoandincludingphysicalsecurityandtamperproofmechanisms.

CommonCriteriaTheCommonCriteriaforInformationTechnologySecurity(CommonCriteriaorCC)istheresultofanefforttodevelopajointsetofsecurityprocessesandstandardsthatcanbeusedbytheinternationalcommunity.ThemajorcontributorstotheCCarethegovernmentsoftheUnitedStates,Canada,France,Germany,theNetherlands,andtheUnitedKingdom.The

CCalsoprovidesalistingoflaboratoriesthatapplythecriteriaintestingsecurityproducts.ProductsthatareevaluatedbyoneoftheapprovedlaboratoriesreceiveanEvaluationAssuranceLevelofEAL1throughEAL7(EAL7isthehighestlevel),withEAL4,forexample,designedforenvironmentsrequiringamoderatetohighlevelofindependentlyassuredsecurity,andEAL1beingdesignedforenvironmentsinwhichsomeconfidenceinthecorrectoperationofthesystemisrequiredbutwherethethreatstothesystemarenotconsideredserious.TheCCalsoprovidesalistingofproductsbyfunctionthathaveperformedataspecificEAL.

WTLSTheWirelessTransportLayerSecurity(WTLS)protocolisbasedontheTLSprotocol.WTLSprovidesreliabilityandsecurityforwirelesscommunicationsusingtheWirelessApplicationProtocol(WAP).WTLSisnecessaryduetothelimitedmemoryandprocessingabilitiesofWAP-enabledphones.WTLScanbeimplementedinoneofthreeclasses:Class1iscalled

anonymousauthenticationbutisnotdesignedforpracticaluse.Class2iscalledserverauthenticationandisthemostcommonmodel.Theclientsandservermayauthenticateusingdifferentmeans.Class3isserverandclientauthentication.InClass3authentication,theclient’sandserver’sWTLScertificatesareauthenticated.Class3isthestrongestformofauthenticationandencryption.

ISO/IEC27002(FormerlyISO17799)ISO/IEC27002isaverypopularanddetailedstandardforcreatingandimplementingsecuritypolicies.ISO/IEC27002wasformerlyISO17799,whichwasbasedonversion2oftheBritishStandard7799(BS7799)publishedinMay1999.Withtheincreasedemphasisplacedonsecurityinboththegovernmentandindustryinrecentyears,manyorganizationsarenowtrainingtheirauditpersonneltoevaluatetheirorganizationsagainst

theISO/IEC27002standard.Thestandardisdividedinto12sections,eachcontainingmoredetailedstatementsdescribingwhatisinvolvedforthattopic:

RiskassessmentDeterminetheimpactofrisksSecuritypolicyGuidanceandpolicyprovidedbymanagementOrganizationofinformationsecurityGovernancestructuretoimplementsecuritypolicy

AssetmanagementInventoryandclassificationofassetsHumanresourcessecurityPoliciesandproceduresaddressingsecurityforemployeesincludinghires,changes,anddepartures

PhysicalandenvironmentalsecurityProtectionofthecomputerfacilities

CommunicationsandoperationsmanagementManagementoftechnicalsecuritycontrolsinsystemsandnetworks

AccesscontrolRestrictionofaccessrightstonetworks,systems,applications,functions,anddata

Informationsystemsacquisition,development,andmaintenanceBuildingsecurityintoapplications

InformationsecurityincidentmanagementAnticipatingandrespondingappropriatelytoinformationsecuritybreaches

BusinesscontinuitymanagementProtecting,maintaining,andrecoveringbusiness-criticalprocessesandsystems

ComplianceEnsuringconformancewithinformationsecuritypolicies,standards,laws,andregulations

SAMLSecurityAssertionMarkupLanguage(SAML)isasinglesign-on

capabilityusedforwebapplicationstoensureuseridentitiescanbesharedandareprotected.Itdefinesstandardsforexchangingauthenticationandauthorizationdatabetweensecuritydomains.Itisbecomingincreasinglyimportantwithcloud-basedsolutionsandwithSoftware-as-a-Service(SaaS)applications,becauseitensuresinteroperabilityacrossidentityproviders.SAMLisanXML-basedprotocolthatusessecuritytokensand

assertionstopassinformationabouta“principal”(typicallyanenduser)withaSAMLauthority(an“identityprovider”orIdP)andtheserviceprovider(SP).TheprincipalrequestsaservicefromtheSPwhichthenrequestsandobtainsanidentityassertionfromtheIdP.TheSPcanthengrantaccessorperformtherequestedservicefortheprincipal.

Chapter7Review

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutPKIstandardsandprotocols.

IdentifythestandardsinvolvedinestablishinganinteroperableInternetPKI

PKIXandPKCSdefinethemostcommonlyusedPKIstandards.

PKIX,PKCS,X.509,ISAKMP,XKMS,andCMPcombinetoimplementPKI.

SSL/TLS,S/MIME,HTTPS,andIPsecareprotocolsthatusePKI.

ExplaininteroperabilityissueswithPKIstandards

Standardsandprotocolsareimportantbecausetheydefinethebasisfor

howcommunicationwilltakeplace.Theuseofstandardsandprotocolsprovidesacommon,interoperableenvironmentforsecurelyexchanginginformation.

Withoutthesestandardsandprotocols,twoentitiesmayindependentlydeveloptheirownmethodtoimplementthevariouscomponentsforaPKI,andthetwowillnotbecompatible.

OntheInternet,notbeingcompatibleandnotbeingabletocommunicateisnotanoption.

DescribehowthecommonInternetprotocolsimplementthePKIstandards

ThreemainstandardshaveevolvedovertimetoimplementPKIsontheInternet.

Twoofthemainstandardsarebasedonathirdstandard,theX.509standard,andestablishcomplementarystandardsforimplementingPKIs.ThesetwostandardsarePublicKeyInfrastructureX.509(PKIX)andPublicKeyCryptographyStandards(PKCS).

PKIXdefinesstandardsforinteractionsandoperationsforfourcomponenttypes:theuser(end-entity),certificateauthority(CA),registrationauthority(RA),andtherepositoryforcertificatesandcertificaterevocationlists(CRLs).

PKCSdefinesmanyofthelower-levelstandardsformessagesyntax,cryptographicalgorithms,andthelike.

ThereareotherprotocolsandstandardsthathelpdefinethemanagementandoperationofthePKIandrelatedservices,suchasISAKMP,XKMS,andCMP.

S/MIMEisusedtoencrypte-mail.

SSL,TLS,andWTLSareusedforsecurepackettransmission.

IPsecisusedtosupportvirtualprivatenetworks.

TheCommonCriteriaestablishesaseriesofcriteriafromwhichsecurityproductscanbeevaluated.

TheISO/IEC27002standardprovidesapointfromwhichsecuritypoliciesandpracticescanbedevelopedintwelveareas.

VarioustypesofpublicationsareavailablefromNISTsuchasthosefoundintheFIPSseries.

KeyTermscertificate(172)certificateauthority(CA)(169)certificaterevocationlist(CRL)(169)InternetSecurityAssociationandKeyManagementProtocol

(ISAKMP)(174)IPsec(182)PrettyGoodPrivacy(PGP)(180)publickeyinfrastructure(PKI)(167)Secure/MultipurposeInternetMailExtensions(S/MIME)(178)SecureSocketsLayer(SSL)(173)SecurityAssertionMarkupLanguage(SAML)(185)TransportLayerSecurity(TLS)(173)WirelessApplicationProtocol(WAP)(184)WirelessTransportLayerSecurity(WTLS)(184)X.509(172)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1._______________isaprotocolusedtosecureIPpacketsduring

transmissionacrossanetwork.Itoffersauthentication,integrity,andconfidentialityservices.ItusesAuthenticationHeaders(AHs)andEncapsulatingSecurityPayload(ESP)toaccomplishthisfunctionality.

2.Anencryptioncapabilitydesignedtoencryptabovethetransportlayer,enablingsecuresessionsbetweenhosts,iscalled______________.

3.A(n)_______________isanentitythatisresponsibleforissuingandrevokingcertificates.Thistermisalsoappliedtoserversoftwarethatprovidestheseservices.

4.Adigitallysignedobjectthatlistsallofthecurrentbutrevokedcertificatesissuedbyagivencertificateauthorityiscalledthe______________.Itallowsuserstoverifywhetheracertificateiscurrentlyvalideveniftheexpirationdatehasn’tpassed.

5._______________isaformatthathasbeenadoptedtostandardizedigitalcertificates.

6.Infrastructureforbindingapublickeytoaknownuserthroughatrustedintermediary,typicallyacertificateauthority,iscalledthe_______________.

7.The_______________isaprotocolframeworkthatdefinesthemechanicsofimplementingakeyexchangeprotocolandnegotiationofasecuritypolicy.

8.TheencryptionprotocolthatisusedonWirelessApplicationProtocol(WAP)networksiscalled_______________.

9.Aprotocolfortransmittingdatatosmallhandhelddeviceslikecellularphonesisthe_______________.

10._______________isapopularencryptionprogramthathastheabilitytoencryptanddigitallysigne-mailandfiles.

Multiple-ChoiceQuiz1.Whichofthefollowingisusedtograntpermissionsusingrule-

based,role-based,andrank-basedaccesscontrols?

A.AQualifiedCertificate

B.AControlCertificate

C.AnAttributeCertificate

D.AnOptionalCertificate

2.XKMSallowscertificatestobeallofthefollowingexcept:A.Created

B.Registered

C.Managed

D.Revoked

3.TransportLayerSecurityconsistsofwhichtwoprotocols?A.TheTLSRecordProtocolandTLSHandshakeProtocol

B.TheTLSRecordProtocolandTLSCertificateProtocol

C.TheTLSCertificateProtocolandTLSHandshakeProtocol

D.TheTLSKeyProtocolandTLSHandshakeProtocol

4.Whichofthefollowingprovidesamethodforimplementingakeyexchangeprotocol?

A.EISA

B.ISAKMP

C.ISA

D.ISAKEY

5.Whichofthefollowingisadetailedstandardforcreatingandimplementingsecuritypolicies?

A.PKIX

B.ISO/IEC27002

C.FIPS

D.X.509

6.Arelationshipwheretwoormoreentitiesdefinehowtheywillcommunicatesecurelyisknownaswhat?

A.Athree-wayhandshake

B.Asecurityassociation

C.Athree-wayagreement

D.Asecurityagreement

7.WhatisthepurposeofXKMS?A.Extendssessionassociationsovermanytransportprotocols

B.EncapsulatessessionassociationsoverTCP/IP

C.DefinesservicestomanageheterogeneousPKIoperationsviaXML

D.DesignedtoreplaceSSL

8.Whichofthefollowingisasecuree-mailstandard?A.POP3

B.IMAP

C.SMTP

D.S/MIME

9.WhichofthefollowingisajointsetofsecurityprocessesandstandardsusedbyapprovedlaboratoriestoawardanEvaluationAssuranceLevel(EAL)fromEAL1toEAL7?

A.CommonCriteria

B.FIPS

C.ISO17700

D.IEEEX.509

10.TransportLayerSecurityforHTTPuseswhatporttocommunicate?A.53

B.80

C.143

D.443

EssayQuiz1.YouaretheInformationSecurityOfficeratamedium-sized

company(1500employees).TheCIOhasaskedyoutoexplainwhyyourecommendusingcommercialPKIsratherthanimplementingsuchacapabilityin-housewiththesoftwaredevelopersyoualreadyhave.Writethreesuccinctsentencesthatwouldgetyourpointacrossandaddressthreekeyissues.

2.Imagineyouareawebdeveloperforasmalllocallyownedbusiness.ExplainwhenusingHTTPwouldbesatisfactoryandwhy,andexplainwhenyoushoulduseHTTPSandwhy.

3.Explaininyourownwordshow,byapplyingbothasymmetricandsymmetricencryption,yourbrowserusesTLStoprotecttheprivacyoftheinformationpassingbetweenyourbrowserandawebserver.

4.Itiswellunderstoodthatasymmetricencryptionconsumesmorecomputingresourcesthansymmetricencryption.ExplainhowPGPusesbothasymmetricandsymmetricencryptiontobebothsecureandefficient.

LabProjects

Notethatfortheselabprojects,itwouldbebesttohaveapartnersothatyoucaneachhaveyourownpairofpublic/privatekeystoconfirmtheoperationofPGP.

•LabProject7.1LoadeitheratrialversionofPGPorGnuPrivacyGuard(GPG).Installitandcreateapublic/privatekeypairforyourself.Createadocumentusingawordprocessorandencryptitusingthereceiver’spublickey.Sendittoapartner(oryourself)andthendecryptitusingthecorrespondingprivatekey.

•LabProject7.2CreateanotherdocumentdifferentfromtheoneusedinLabProject7.1.Thistimeuseyourprivatekeytodigitallysignthedocumentandsendittoapartner(oryourself)whocanthenusethepublickeytoconfirmthatitreallyisfromtheindicatedsender.

chapter8 PhysicalSecurity

Baseballis90percentmental,theotherhalfisphysical.

—YOGIBERRA

F

Inthischapter,youwilllearnhowto

Describehowphysicalsecuritydirectlyaffectscomputerandnetworksecurity

Discussstepsthatcanbetakentohelpmitigaterisks

Identifythedifferenttypesoffiresandthevariousfiresuppressionsystemsdesignedtolimitthedamagecausedbyfires

Explainelectronicaccesscontrolsandtheprinciplesofconvergence

ormosthomes,locksaretheprimarymeansofachievingphysicalsecurity,andalmosteveryonelocksthedoorstohisorherhomeuponleavingtheresidence.Somegoevenfurtherandsetupintrusionalarm

systemsinadditiontolocks.Alltheseprecautionsareconsiderednecessarybecausepeoplebelievetheyhavesomethingsignificantinsidethehousethatneedstobeprotected,suchasimportantpossessionsandimportantpeople.Physicalsecurityisanimportanttopicforbusinessesdealingwiththe

securityofnetworksandinformationsystems.Businessesareresponsibleforsecuringtheirprofitability,whichrequiressecuringacombinationofassets:employees,productinventory,tradesecrets,andstrategyinformation.Theseandotherimportantassetsaffecttheprofitabilityofacompanyanditsfuturesurvival.Companiesthereforeperformmanyactivitiestoattempttoprovidephysicalsecurity—lockingdoors,installingalarmsystems,usingsafes,postingsecurityguards,settingaccesscontrols,andmore.Mostcompaniestodayhaveinvestedalargeamountoftime,money,

andeffortinbothnetworksecurityandinformationsystemssecurity.Inthischapter,youwilllearnabouthowthestrategiesforsecuringthenetworkandforsecuringinformationsystemsarelinked,andyou’lllearnseveralmethodsbywhichcompaniescanminimizetheirexposuretophysicalsecurityeventsthatcandiminishtheirnetworksecurity.

TheSecurityProblemTheproblemthatfacesprofessionalschargedwithsecuringacompany’snetworkcanbestatedrathersimply:physicalaccessnegatesallothersecuritymeasures.Nomatterhowimpenetrablethefirewallandintrusiondetectionsystem(IDS),ifanattackercanfindawaytowalkuptoandtouchaserver,hecanbreakintoit.Considerthatmostnetworksecuritymeasuresare,fromnecessity,

directedatprotectingacompanyfromInternet-basedthreats.Consequently,alotofcompaniesallowanykindoftrafficonthelocalareanetwork(LAN).SoifanattackerattemptstogainaccesstoaserverovertheInternetandfails,hemaybeabletogainphysicalaccesstothereceptionist’smachineand,byquicklycompromisingit,useitasaremotelycontrolledzombietoattackwhatheisreallyafter.Figure8.1illustratestheuseofalower-privilegemachinetoobtainsensitiveinformation.Physicallysecuringinformationassetsdoesn’tmeanjusttheservers;itmeansprotectingphysicalaccesstoalltheorganization’scomputersanditsentirenetworkinfrastructure.

•Figure8.1Usingalower-privilegemachinetogetatsensitiveinformation

Physicalaccesstoacorporation’ssystemscanallowanattackertoperformanumberofinterestingactivities,startingwithsimplypluggingintoanopenEthernetjack.Theadventofhandhelddeviceswiththeabilitytorunoperatingsystemswithfullnetworkingsupporthasmadethisattackscenarioevenmorefeasible.Priortohandhelddevices,theattackerwouldhavetoworkinasecludedareawithdedicatedaccesstotheEthernetforatime.Theattackerwouldsitdownwithalaptopandrunavarietyoftoolsagainstthenetwork,andworkinginternallytypicallyputtheattackerinsidethefirewallandIDS.Today’scapablemobiledevicescanassisttheseeffortsbyallowingattackerstoplacethesmalldeviceontothenetworktoactasawirelessbridge,asshowninFigure8.2.

•Figure8.2Awirelessbridgecanallowremoteaccess.

Theattackercanthenusealaptoptoattackanetworkremotelyviathebridgefromoutsidethebuilding.IfpowerisavailableneartheEthernetjack,thistypeofattackcanalsobeaccomplishedwithanoff-the-shelfaccesspoint.Theattacker’sonlychallengeisfindinganEthernetjackthat

isn’tcoveredbyfurnitureorsomeotherobstruction.Anothersimpleattackthatcanbeusedwhenanattackerhasphysical

accessiscalledabootdisk.AnymediausedtobootacomputerintoanoperatingsystemthatisnotthenativeOSonitsharddrivecouldbeclassifiedasabootdisk.Thesecanbeintheformofafloppydisk,CD,DVD,oraUSBflashdrive.BeforebootableCDsorDVDswereavailable,abootfloppywasusedtostartthesystemandpreparetheharddrivestoloadtheoperatingsystem.Abootsourcecancontainanumberofprograms,butthemosttypicaloneswouldbeNTFSDOSorafloppy-basedLinuxdistributionthatcanbeusedtoperformanumberoftasks,includingmountingtheharddrivesandperformingatleastreadoperations,alldoneviascript.Onceanattackerisabletoreadaharddrive,thepasswordfilecanbecopiedoffthemachineforofflinepassword-crackingattacks.Ifwriteaccesstothedriveisobtained,theattackercouldalterthepasswordfileorplacearemote-controlprogramtobeexecutedautomaticallyuponthenextboot,guaranteeingcontinuedaccesstothemachine.Mostnewmachinesdonotincludefloppydrives,sothisattackisrapidlybeingreplacedbythesameconceptwithaUSBdevice,CD,orDVD.ThemostobviousmitigationistotelltheBIOSnottobootfromremovablemedia,butthistoohasissues.ThebootableCD-ROMsandDVD-ROMsareactuallymoreofathreat,

becausetheyarefrequentlyusedtocarryavarietyofsoftwareforupdatesandcanutilizethemuchgreaterstoragecapacityoftheCDorDVDmedia.Thiscapacitycanstoreanentireoperatingsystemandacompletetoolsetforavarietyoftasksormalware,sowhenupdatingviaCD/DVD,precautionsmustbetakentoensuretheveracityofthemedia.Thereareoperatingsystemdistributionsspecificallydesignedtorunthe

entiremachinefromanopticaldiscwithoutusingtheharddrive.ThesearecommonlyreferredtoasLiveCDs.ALiveCDcontainsabootableversionofanentireoperatingsystem,typicallyavariantofLinux,completewithdriversformostdevices.LiveCDsgiveanattackeragreaterarrayoftoolsthancouldbeloadedontoafloppydisk,suchasscanners,sniffers,vulnerabilityexploits,forensictools,driveimagers,passwordcrackers,

andsoon.Thesesetsoftoolsaretoonumeroustolisthereandarechangingeveryday.ThebestresourceistosearchtheInternetforpopularLiveCDdistributionslikeKali/Backtrack,knoppix,andPHLAK.AsamplecollectionofLiveCDsisshowninFigure8.3.

•Figure8.3AcollectionofsampleLiveCDs

Forexample,withaLiveCDanattackerwouldlikelyhaveaccesstotheharddiskandalsotoanoperationalnetworkinterfacethatwouldallow

himtosendthedrivedataovertheInternetifproperlyconnected.ThesebootableoperatingsystemscouldalsobecustombuilttocontainanytoolthatrunsunderLinux,allowinganattackertobuildastandardbootableattackimageorastandardbootableforensicimage,orsomethingcustomizedforthetoolshelikestouse.BootableUSBflashdrivesemulatethefunctionofaCD-ROMandprovideadevicethatisbothphysicallysmallerandlogicallylarger.CheapUSBflashdrivesarenowcommonlyavailablethatprovidegreaterthan32GBofstorage,withmoreexpensiveversionsstretchingthatcapacityto64,128,andeven256GB.Electronicminiaturizationhasmadethesedevicessmallenoughtobeunnoticed;arecentversionextendsonly5mmfromtheUSBport.Madebootable,thesedevicescancontainentirespecializedoperatingsystems,andunlikeabootableCD-ROM,thesedevicescanalsobewrittento,providinganoffloadpointforcollecteddataifanattackerchoosestoleavethedeviceandreturnlater.

TryThis!CreateaBootdiskBootdisksallowyoutobootacomputertothediskratherthantheOSthatisontheharddrive.Createabootdiskforyourownpersonalcomputer.ThestepsdifferbetweendifferentOSsanddependinguponthemediathatyouwishtomakebootable.PerformalittleresearchtodeterminethecorrectprocedureforyourOSandgiveitatry.MakeabootableCD/DVDorUSBflashdrive.

ThesetypesofdeviceshavespawnedanewkindofattackinwhichaCD,DVD,orflashdriveisleftinanopportunisticplacewheremembersofatargetorganizationmaypickupandusethem.ThisCD/DVDorflashdriveistypicallyloadedwithmalwareandisreferredtoasaroadapple.Theattackreliesoncuriouspeopletoplugthedeviceintotheirworkcomputertoseewhat’sonit.Occasionallytheattackermayalsotrytotemptthepasserbywithenticingdescriptionslike“EmployeeSalaries”orevensomethingassimpleas“Confidential.”OnceauserloadstheCD/DVDorflashdrive,themalwarewillattempttoinfectthemachine.

Driveimagingistheprocessofcopyingtheentirecontentsofaharddrivetoasinglefileonadifferentmedia.Thisprocessisoftenusedbypeoplewhoperformforensicinvestigationsofcomputers.Typically,abootablemediaisusedtostartthecomputerandloadthedriveimagingsoftware.Thissoftwareisdesignedtomakeabit-by-bitcopyoftheharddriveinafileonanothermedia,usuallyanotherharddriveorCD-R/DVD-Rmedia.Driveimagingisusedininvestigationstomakeanexactcopythatcanbeobservedandtakenapart,whilekeepingtheoriginalexactlyasitwasforevidencepurposes.

ExamTip:Driveimagingisathreatbecauseallexistingaccesscontrolstodatacanbebypassedandallthedatastoredonthedrivecanbereadfromtheimage.

Fromanattacker’sperspective,driveimagingsoftwareisusefulbecauseitpullsallinformationfromacomputer’sharddrivewhilestillleavingthemachineinitsoriginalstate.Theinformationcontainseverybitofdatathatisonthecomputer:anylocallystoreddocuments,locallystorede-mails,andeveryotherpieceofinformationthattheharddrivecontains.Thisdatacouldbeveryvaluableifthemachineholdssensitiveinformationaboutthecompany.Physicalaccessisthemostcommonwayofimagingadrive,andthe

biggestbenefitfortheattackeristhatdriveimagingleavesabsolutelynotraceofthecrime.Besidesphysicallysecuringaccesstoyourcomputers,youcandoverylittletopreventdriveimaging,butyoucanminimizeitsimpact.Theuseofencryptionevenforafewimportantfilesprovidesprotection.Fullencryptionofthedriveprotectsallfilesstoredonit.Alternatively,placingfilesonacentralizedfileserverkeepsthemfrombeingimagedfromanindividualmachine,butifanattackerisabletoimagethefileserver,thedatawillbecopied.

CrossCheckForensicImagesWhentakingaforensic-basedimage,itisimportanttofollowproperforensicprocedurestoensuretheevidenceisproperlysecured.ForensicprocessesandproceduresarecoveredindetailinChapter23.

TechTip

EncryptiontoTPM-BasedKeysManycomputersnowcomewithasecuritychipthatfollowstheTrustedPlatformModulestandard.ThisTPMchipallowsforthecreationandstorageofencryptionkeys.Oneofthestrengthsassociatedwiththislevelofsecurityisthatifacopyofadrive,oreventhedriveitself,isstolen,thecontentsareunusablewithoutthekey.Havingthiskeylockedinhardwarepreventshackersfromstealingacopyofthekeyfromamemorylocation.

Adenial-of-service(DoS)attackcanalsobeperformedwithphysicalaccess.Physicalaccesstothecomputerscanbemuchmoreeffectivethananetwork-basedDoSattack.Stealingacomputer,usingabootdisktoerasealldataonthedrives,orsimplyunpluggingcomputersarealleffectiveDoSattacks.Dependingonthecompany’squalityandfrequencyofbackingupcriticalsystems,aDoSattackusingthesemethodscanhavelastingeffects.Physicalaccesscannegatealmostallthesecuritythatthenetwork

attemptstoprovide.Consideringthis,youmustdeterminethelevelofphysicalaccessthatattackersmightobtain.Ofspecialconsiderationarepersonswithauthorizedaccesstothebuildingbutwhoarenotauthorizedusersofthesystems.Janitorialpersonnelandothershaveauthorizedaccesstomanyareas,buttheydonothaveauthorizedsystemaccess.Anattackercouldposeasoneoftheseindividualsorattempttogainaccesstothefacilitiesthroughthem.

PhysicalSecuritySafeguardsWhileitisdifficult,ifnotimpossible,tomakeanorganization’scomputersystemstotallysecure,manystepscanbetakentomitigatetherisktoinformationsystemsfromaphysicalthreat.Thefollowingsectionsdiscussaccesscontrolmethodsandphysicalsecuritypoliciesandproceduresthatshouldbeimplemented.

WallsandGuardsTheprimarydefenseagainstamajorityofphysicalattacksarethebarriersbetweentheassetsandapotentialattacker—walls,fences,gates,anddoors.Someorganizationsalsoemployfull-orpart-timeprivatesecuritystafftoattempttoprotecttheirassets.Thesebarriersprovidethefoundationuponwhichallothersecurityinitiativesarebased,butthesecuritymustbedesignedcarefully,asanattackerhastofindonlyasinglegaptogainaccess.

ExamTip:Allentrypointstoserverroomsandwiringclosetsshouldbecloselycontrolled,and,ifpossible,accessshouldbeloggedthroughanaccesscontrolsystem.

Wallsmayhavebeenoneofthefirstinventionsofman.Oncehelearnedtousenaturalobstaclessuchasmountainstoseparatehimfromhisenemy,henextlearnedtobuildhisownmountainforthesamepurpose.Hadrian’sWallinEngland,theGreatWallofChina,andtheBerlinWallareallfamousexamplesofsuchbasicphysicaldefenses.Thewallsofanybuildingservethesamepurpose,butonasmallerscale:theyprovidebarrierstophysicalaccesstocompanyassets.Bollardsaresmallandroundconcretepillarsthatareconstructedandplacedaroundabuildingtoprotectitfrombeingdamagedbysomeonedrivingavehicleintothesideofthebuilding,orgettingcloseandusingacarbomb.

Toprotectthephysicalservers,youmustlookinalldirections:Doorsandwindowsshouldbesafeguardedandaminimumnumberofeachshouldbeusedinaserverroom.Lessobviousentrypointsshouldalsobeconsidered:Isadropceilingusedintheserverroom?Dotheinteriorwallsextendtotheactualroof,raisedfloors,orcrawlspaces?Accesstotheserverroomshouldbelimitedtothepeoplewhoneedaccess,nottoallemployeesoftheorganization.Ifyouaregoingtouseawalltoprotectanasset,makesurenoobviousholesappearinthatwall.

Anothermethodofpreventingsurreptitiousaccessisthroughtheuseofwindows.Manyhigh-securityareashaveasignificantnumberofwindowssothatpeople’sactivitieswithintheareacan’tbehidden.Aclosedserverroomwithnowindowsmakesforaquietplaceforsomeonetoachievephysicalaccesstoadevicewithoutworryofbeingseen.Windowsremovethisprivacyelementthatmanycriminalsdependupontoachievetheirentryandillicitactivities.Toomanywindowsmakesiteasytoshouldersurf—balanceisthekey,

FencesOutsideofthebuilding’swalls,manyorganizationsprefertohaveaperimeterfenceasaphysicalfirstlayerofdefense.Chain-link-typefencingismostcommonlyused,anditcanbeenhancedwithbarbedwire.Anti-scalefencing,whichlookslikeverytallverticalpolesplacedclosetogethertoformafence,isusedforhigh-securityimplementationsthatrequireadditionalscaleandtamperresistance.Toincreasesecurityagainstphysicalintrusion,higherfencescanbe

employed.Afencethatisthreetofourfeetinheightwilldetercasualoraccidentaltrespassers.Sixtosevenfeetwilldeterageneralintruder.Todetermoredeterminedintruders,aminimumheightofeightfeetisrecommendedwiththeadditionofbarbedwireorrazorwireontopforextremelevelsofdeterrence.

Guards

Guardsprovideanexcellentsecuritymeasure,becauseguardsareavisiblepresencewithdirectresponsibilityforsecurity.Otheremployeesexpectsecurityguardstobehaveacertainwaywithregardtosecuringthefacility.Guardstypicallymonitorentrancesandexitsandcanmaintainaccesslogsofwhohasenteredanddepartedthebuilding.Inmanyorganizations,everyonewhopassesthroughsecurityasavisitormustsignthelog,whichcanbeusefulintracingwhowasatwhatlocationandwhy.

Thebiggerchallengeassociatedwithcapturingsurveillanceactivitiesorotherattemptedbreak-ineffortsistheirclandestinenature.Theseeffortsaredesignedtobeaslowprofileandnonobviousaspossibletoincreasethechancesofsuccess.Trainingandawarenessisnecessarynotjustforsecuritypersonnelbutforallpersonnel.Ifanemployeehearsmultipleextensionsallstartringinginthemiddleofthenight,dotheyknowwhotonotify?Ifasecurityguardnotessuchactivity,howdoesthisinformationgetreportedtothecorrectteam?

Securitypersonnelarehelpfulinphysicallysecuringthemachinesonwhichinformationassetsreside,buttogetthemostbenefitfromtheirpresence,theymustbetrainedtotakeaholisticapproachtosecurity.Thevalueofdatatypicallycanbemanytimesthatofthemachinesonwhichthedataisstored.Securityguardstypicallyarenotcomputersecurityexperts,sotheyneedtobeeducatedaboutthevalueofthedataandbetrainedinnetworksecurityaswellasphysicalsecurityinvolvingusers.Theyarethecompany’seyesandearsforsuspiciousactivity,sothenetworksecuritydepartmentneedstotrainthemtonoticesuspiciousnetworkactivityaswell.Multipleextensionsringinginsequenceduringthenight,computersrebootingallatonce,orstrangepeopleparkedintheparkinglotwithlaptopcomputersareallindicatorsofanetworkattackthatmightbemissedwithoutpropertraining.Manytraditionalphysicalsecuritytoolssuchasaccesscontrolsand

CCTVcamerasystemsaretransitioningfromclosedhardwiredsystemstoEthernet-andIP-basedsystems.Thistransitionopensupthedevicestonetworkattackstraditionallyperformedoncomputers.WithphysicalsecuritysystemsbeingimplementedusingtheIPnetwork,everyonein

physicalsecuritymustbecomesmarteraboutnetworksecurity.

PhysicalAccessControlsandMonitoringPhysicalaccesscontrolmeanscontrolofdoorsandentrypoints.Thedesignandconstructionofalltypesofaccesscontrolsystems,aswellasthephysicalbarrierstowhichtheyaremostcomplementary,arefullydiscussedinothertexts.Here,weexploreafewimportantpointstohelpyousafeguardtheinformationinfrastructure,especiallywhereitmeetswiththephysicalaccesscontrolsystem.Thissectiontalksaboutphysicallocks,layeredaccesssystems,andelectronicaccesscontrolsystems.Italsodiscussesclosedcircuittelevision(CCTV)systemsandtheimplicationsofdifferentCCTVsystemtypes.

LocksLockshavebeendiscussedasaprimaryelementofsecurity.Althoughlockshavebeenusedforhundredsofyears,theirdesignhasnotchangedmuch:ametal“token”isusedtoalignpinsinamechanicaldevice.Asallmechanicaldeviceshavetolerances,itispossibletosneakthroughthesetolerancesby“picking”thelock.Mostlockscanbeeasilypickedwithsimpletools,someofwhichareshowninFigure8.4.

•Figure8.4Lockpickingtools

Aswehumansarealwaystryingtobuildabettermousetrap,high-securitylockshavebeendesignedtodefeatattacks,suchastheoneshowninFigure8.5;theselocksaremoresophisticatedthanastandardhomedeadboltsystem.Typicallyfoundincommercialapplicationsthatrequirehighsecurity,theselocksaremadetoresistpickinganddrilling,aswellasothercommonattackssuchassimplypoundingthelockthroughthedoor.Anothercommonfeatureofhigh-securitylocksiskeycontrol,whichreferstotherestrictionsplacedonmakingacopyofthekey.Formostresidentiallocks,atriptothehardwarestorewillallowyoutomakeacopyofthekey.Keycontrollocksusepatentedkeywaysthatcanonlybecopiedatalocksmith,whowillkeeprecordsonauthorizedusersofaparticularkey.

•Figure8.5Ahigh-securitylockanditskey

High-endlocksecurityismoreimportantnowthatattackssuchas“bumpkeys”arewellknownandwidelyavailable.Abumpkeyisakeycutwithallnotchestothemaximumdepth,alsoknownas“allnines.”Thiskeyusesatechniquethathasbeenaroundalongtime,buthasrecentlygainedalotofpopularity.Thekeyisinsertedintothelockandthensharplystruck,bouncingthelockpinsupabovetheshearlineandallowingthelocktoopen.High-securitylocksattempttopreventthistypeofattackthroughvariousmechanicalmeanssuchasnontraditionalpinlayout,sidebars,andevenmagnetickeys.Otherphysicallocksincludeprogrammableorcipherlocks;lockswitha

keypadthatrequireacombinationofkeystoopenthelock;andlockswithareaderthatrequireanaccesscardtoopenthelock.Thesemayhavespecialoptionssuchasahostagealarm(supportakeycombinationtotriggeranalarm).Master-keying(supportkeycombinationstochangetheaccesscodeandconfigurethefunctionsofthelock)andkey-overridefunctions(supportkeycombinationstooverridetheusualprocedures)arealsooptionsonhigh-endprogrammablelocks.

ExamTip:Layeredaccessisaformofdefenseindepth,aprinciplecomponentofanystrongsecuritysolution.

Devicelocksareusedtolockadevicetoaphysicalrestraint,preventingitsremoval.Anothermethodofsecuringlaptopsandmobiledevicesisacabletrap,whichallowsausertoaffixacablelocktoasecurestructure.

LayeredAccessLayeredaccessisanimportantconceptinsecurity.Itisoftenmentionedinconversationsaboutnetworksecurityperimeters,butinthischapteritrelatestotheconceptofphysicalsecurityperimeters.Tohelppreventanattackerfromgainingaccesstoimportantassets,theseassetsshouldbeplacedinsidemultipleperimeters.Serversshouldbeplacedinaseparatesecurearea,ideallywithaseparateauthenticationmechanism.Forexample,ifanorganizationhasanelectronicdoorcontrolsystemusingcontactlessaccesscards(suchastheexampleshowninFigure8.6)aswellasakeypad,acombinationofthecardandaseparatePINcodewouldberequiredtoopenthedoortotheserverroom.

•Figure8.6Contactlessaccesscardsactasmodernkeystoabuilding.

Accesstotheserverroomshouldbelimitedtostaffwithalegitimateneedtoworkontheservers.Tolayertheprotection,theareasurrounding

theserverroomshouldalsobelimitedtopeoplewhoneedtoworkinthatarea.

ElectronicAccessControlSystemsManyorganizationsuseelectronicaccesscontrolsystemstocontroltheopeningofdoors.Theuseofproximityreadersandcontactlessaccesscardsprovidesuserinformationtothecontrolpanel.Doorwaysareelectronicallycontrolledviaelectronicdoorstrikesandmagneticlocks.Thesedevicesrelyonanelectronicsignalfromthecontrolpaneltoreleasethemechanismthatkeepsthedoorclosed.Thesedevicesareintegratedintoanaccesscontrolsystemthatcontrolsandlogsentryintoallthedoorsconnectedtoit,typicallythroughtheuseofaccesstokens.Securityisimprovedbyhavingacentralizedsystemthatcaninstantlygrantorrefuseaccessbaseduponaccesslistsandthereadingofatokenthatisgiventotheuser.Thiskindofsystemalsologsuseraccess,providingnonrepudiationofaspecificuser’spresenceinacontrolledenvironment.Thesystemwillallowloggingofpersonnelentry,auditingofpersonnelmovements,andreal-timemonitoringoftheaccesscontrols.

ExamTip:Amantrapdoorarrangementcanpreventunauthorizedpeoplefromfollowingauthorizedusersthroughanaccess-controlleddoor,whichisalsoknownas“tailgating.”

Onecautionaboutthesekindsofsystemsisthattheyusuallyworkwithasoftwarepackagethatrunsonacomputer,andassuchthiscomputershouldnotbeattachedtothecompanynetwork.Whileattachingittothenetworkcanalloweasyadministration,thelastthingyouwantisforanattackertohavecontrolofthesystemthatallowsphysicalaccesstoyourfacility.Withthiscontrol,anattackercouldinputtheIDofabadgethatsheowns,allowingfull,legitimateaccesstoanareathesystemcontrols.Anotherproblemwithsuchasystemisthatitlogsonlythepersonwhoinitiallyusedthecardtoopenthedoor—sonologsexistfordoorsthatare

proppedopentoallowothersaccess,orofpeople“tailgating”throughadooropenedwithacard.Theimplementationofamantrapisonewaytocombattailgating.Amantrapcomprisestwodoorscloselyspacedthatrequiretheusertocardthroughoneandthentheothersequentially.Mantrapsmakeitnearlyimpossibletotrailthroughadoorwayundetected—ifyouhappentocatchthefirstdoor,youwillbetrappedinbytheseconddoor.

DoorsDoorstosecuredareasshouldhavecharacteristicstomakethemlessobvious.Theyshouldhavesimilarappearancetotheotherdoorstoavoidcatchingtheattentionofintruders.Securitydoorsshouldbeself-closingandhavenohold-openfeature.Theyshouldtriggeralarmsiftheyareforciblyopenedorhavebeenheldopenforalongperiod.

ExamTip:Afail-soft(orfail-safe)lockisunlockedinapowerinterruption.Afail-securelockislockedinapowerinterruption.

Doorsystems,likemanysystems,havetwodesignmethodologies:fail-safeorfail-secure.Whilefail-safeisacommonenoughphrasetohaveenteredthelexicon,thinkaboutwhatitreallymeans—beingsafewhenasystemfails.Inthecaseoftheseelectronicdoorsystems,fail-safemeansthatthedoorisunlockedshouldpowerfail.Tofail-securemeansthatthesystemwilllockthedoorwhenpowerislost.Thiscanalsoapplywhendoorsystemsaremanuallybypassed.Itisimportanttoknowhoweachdoorwillreacttoasystemfailure,notonlyforsecuritybutalsoforfirecodecompliance,asfail-secureisnotallowedforcertaindoorsinabuilding.

Cameras

Closedcircuittelevision(CCTV)camerasaresimilartothedoorcontrolsystems—theycanbeveryeffective,buthowtheyareimplementedisanimportantconsideration.TheuseofCCTVcamerasforsurveillancepurposesdatesbacktoatleast1961,whencameraswereinstalledintheLondonTransporttrainstation.ThedevelopmentofsmallerandmoresophisticatedcameracomponentsanddecreasingpricesforthecamerashavecausedaboonintheCCTVindustrysincethen.CCTVcamerasareusedtomonitoraworkplaceforsecuritypurposes.

Thesesystemsarecommonplaceinbanksandjewelrystores,placeswithhigh-valuemerchandisethatisattractivetothieves.Astheexpenseofthesesystemsdropped,theybecamepracticalformanymoreindustrysegments.Traditionalcamerasareanalogbasedandrequireavideomultiplexertocombineallthesignalsandmakemultipleviewsappearonamonitor.IP-basedcamerasarechangingthat,asmostofthemarestandaloneunitsviewablethroughawebbrowser,suchasthecamerashowninFigure8.7.

•Figure8.7IP-basedcamerasleverageexistingIPnetworksinsteadofneedingaproprietaryCCTVcable.

TechTip

PTZCamerasPan-tilt-zoom(PTZ)camerasarecamerasthathavethefunctionalitytoenablecameramovementinmultipleaxes,aswellastheabilitytozoominonanitem.Thesecamerasprovideadditionalcapability,especiallyinsituationswherethevideoismonitoredandthe

monitoringstationcanmaneuverthecamera.

TheseIP-basedsystemsaddusefulfunctionality,suchastheabilitytocheckonthebuildingfromtheInternet.Thisnetworkfunctionality,however,makesthecamerassubjecttonormalIP-basednetworkattacks.ADoSattacklaunchedattheCCTVsystemjustasabreak-inisoccurringisthelastthingthatanyonewouldwant(otherthanthecriminals).Forthisreason,IP-basedCCTVcamerasshouldbeplacedontheirownseparatenetworkthatcanbeaccessedonlybysecuritypersonnel.ThesamephysicalseparationappliestoanyIP-basedcamerainfrastructure.Oldertime-lapsetaperecordersareslowlybeingreplacedwithdigitalvideorecorders.Whiletheadvanceintechnologyissignificant,becarefulifandwhenthesedevicesbecomeIP-enabled,sincetheywillbecomeasecurityissue,justlikeeverythingelsethattouchesthenetwork.IfyoudependontheCCTVsystemtoprotectyourorganization’s

assets,carefullyconsidercameraplacementandthetypeofcamerasused.Differentiristypes,focallengths,andcolororinfraredcapabilitiesarealloptionsthatmakeonecamerasuperiortoanotherinaspecificlocation.

AlarmsThereareseveraltypesofalarmsystems.Localalarmsystemsringonlylocally.Acentralstationsystemisonewherealarms(andCCTV)aremonitoredbyacentralstation.Manyalarmswillhaveauxiliaryorsecondaryreportingfunctionstolocalpoliceorfiredepartments.Alarmsworkbyalertingpersonneltothetriggeringofspecificmonitoringcontrols.Typicalcontrolsincludethefollowing:

Drycontactswitchesusemetallicfoiltapeasacontactdetectortodetectwhetheradoororwindowisopened.

Electro-mechanicaldetectionsystemsdetectachangeorbreakinacircuit.Theycanbeusedasacontactdetectortodetectwhetheradoororwindowisopened.

Vibrationdetectionsystemsdetectmovementonwalls,ceiling,floors,andsoforthbyvibration.

Pressurematsdetectwhethersomeoneissteppingonthemat.

Photoelectricorphotometricdetectionsystemsemitabeamoflightandmonitorthebeamtodetectformotionandbreak-in.

Wavepatternmotiondetectorsgeneratemicrowaveorultrasonicwaveandmonitortheemittedwavestodetectformotion.

Passiveinfrareddetectionsystemsdetectchangesofheatwavesgeneratedbyanintruder.

Audiooracoustical-seismicdetectionsystemslistenforchangesinnoiselevels.

Proximitydetectorsorcapacitancedetectorsemitamagneticfieldandmonitorthefieldtodetectanyinterruption.

ConvergenceThereisatrendtoconvergeelementsofphysicalandinformationsecuritytoimproveidentificationofunauthorizedactivityonnetworks.Ifaaccesscontrolsystemisaskedtoapproveaccesstoaninsiderusinganoutsideaddress,yetthephysicalsecuritysystemidentifiesthemasbeinginthebuilding,thenananomalyexistsandshouldbeinvestigated.Thistrendiscalledconvergenceandcansignificantlyimprovedefensesagainstclonedcredentials.

PoliciesandProceduresApolicy’seffectivenessdependsonthecultureofanorganization,soallofthepoliciesmentionedhereshouldbefollowedupbyfunctionalproceduresthataredesignedtoimplementthem.Physicalsecuritypoliciesandproceduresrelatetotwodistinctareas:thosethataffectthecomputersthemselvesandthosethataffectusers.

Tomitigatetherisktocomputers,physicalsecurityneedstobeextendedtothecomputersthemselves.Tocombatthethreatofbootdisks,beginbyremovingordisablingtheabilityofasystemtoautomaticallyplayconnecteddevices,suchasUSBflashdrives.Otheractivitiesthattypicallyrequirephysicalpresenceshouldbeprotected,suchasaccesstoasystem’sBIOSatbootup.

TryThis!ExploringYourBIOSSettingsNexttimeyoubootyourPC,exploretheBIOSsettings.Usually,pressingtheF2keyimmediatelyonpower-upwillallowyoutoentertheBIOSsetupscreens.MostPCswillalsohaveabrieftimewhentheypromptfor“Setup”andgiveakeytopress,mostcommonlyF2,orF12.Exploreelementssuchasthebootorderfordevices,optionsforaddingpasswords,andotheroptions.Forsafety,donotsavechangesunlessyouareabsolutelycertainthatyouwanttomakethosechangesandareawareoftheconsequences.Topreventanattackerfromeditingthebootorder,youshouldsetBIOSpasswords.

BIOSAsafeguardthatcanbeemployedistheremovalofremovablemediadevicesfromthebootsequenceinthecomputer’sBIOS(basicinput/outputsystem).ThespecificsofthisoperationdependontheBIOSsoftwareoftheindividualmachine.ArelatedstepthatmustbetakenistosetaBIOSpassword.NearlyallBIOSsoftwarewillsupportpasswordprotectionthatallowsyoutobootthemachinebutrequiresapasswordtoeditanyBIOSsettings.WhiledisablingtheopticaldriveandsettingaBIOSpasswordarebothgoodmeasures,donotdependonthisstrategyexclusivelybecause,insomecases,BIOSmanufacturerswillhaveadefaultBIOSpasswordthatstillworks.

DependinguponBIOSpasswordsisalsonotaguaranteedsecuritymeasure.Formanymachines,

itistrivialtoremoveandthenreplacetheBIOSbattery,whichwillresettheBIOStothe“nopassword”ordefaultpasswordstate.

UEFIUnifiedExtensibleFirmwareInterface(UEFI)isastandardfirmwareinterfaceforPCs,designedtoreplaceBIOS.SupportedbyMacOSX,Linux(laterversions),andWindows8andbeyond,UEFIofferssomesignificantsecurityadvantages.UEFIhasafunctionalityknownassecureboot,whichallowsonlydigitallysigneddriversandOSloaderstobeusedduringthebootprocess,preventingbootkitattacks.AsUEFIisreplacingBIOS,andhasadditionalcharacteristics,itisimportanttokeeppoliciesandprocedurescurrentwiththeadvancementoftechnology.

ExamTip:USBdevicescanbeusedtoinjectmaliciouscodeontoanymachinetowhichtheyareattached.Theycanbeusedtotransportmaliciouscodefrommachinetomachinewithoutusingthenetwork.

USBUSBportshavegreatlyexpandedusers’abilitytoconnectdevicestotheircomputers.USBportsautomaticallyrecognizeadevicebeingpluggedintothesystemandusuallyworkwithouttheuserneedingtoadddriversorconfiguresoftware.ThishasspawnedalegionofUSBdevices,fromMP3playerstoCDburners.Themostinterestingofthese,forsecuritypurposes,aretheUSBflash

memory–basedstoragedevices.USBdrivekeys,whicharebasicallyflashmemorywithaUSBinterfaceinadevicetypicallyaboutthesizeofyourthumb,provideawaytomovefileseasilyfromcomputertocomputer.WhenpluggedintoaUSBport,thesedevicesautomountandbehavelikeanyotherdriveattachedtothecomputer.Theirsmallsizeandrelativelylargecapacity,coupledwithinstantread-writeability,presentsecurity

problems.Theycaneasilybeusedbyanindividualwithmaliciousintenttoconcealtheremovaloffilesordatafromthebuildingortobringmaliciousfilesintothebuildingandontothecompanynetwork.

Laptopsandtabletsarepopulartargetsforthievesandshouldbelockedinsideadeskwhennotinuse,orsecuredwithspecialcomputerlockdowncables.Ifdesktoptowersareused,usecomputerdesksthatprovideaspaceinwhichtolockthecomputer.Allofthesemeasurescanimprovethephysicalsecurityofthecomputersthemselves,butmostofthemcanbedefeatedbyattackersifusersarenotknowledgeableaboutthesecurityprogramanddonotfollowit.

Inaddition,well-intentioneduserscouldaccidentallyintroducemaliciouscodefromUSBdevicesbyusingthemonaninfectedhomemachineandthenbringingtheinfecteddevicetotheoffice,allowingthemalwaretobypassperimeterprotectionsandpossiblyinfecttheorganization.IfUSBdevicesareallowed,aggressivevirusscanningshouldbeimplementedthroughouttheorganization.ThedevicescanbedisallowedviaActiveDirectorypolicysettingsorwithaWindowsRegistrykeyentry.USBcanalsobecompletelydisabled,eitherthroughBIOSsettingsorbyunloadinganddisablingtheUSBdriversfromusers’machines,eitherofwhichwillstopallUSBdevicesfromworking—however,doingthiscancreatemoretroubleifusershaveUSBkeyboardsandmice.TherearetwocommonwaystodisableUSBsupportinaWindowssystem.Onoldersystems,editingtheRegistrykeyisprobablythemosteffectivesolutionforuserswhoarenotauthorizedtousethesedevices.Onnewersystems,thebestwayisthroughGroupPolicyinadomainorthroughtheLocalSecurityPolicyMMConastand-alonebox.

AutoplayAnotherbootdevicetoconsideristheCD/DVDdrive.Thisdevicecanprobablyalsoberemovedfromordisabledonanumberofmachines.ADVDnotonlycanbeusedasabootdevice,butalsocanbeexploitedvia

theautoplayfeaturethatsomeoperatingsystemssupport.Autoplaywasdesignedasaconvenienceforusers,sothatwhenaCD/DVDorUSBcontaininganapplicationisinserted,thecomputerinstantlypromptsforinputversusrequiringtheusertoexplorethedevicefilesystemandfindtheexecutablefile.Unfortunately,sincetheautoplayfunctionalityrunsanexecutable,itcanbeprogrammedtodoanythinganattackerwants.Ifanautoplayexecutableismalicious,itcouldallowanattackertogainremotecontrolofthemachine.Figure8.8illustratesanautoplaymessagepromptinWindows,givingauseratleastminimalcontroloverwhethertorunanitemornot.

•Figure8.8AutoplayonaWindowssystem

Sincetheopticaldrivecanbeusedasabootdevice,aDVDloadedwith

itsownoperatingsystem(calledaLiveCD,introducedearlierinthechapter)couldbeusedtobootthecomputerwithmalicioussystemcode(seeFigure8.9).Thisseparateoperatingsystemwillbypassanypasswordsonthehostmachineandcanaccesslocallystoredfiles.

•Figure8.9ALiveCDbootsitsownOSandbypassesanybuilt-insecurityofthenativeoperatingsystem.

TechTip

DisablingtheAutoplayFeatureinWindowsDisablingtheautoplayfeatureisaneasytaskusingLocalGroupPolicyEditorinWindows.SimplylaunchtheLocalGroupPolicyEditor(gpedit.msc)andnavigatetothislocation:

ComputerConfiguration>AdministrativeTemplates>WindowsComponents>AutoPlayPolicies

DeviceTheftTheoutrighttheftofacomputerisasimplephysicalattack.Thisattackcanbemitigatedinanumberofways,butthemosteffectivemethodistolockupequipmentthatcontainsimportantdata.Insurancecancoverthelossofthephysicalequipment,butthiscandolittletogetabusinessupandrunningagainquicklyafteratheft.Therefore,implementingspecialaccesscontrolsforserverroomsandsimplylockingtherackcabinetswhenmaintenanceisnotbeingperformedaregoodwaystosecureanarea.Fromadatastandpoint,mission-criticalorhigh-valueinformationshouldbestoredonaserveronly.Thiscanmitigatetheriskofadesktoporlaptopbeingstolenforthedataitcontains.Lossoflaptopshasbeenacommoncauseofinformationbreaches.

Mobiledevicetheftsfromcarsandotherlocationscanoccurinseconds.Thieveshavebeencaughttakingmobiledevicesfromsecurityscreeningareasatairportswhiletheownerwasdistractedinscreening.Snatchandgrabattacksoccurinrestaurants,bars,andcafes.Tabletsandsmartphoneshavesignificantvalueandphysicalprecautionsshouldbetakenatalltimes.

CrossCheckMobileDeviceSecurityMobiledevicesecurityiscoveredindepthinChapter14.Foramoredetailedanalysisofsafeguardsuniquetomobiledevices,pleaserefertothatsectionofthetext.

Userscanperformoneofthemostsimple,yetimportant,informationsecuritytasks:lockaworkstationimmediatelybeforetheystepawayfromit.

Althoughuseofaself-lockingscreensaverisagoodpolicy,settingittolockatanypointlessthan10to15minutesafterbecomingidleisoftenconsideredanuisanceandcounterproductivetoactiveuseofthecomputeronthejobasthecomputerwilloftenlockwhiletheemployeeisstillactivelyusingthecomputer.Thus,computerstypicallysitidleforatleast15minutesbeforeautomaticallylockingunderthistypeofpolicy.Usersshouldmanuallylocktheirworkstations,asanattackeronlyneedstobeluckyenoughtocatchamachinethathasbeenleftalonefor5minutes.

BTUstandsforBritishThermalUnit;asingleBTUisdefinedastheamountofenergyrequiredtoraisethetemperatureofonepoundofliquidwateronedegreeFahrenheit.

EnvironmentalControlsWhiletheconfidentialityofinformationisimportant,soisitsavailability.Sophisticatedenvironmentalcontrolsareneededforcurrentdatacenters.Serverscangeneratelargelevelsofheat,andmanagingtheheatisthejoboftheenvironmentalcontrol.Controllingadatacenter’stemperatureandhumidityisimportantto

keepingserversrunning.Heatingventilatingandairconditioning(HVAC)systemsarecriticalforkeepingdatacenterscool,becausetypicalserversputoutbetween1000and2000BTUsofheat.Thetemperatureofadatacentershouldbemaintainedbetween70and74degreesFahrenheit(°F).Ifthetemperatureistoolow,itmaycausemechanismstoslowdown.Ifthetemperatureistoohigh,itmaycauseequipmentdamage.Thetemperature-damagingpointsofdifferentproductsareasfollows:

Magneticmedia:100°F

Computerhardware:175°F

Paperproducts:350°F

Itshouldbenotedthatthesearetemperaturesofthematerials;thesurroundingairisfrequentlycooler.Temperaturemeasurementsshouldbeobtainedonequipmentitselftoensureappropriateprotection.Multipleserversinaconfinedareacancreateconditionstoohotforthe

machinestocontinuetooperate.Thisproblemismadeworsewiththeadventofblade-stylecomputingsystemsandwithmanyotherdevicesshrinkinginsize.Whilephysicallysmaller,theytendtostillexpelthesameamountofheat.Thisisknownasincreaseddatacenterdensity—moreserversanddevicesperrack,puttingagreaterloadonthecoolingsystems.Thisencouragestheuseofahotaisle/coldaislelayout.Adatacenterthatisarrangedintohotandcoldaislesdictatesthatalltheintakefansonallequipmentfacethecoldaisle,andtheexhaustfansallfacetheoppositeaisle.TheHVACsystemisthendesignedtopushcoolairunderneaththeraisedfloorandupthroughperforatedtilesonthecoldaisle.HotairfromthehotaisleiscapturedbyreturnairductsfortheHVACsystem.Theuseofthislayoutisdesignedtocontrolairflow,withthepurposebeingnevertomixthehotandcoldair.Thisrequirestheuseofblockingplatesandsideplatestocloseopenrackslots.Thebenefitsofthisarrangementarethatcoolingismoreefficientandcanhandlehigherdensity.ThefailureofHVACsystemsforanyreasoniscauseforconcern.RisingcopperpriceshavemadeHVACsystemsthetargetsforthieves,andgeneralvandalismcanresultincostlydowntime.ProperlysecuringthesesystemsisimportantinhelpingpreventanattackerfromperformingaphysicalDoSattackonyourservers.

FireSuppressionAccordingtotheFireSuppressionSystemsAssociation(www.fssa.net),43percentofbusinessesthatcloseasaresultofasignificantfireneverreopen.Anadditional29percentfailwithinthreeyearsoftheevent.Theabilitytorespondtoafirequicklyandeffectivelyisthuscriticaltothelong-termsuccessofanyorganization.Addressingpotentialfirehazardsandvulnerabilitieshaslongbeenaconcernoforganizationsintheirrisk

analysisprocess.Thegoalobviouslyshouldbenevertohaveafire,butintheeventthatonedoesoccur,itisimportantthatmechanismsareinplacetolimitthedamagethefirecancause.

TechTip

EnvironmentandFiresWhileitmayatfirstseemtothesecurityprofessionalthatenvironmentalcontrolsandnaturaldisasterssuchasfiresdon’thaveanythingtodowithcomputersecurity,thinkofitintermsofavailability.Ifthegoaloftheattackerisnotinformationbutrathertodenyanorganizationtheuseofitsresources,environmentalfactors,anddisasterssuchasfires,canbeusedtodenythetargettheuseofitsowncomputingresources.This,then,becomesasecurityissueaswellasanoperationalissue.

Water-BasedFireSuppressionSystemsWater-basedfiresuppressionsystemshavelongbeen,andstillaretoday,theprimarytooltoaddressandcontrolstructuralfires.Consideringtheamountofelectricalequipmentfoundintoday’sofficeenvironmentandthefactthat,forobviousreasons,thisequipmentdoesnotreactwelltolargeapplicationsofwater,itisimportanttoknowwhattodowithequipmentifitdoesbecomesubjectedtoawater-basedsprinklersystem.TheNationalFireProtectionAssociation’s2013NFPA75:StandardfortheProtectionofInformationTechnologyEquipmentoutlinesmeasuresthatcanbetakentominimizethedamagetoelectronicequipmentexposedtowater.Thisguidanceincludesthesesuggestions:

Opencabinetdoors,removesidepanelsandcovers,andpulloutchassisdrawerstoallowwatertorunoutofequipment.

Setupfanstomoveroom-temperatureairthroughtheequipmentforgeneraldrying.Moveportableequipmenttodryair-conditionedareas.

Usecompressedairatnohigherthan50psitoblowouttrappedwater.

Usehandhelddryersonlowestsettingtodryconnectors,backplanewirewraps,andprintedcircuitcards.

Usecotton-tippedswabsforhard-to-reachplaces.Lightlydabthesurfacestoremoveresidualmoisture.

Keepthedryerswellawayfromcomponentsandwires.Overheatingofelectricalcomponentscancausepermanentdamage.

Eveniftheseguidelinesarefollowed,damagetothesystemsmayhavealreadyoccurred.Sincewaterissodestructivetoelectronicequipment,notonlybecauseoftheimmediateproblemsofelectronicshortstothesystembutalsobecauseoflonger-termcorrosivedamagewatercancause,alternativefiresuppressionmethodshavebeensought.

Halon-BasedFireSuppressionSystemsAfireneedsfuel,oxygen,andhightemperaturesforthechemicalcombustiontooccur.Ifyouremoveanyofthese,thefirewillnotcontinue.Haloninterfereswiththechemicalcombustionpresentinafire.Eventhoughhalonproductionwasbannedin1994,anumberofthesesystemsstillexisttoday.Theywereoriginallypopularbecausehalonwillmixquicklywiththeairinaroomandwillnotcauseharmtocomputersystems.Halonis,however,dangeroustohumans,especiallywhensubjectedtoextremelyhottemperatures(suchasmightbefoundduringafire),whenitcandegradeintoothertoxicchemicals.Asaresultofthesedangers,andalsobecausehalonhasbeenlinkedwiththeissueofozonedepletion,halonisbannedinnewfiresuppressionsystems.ItisimportanttonotethatundertheEnvironmentalProtectionAgency(EPA)rulesthatmandatednofurtherproductionofhalon,existingsystemswerenotrequiredtobedestroyed.Replacingthehaloninadischargedsystem,

however,willbeaproblem,sinceonlyexistingstockpilesofhalonmaybeusedandthecostisbecomingprohibitive.Forthisreason,manyorganizationsareswitchingtoalternativesolutions.

TechTip

DrillsIntheeventofanemergency,peoplewillbechallengedtoperformcorrectactionswhenstressedbytheemergency.Theuseofdrills,plans,andtestingwillensurethatescapeplansandescaperoutesareknownandeffectiveandthatpeoplearefamiliarwiththeiruse.Thetimetopracticeisbeforetheproblem,andrepeatingpracticeovertimebuildsconfidenceandstrengthensfamiliarity.

Clean-AgentFireSuppressionSystemsThesealternativesareknownasclean-agentfiresuppressionsystems,sincetheynotonlyprovidefiresuppressioncapabilitiesbutalsoprotectthecontentsoftheroom,includingpeople,documents,andelectronicequipment.Examplesofcleanagentsincludecarbondioxide,argon,Inergen,andFM-200(heptafluoropropane).Carbondioxide(CO2)hasbeenusedasafiresuppressionagentforalongtime.TheBellTelephoneCompanyusedportableCO2extinguishersintheearlypartofthe20thcentury.Carbondioxideextinguishersattackallthreenecessaryelementsforafiretooccur.CO2displacesoxygensothattheamountofoxygenremainingisinsufficienttosustainthefire.Italsoprovidessomecoolinginthefirezoneandreducestheconcentrationof“gasified”fuel.Argonextinguishesfirebyloweringtheoxygenconcentrationbelowthe15percentlevelrequiredforcombustibleitemstoburn.Argonsystemsaredesignedtoreducetheoxygencontenttoabout12.5percent,whichisbelowthe15percentneededforthefirebutisstillabovethe10percentrequiredbytheEPAforhumansafety.Inergen,aproductofAnsulCorporation,iscomposedofthreegases:52percentnitrogen,40percent

argon,and8percentcarbondioxide.Inamannersimilartopureargonsystems,Inergensystemsreducethelevelofoxygentoabout12.5percent,whichissufficientforhumansafetybutnotsufficienttosustainafire.Anotherchemicalusedinthephase-outofhalonisFE-13,ortrifluoromethane.Thischemicalwasoriginallydevelopedasachemicalrefrigerantandworkstosuppressfiresbyinhibitingthecombustionchainreaction.FE-13isgaseous,leavesbehindnoresiduethatwouldharmequipment,andisconsideredsafetouseinoccupiedareas.Otherhalocarbonsarealsoapprovedforuseinreplacinghalonsystems,includingFM-200(heptafluoropropane),achemicalusedasapropellantforasthmamedicationdispensers.

HandheldFireExtinguishersAutomaticfiresuppressionsystemsdesignedtodischargewhenafireisdetectedarenottheonlysystemsyoushouldbeawareof.Ifafirecanbecaughtandcontainedbeforetheautomaticsystemsdischarge,itcanmeansignificantsavingstotheorganizationintermsofbothtimeandequipmentcosts(includingtherechargingoftheautomaticsystem).Handheldextinguishersarecommoninoffices,butthecorrectuseofthemmustbeunderstoodordisastercanoccur.Therearefourdifferenttypesoffire,asshowninTable8.1.Eachtypeoffirehasitsownfuelsourceandmethodforextinguishingit.TypeAsystems,forexample,aredesignedtoextinguishfireswithnormalcombustiblematerialasthefire’ssource.Watercanbeusedinanextinguisherofthissort,sinceitiseffectiveagainstfiresofthistype.Water,aswe’vediscussed,isnotappropriateforfiresinvolvingwiringorelectricalequipment.UsingatypeAextinguisheragainstanelectricalfirewillnotonlybeineffectivebutcanresultinadditionaldamage.Someextinguishersaredesignedtobeeffectiveagainstmorethanonetypeoffire,suchasthecommonABCfireextinguishers.Thisisprobablythebesttypeofsystemtohaveinadataprocessingfacility.Allfireextinguishersshouldbeeasilyaccessibleandshouldbeclearlymarked.Beforeanybodyusesanextinguisher,theyshouldknow

whattypeofextinguisheritisandwhatthesourceofthefireis.Whenindoubt,evacuateandletthefiredepartmenthandlethesituation.

Table8.1 TypesofFireandSuppressionMethods

ExamTip:Thetypeoffiredistinguishesthetypeofextinguisherthatshouldbeusedtosuppressit.RememberthatthemostcommontypeistheABCfireextinguisher,whichisdesignedtohandlealltypesoffiresexceptflammable-metalfires,whicharerare.

TryThis!HandheldFireExtinguishersComputersecurityprofessionalstypicallydonothavemuchinfluenceoverthetypeoffiresuppressionsystemthattheirofficeincludes.Itis,however,importantthattheyareawareofwhattypehasbeeninstalled,whattheyshoulddoincaseofanemergency,andwhatneedstobedonetorecoverafterthereleaseofthesystem.Oneareathattheycaninfluence,however,isthetypeofhandheldfireextinguisherthatislocatedintheirarea.Checkyourfacilitytoseewhattypeoffiresuppressionsystemisinstalled.Alsochecktoseewherethefireextinguishersareinyourofficeandwhattypeoffirestheyaredesignedtohandle.

FireDetectionDevicesAnessentialcomplementtofiresuppressionsystemsanddevicesarefiredetectiondevices(firedetectors).Detectorsmaybeabletodetectafireinitsveryearlystages,beforeafiresuppressionsystemisactivated,andsoundawarningthatpotentiallyenablesemployeestoaddressthefirebeforeitbecomesseriousenoughforthefiresuppressionequipmenttokickin.Thereareseveraldifferenttypesoffiredetectors.Onetype,ofwhich

therearetwovarieties,isactivatedbysmoke.Thetwovarietiesofsmokedetectorareionizationandphotoelectric.Aphotoelectricdetectorisgoodforpotentiallyprovidingadvancewarningofasmolderingfire.Thistypeofdevicemonitorsaninternalbeamoflight.Ifsomethingdegradesthelight,forexamplebyobstructingit,thedetectorassumesitissomethinglikesmokeandthealarmsounds.Anionizationstyleofdetectorusesanionizationchamberandasmallradioactivesourcetodetectfast-burningfires.ShowninFigure8.10,thechamberconsistsoftwoplates,onewithapositivechargeandonewithanegativecharge.Oxygenandnitrogenparticlesintheairbecome“ionized”(anionisfreedfromthemolecule).Thefreedion,whichhasanegativecharge,isattractedtothepositiveplate,andtheremainingpartofthemolecule,nowwithapositivecharge,isattractedtothenegativeplate.Thismovementofparticlescreatesaverysmallelectriccurrentthatthedevicemeasures.Smokeinhibitsthisprocess,andthedetectorwilldetecttheresultingdropincurrentandsoundanalarm.Bothofthesedevicesareoftenreferredtogenericallyassmokedetectors,andcombinationsofbothvarietiesarepossible.Formoreinformationonsmokedetectors,seehttp://home.howstuffworks.com/home-improvement/household-safety/fire/smoke2.htm.

•Figure8.10Anionizationchamberforanionizationtypeofsmokedetector

TechTip

TestingControlsBecauseoftheimportanceoftheirprotection,safetycontrolsshouldbeperiodicallytestedforproperoperationandalerting.Thisshouldbeasystem-level,notdevice-level,testtoensuretheentirecontrolsystemperformsintheintendedmanner.

Anothertypeoffiredetectorisactivatedbyheat.Thesedevicesalsocomeintwovarieties.Fixed-temperatureorfixed-pointdevicesactivateifthetemperatureintheareaeverexceedssomepredefinedlevel.Rate-of-riseorrate-of-increasetemperaturedevicesactivatewhenthereisasuddenincreaseinlocaltemperaturethatmayindicatethebeginningstagesofafire.Rate-of-risesensorscanprovideanearlierwarningbutarealsoresponsibleformorefalsewarnings.Athirdtypeofdetectorisflameactivated.Thistypeofdevicerelieson

theflamesfromthefiretoprovideachangeintheinfraredenergythatcan

bedetected.Flame-activateddevicesaregenerallymoreexpensivethantheothertwotypesbutcanfrequentlydetectafiresooner.

PowerProtectionComputersystemsrequirecleanelectricalpower,andforcriticalsystems,uninterruptedpowercanbeimportantaswell.Thereareseveralelementsusedtomanagethepowertosystems,includinguninterruptiblepowersuppliesandbackuppowersystems.

TechTip

UPSAttributesUPSsystemshaveseveralattributestoconsider:

Theelectricalloadtheycansupport(measuredinkVA)

ThelengthoftimetheycansupporttheloadThespeedofprovidingpowerwhenthereisapowerfailure

Thephysicalspacetheyoccupy

UPSAnuninterruptiblepowersupply(UPS)isusedtoprotectagainstshort-durationpowerfailures.TherearetwotypesofUPS,onlineandstandby.AnonlineUPSisincontinuoususebecausetheprimarypowersourcegoesthroughittotheequipment.ItusesAClinevoltagetochargeabankofbatteries.Whentheprimarypowersourcefails,aninverterintheUPSwillchangeDCofthebatteriesintoAC.AstandbyUPShassensorstodetectpowerfailures.Ifthereisapowerfailure,theloadwillbeswitchedtotheUPS.Itstaysinactivebeforeapowerfailure,andtakesmoretimethananonlineUPStoprovidepowerwhentheprimarysourcefails.

BackupPowerandCableShieldingBackuppowersources,suchasamotorgenerator,anotherelectricalsubstation,andsoon,areusedtoprotectagainstalong-durationpowerfailure.Avoltageregulatorandlineconditionerareusedtoprotectagainstunstablepowersupplyandspikes.Propergroundingisessentialforallelectricaldevicestoprotectagainstshortcircuitsandstaticelectricity.Inmoresensitiveareas,cableshieldingcanbeemployedtoavoid

interference.Powerlinemonitoringcanbeusedtodetectchangesinfrequencyandvoltageamplitude,warningofbrownoutsorspikes.Anemergencypoweroff(EPO)switchcanbeinstalledtoallowforthequickshutdownofpowerwhenrequired.Topreventelectromagneticinterferenceandvoltagespikes,electricalcablesshouldbeplacedawayfrompowerfulelectricalmotorsandlighting.Anothersourceofpower-inducedinterferencecanbefluorescentlighting,whichcancauseradiofrequencyinterference.

ElectromagneticInterferenceElectromagneticinterference,orEMI,canplagueanytypeofelectronics,butthedensityofcircuitryinthetypicaldatacentercanmakeitahavenforEMI.EMIisdefinedasthedisturbanceonanelectricalcircuitcausedbythatcircuit’sreceptionofelectromagneticradiation.Magneticradiationentersthecircuitbyinduction,wheremagneticwavescreateachargeonthecircuit.Theamountofsensitivitytothismagneticfielddependsonanumberoffactors,includingthelengthofthecircuit,whichcanactlikeanantenna.EMIisgroupedintotwogeneraltypes:narrowbandandbroadband.NarrowbandEMIis,byitsnature,electromagneticenergywithasmallfrequencybandand,therefore,typicallysourcedfromadevicethatispurposefullytransmittinginthespecifiedband.BroadbandEMIcoversawiderarrayoffrequenciesandistypicallycausedbysometypeofgeneralelectricalpowerusesuchaspowerlinesorelectricmotors.IntheUnitedStates,theFederalCommunicationsCommissionhas

responsibilityforregulatingproductsthatproduceEMIandhasdevelopedaprogramforequipmentmanufacturerstoadheretostandardsforEMIimmunity.ModerncircuitryisdesignedtoresistEMI.Cablingisagoodexample;thetwistinunshieldedtwistedpair,orCategory6/6a,cableistheretoreduceEMI.EMIisalsocontrolledbymetalcomputercasesthataregrounded;byprovidinganeasypathtoground,thecaseactsasanEMIshield.AbiggerexamplewouldbeaFaradaycageorFaradayshield,whichisanenclosureofconductivematerialthatisgrounded.Thesecanberoomsizedorbuiltintoabuilding’sconstruction;thecriticalelementisthatthereisnosignificantgapintheenclosurematerial.ThesemeasurescanhelpshieldEMI,especiallyinhighradiofrequencyenvironments.WhilewehavetalkedabouttheshieldingnecessarytokeepEMI

radiationoutofyourcircuitry,thereisalsotechnologytotryandhelpkeepitin.KnownbysomeasTEMPEST,itisalsoknownasVanEckemissions.Acomputer’smonitororLCDdisplayproduceselectromagneticradiationthatcanberemotelyobservedwiththecorrectequipment.TEMPESTwasthecodewordforanNSAprogramtosecureequipmentfromthistypeofeavesdropping.WhilesomeoftheinformationaboutTEMPESTisstillclassified,thereareguidesontheInternetthatdescribeprotectivemeasures,suchasshieldingandelectromagnetic-resistantenclosures.Acompanyhasevendevelopedacommercialpaintthatoffersradiofrequencyshielding.

TechTip

MasterKeysMechanicalkeyingsystemswithindustrial-gradelockshaveprovisionsformultiplemasterkeys.Thisallowsindividualmasterkeystobedesignatedbyfloor,bydepartment,bythewholebuilding,andsoforth.Thisprovidestremendousflexibility,althoughifamasterkeyislost,significantrekeyingwillberequired.

ElectronicAccessControlSystemsAccesstokensaredefinedas“somethingyouhave.”Anaccesstokenisaphysicalobjectthatidentifiesspecificaccessrights.Accesstokensarefrequentlyusedforphysicalaccesssolutions,justasyourhousekeyisabasicphysicalaccesstokenthatallowsyouaccessintoyourhome.Althoughkeyshavebeenusedtounlockdevicesforcenturies,theydohaveseverallimitations.Keysarepairedexclusivelywithalockorasetoflocks,andtheyarenoteasilychanged.Itiseasytoaddanauthorizeduserbygivingtheuseracopyofthekey,butitisfarmoredifficulttogivethatuserselectiveaccessunlessthatspecifiedareaisalreadysetupasaseparatekey.Itisalsodifficulttotakeaccessawayfromasinglekeyorkeyholder,whichusuallyrequiresarekeyofthewholesystem.Inmanybusinesses,physicalaccessauthenticationhasmovedto

contactlessradiofrequencycardsandproximityreaders.Whenpassednearacardreader,thecardsendsoutacodeusingradiowaves.Thereaderpicksupthiscodeandtransmitsittothecontrolpanel.Thecontrolpanelchecksthecodeagainstthereaderfromwhichitisbeingreadandthetypeofaccessthecardhasinitsdatabase.Oneoftheadvantagesofthiskindoftoken-basedsystemisthatanycardcanbedeletedfromthesystemwithoutaffectinganyothercardortherestofthesystem.TheRFID-basedcontactlessentrycardshowninFigure8.11isacommonformofthistokendeviceemployedfordoorcontrolsandisfrequentlyputbehindanemployeebadge.Inaddition,alldoorsconnectedtothesystemcanbesegmentedinanyformorfashiontocreatemultipleaccessareas,withdifferentpermissionsforeachone.Thetokensthemselvescanalsobegroupedinmultiplewaystoprovidedifferentaccesslevelstodifferentgroupsofpeople.Alloftheaccesslevelsorsegmentationofdoorscanbemodifiedquicklyandeasilyifbuildingspaceisretasked.Newertechnologiesareaddingcapabilitiestothestandardtoken-basedsystems.

•Figure8.11Smartcardshaveaninternalchipaswellasmultipleexternalcontactsforinterfacingwithasmartcardreader.

Theadventofsmartcards(cardsthatcontainintegratedcircuitscapableofgeneratingandstoringcryptographickeys)hasenabledcryptographictypesofauthentication.Smartcardtechnologyhasprovenreliableenoughthatitisnowpartofagovernmentalstandardforphysicalandlogicalauthentication.KnownasPersonalIdentityVerification,orPIV,cards,theyadheretotheFIPS201standard.Thissmartcardincludesacryptographicchipandconnector,aswellasacontactlessproximitycardcircuit.Italsohasstandardsforaprintedphotoandnameprintingonthefront.Biometricdatacanbestoredonthecard,providinganadditionalauthenticationfactor,andifthePIVstandardisfollowed,severalformsof

identificationareneededtogetacard.

TechTip

PersonnelIDBadgesHavingpersonnelwearavisibleIDbadgewiththeirpictureisacommonformofphysicalsecurity.Ifeveryoneissupposedtowearabadgevisibly,thenanyonewhoseessomeonewithoutabadgecanaskthemwhotheyare,andwhytheyarethere.Thisgreatlyincreasesthenumberofeyeswatchingforintrudersinlarge,publiclyaccessiblefacilities.

Theprimarydrawbackoftoken-basedauthenticationisthatonlythetokenisbeingauthenticated.Therefore,thetheftofthetokencouldgrantanyonewhopossessedthetokenaccesstowhatthesystemprotects.Theriskoftheftofthetokencanbeoffsetbytheuseofmultiple-factorauthentication.Oneofthewaysthatpeoplehavetriedtoachievemultiple-factorauthenticationistoaddabiometricfactortothesystem.

AccessTokensElectronicaccesscontrolsystemswerespawnedfromtheneedtohavemoreloggingandcontrolthanprovidedbytheoldermethodofmetallickeys.Mostelectronicsystemscurrentlyuseatoken-basedcardthatifpassednearareaderwillunlockthedoorstrikeandletyoupassintothearea(assumingyouhavepermissionfromthesystem).Newertechnologyattemptstomaketheauthenticationprocesseasierandmoresecure.Thefollowingsectionsdiscusshowtokensandbiometricsarebeing

usedforauthentication.Italsolooksintohowmultiple-factorauthenticationcanbeusedforphysicalaccess.

BiometricsBiometricsusethemeasurementsofcertainbiologicalfactorstoidentifyonespecificpersonfromothers.Thesefactorsarebasedonpartsofthe

humanbodythatareunique.Themostwellknownoftheseuniquebiologicalfactorsisthefingerprint.Fingerprintreadershavebeenavailableforseveralyearsinlaptops.Thesecomeinavarietyofformfactors,suchastheexampleshowninFigure8.12,andasstandaloneUSBdevices.

•Figure8.12Newerlaptopcomputersoftenincludeafingerprintreader.

However,manyotherbiologicalfactorscanbeused,suchastheretinaoririsoftheeye,thegeometryofthehand,andthegeometryoftheface.Whentheseareusedforauthentication,thereisatwo-partprocess:enrollmentandthenauthentication.Duringenrollment,acomputertakestheimageofthebiologicalfactorandreducesittoanumericvalue.Whentheuserattemptstoauthenticate,theirfeatureisscannedbythereader,andthecomputercomparesthenumericvaluebeingreadtotheonestoredinthedatabase.Iftheymatch,accessisallowed.Sincethesephysicalfactorsareunique,theoreticallyonlytheactualauthorizedpersonwouldbe

allowedaccess.Intherealworld,however,thetheorybehindbiometricsbreaksdown.

Tokensthathaveadigitalcodeworkverywellbecauseeverythingremainsinthedigitalrealm.Acomputerchecksyourcode,suchas123,againstthedatabase;ifthecomputerfinds123andthatnumberhasaccess,thecomputeropensthedoor.Biometrics,however,takeananalogsignal,suchasafingerprintoraface,andattempttodigitizeit,anditisthenmatchedagainstthedigitsinthedatabase.Theproblemwithananalogsignalisthatitmightnotencodetheexactsamewaytwice.Forexample,ifyoucametoworkwithabandageonyourchin,wouldtheface-basedbiometricsgrantyouaccessordenyit?Engineerswhodesignedthesesystemsunderstoodthatifasystemwas

settoexactchecking,anencodedbiometricmightnevergrantaccesssinceitmightneverscanthebiometricexactlythesamewaytwice.Therefore,mostsystemshavetriedtoallowacertainamountoferrorinthescan,whilenotallowingtoomuch.Thisleadstotheconceptsoffalsepositivesandfalsenegatives.Afalsepositiveoccurswhenabiometricisscannedandallowsaccesstosomeonewhoisnotauthorized—forexample,twopeoplewhohaveverysimilarfingerprintsmightberecognizedasthesamepersonbythecomputer,whichgrantsaccesstothewrongperson.Afalsenegativeoccurswhenthesystemdeniesaccesstosomeonewhoisactuallyauthorized—forexample,auseratthehandgeometryscannerforgottoweararingheusuallywearsandthecomputerdoesn’trecognizehishandanddenieshimaccess.Forbiometricauthenticationtoworkproperly,andalsobetrusted,itmustminimizetheexistenceofbothfalsepositivesandfalsenegatives.Todothat,abalancebetweenexactinganderrormustbecreatedsothatthemachinesallowalittlephysicalvariance—butnottoomuch.

FalsePositivesandFalseNegativesWhenadecisionismadeoninformationandanassociatedrangeofprobabilities,theconditionsexistforafalsedecision.Figure8.13illustratestwooverlappingprobabilities;anitembelongstoeithertheredcurveorthebluecurve,butnotboth.The

problemindecidingwhichcurveanitembelongstooccurswhenthecurvesoverlap.

•Figure8.13Overlappingprobabilities

Whenthereisanoverlappingarea,itistypicallyreferredtoasthefalsepositiveandfalsenegativerate.Notethatintheaccompanyingfigures,thesizeofoverlapisgreatlyexaggeratedtomakeiteasytosee.Figure8.14illustratesafalsepositivedetection.Ifthevalueobservedisthedottedline,thenitcouldbeconsideredeitheramatchoranon-match.Ifinfactitshouldnotmatch,andthesystemtagsitasamatch,itisafalsepositive.Inbiometrics,afalsepositivewouldallowaccesstoanunauthorizedparty.

•Figure8.14Falsepositive

Figure8.15illustratesafalsenegativedetection.Ifthevalueobservedisthedottedline,thenitcouldbeconsideredeitheramatchoranon-match.Ifinfactitshouldmatch,andthesystemtagsitasanon-match,itisafalsenegative.Afalsenegativewouldpreventanauthorizeduserfromobtainingaccess.

•Figure8.15Falsenegative

ExamTip:Falsepositiveandfalsenegativearefrequentlyconfused.Thetruedefinitionsrevolvearoundthestatisticaltermnullhypothesis.Forauthentication,itisassumedthatthepersonisnotauthorized.Ifthepersonisnotauthorized,andthetestincorrectlyrejectsthenullhypothesisandallowsentry,thisisafalsepositive—alsocalledaTypeIerror.Ifthepersonisauthorized,andthetestfailstoallowentry,thenthisisafalsenegative,orTypeIIerror.Theimportantelementisthedirectionofthenullhypothesis,which,forauthentication,wouldbetodenyentry.

Tosolvethefalsepositiveandfalsenegativeissue,theprobabilisticenginemustproducetwosetsofcurvesthatdonotoverlap.Thisisequivalenttoverylow,<0.001%,falsepositiveandfalsenegativerates.Becausethecurvestechnicallyhavetailsthatgoforever,therewillalwaysbesomefalserates,butthenumbershavetobeexceedinglysmalltoassuresecurity.Figure8.16illustratesthedesired,buttypicallyimpractical,separationofthecurves.

•Figure8.16Desiredsituation

Amorerealisticsituationhasthetwocurvescrossingoveratsomepoint,andthispointisknownasthecrossovererrorrate(CER).TheCERisthepointwherethefalseacceptanceandfalserejectionratesareequal.Whileasystemhastheabilitytoadjustwhichofthetwofalseratestofavor,theCERprovidesameansofcomparingsystemsperformanceatdiscriminatingsignals.AsystemwithaCERof2percentismoreaccurate(andhasmoreseparation)thanonewithaCERof5percent.Anotherconcernwithbiometricsisthatifsomeoneisabletostealthe

uniquenessfactorthatthemachinescans—yourfingerprintfromaglass,forexample—andisabletoreproducethatfactorinasubstancethatfoolsthescanner,thatpersonnowhasyouraccessprivileges.Thisideaiscompoundedbythefactthatitisimpossibleforyoutochangeyourfingerprintifitgetsstolen.Itiseasytoreplacealostorstolentokenanddeletethemissingonefromthesystem,butitisfarmoredifficulttoreplaceahumanhand.Anotherproblemwithbiometricsisthatpartsofthehumanbodycanchange.Ahumanfacecanchange,throughscarring,weightlossorgain,orsurgery.Afingerprintcanbechangedthroughdamagetothefingers.Eyeretinascanbeaffectedbysometypesofdiabetesorbypregnancy.Allofthesechangesforcethebiometricsystem

toallowahighertoleranceforvarianceinthebiometricbeingread.Thishasledthewayforhigh-securityinstallationstomovetowardmultiple-factorauthentication.

Multiple-FactorAuthenticationMultiple-factorauthenticationissimplythecombinationoftwoormoretypesofauthentication.Threebroadcategoriesofauthenticationcanbeused:whatyouare(forexample,biometrics),whatyouhave(forinstance,tokens),andwhatyouknow(passwordsandotherinformation).Two-factorauthenticationcombinesanytwoofthesebeforegrantingaccess.Anexamplewouldbeacardreaderthatthenturnsonafingerprintscanner—ifyourfingerprintmatchestheoneonfileforthecard,youaregrantedaccess.Three-factorauthenticationwouldcombineallthreetypes,suchasasmartcardreaderthatasksforaPINbeforeenablingaretinascanner.Ifallthreecorrespondtoavaliduserinthecomputerdatabase,accessisgranted.

ExamTip:Two-factorauthenticationcombinesanytwomethodsofauthentication,matchingitemssuchasatokenwithabiometric.Three-factorauthenticationcombinesanythree,suchasapasscode,biometric,andatoken.

Multiple-factorauthenticationmethodsgreatlyenhancesecuritybymakingitverydifficultforanattackertoobtainallthecorrectmaterialsforauthentication.Theyalsoprotectagainsttheriskofstolentokens,astheattackermusthavethecorrectbiometric,password,orboth.Moreimportant,multiple-factorauthenticationenhancesthesecurityofbiometricsystems,byprotectingagainstastolenbiometric.Changingthetokenmakesthebiometricuselessunlesstheattackercanstealthenewtoken.Italsoreducesfalsepositivesbytryingtomatchthesuppliedbiometricwiththeonethatisassociatedwiththesuppliedtoken.Thispreventsthecomputerfromseekingamatchusingtheentiredatabaseof

biometrics.Usingmultiplefactorsisoneofthebestwaystoensureproperauthenticationandaccesscontrol.

Chapter8Review

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingfactsabouthowphysicalsecurityimpactsnetworksecurity.

Describehowphysicalsecuritydirectlyaffectscomputerandnetworksecurity

Physicalaccessdefeatsallnetworksecurityprotections.

Bootdisksallowfilesystemaccess.

Driveimagingissimpletoaccomplishwithphysicalaccess.

Accesstotheinternalnetworkissimplewithphysicalaccess.

Theftofhardwarecanbeanattackinandofitself.

Discussstepsthatcanbetakentohelpmitigaterisks

Removaloffloppydrivesandothermediadriveswhentheyareunnecessarycanhelpmitigatebootdiskattacks.

RemovalofCD-ROMdevicesalsomakesphysicalaccessattacksmoredifficult.

BIOSpasswordsshouldbeusedtoprotectthebootsequence.

USBdevicesareathreatandthus,ifpossible,USBdriversshouldberemoved.

Allusersneedsecuritytraining.

Authenticationsystemsshouldusemultiplefactorswhenfeasible.

Identifythedifferenttypesoffiresandthevariousfiresuppressionsystemsdesignedtolimitthedamagecausedbyfires

Firescanbecausedbyandcanconsumeanumberofdifferentmaterials.Itisimportanttorecognizewhattypeoffireisoccurring,becausetheextinguishertousedependsonthetypeoffire.

TheABCfireextinguisheristhemostcommontypeandisdesignedtohandlemosttypesoffires.Theonlytypeoffireitisnotdesignedtoaddressisonewithcombustiblemetals.

Explainelectronicaccesscontrolsandtheprinciplesofconvergence

Accesscontrolsshouldhavelayeredareasandelectronicaccesscontrolsystems.

Electronicphysicalsecuritysystemsneedtobeprotectedfromnetwork-basedattacks.

KeyTermsaccesstokens(210)autoplay(201)biometrics(211)BIOSpasswords(200)bootdisk(192)closedcircuittelevision(CCTV)(198)contactlessaccesscards(197)convergence(200)crossovererrorrate(CER)(214)driveimaging(194)falsenegative(212)

falsepositive(212)layeredaccess(197)LiveCD(193)mantrap(198)multiple-factorauthentication(214)physicalaccesscontrol(196)policiesandprocedures(200)smartcards(211)UnifiedExtensibleFirmwareInterface(UEFI)(200)USBdevices(201)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.Adoorsystemdesignedtoonlyallowasinglepersonthroughiscalleda(n)_______________.

2._______________includeMP3playersandflashdrives.3.A(n)_______________happenswhenanunauthorizeduseris

allowedaccess.

4.Removablemediafromwhichacomputercanbebootediscalleda(n)_______________.

5._______________forcesausertoauthenticateagainwhenenteringamoresecurearea.

6.Itemscarriedbytheusertoallowthemtobeauthenticatedarecalled_______________.

7._______________isthemeasurementofuniquebiologicalproperties,likethefingerprint.

8._______________preventanattackerfrommakingthemachinebootofftheDVDdrive.

9._______________isasystemwherethecameraandmonitoraredirectlylinked.

10.Usingatoken,fingerprintreader,andPINkeypadwouldbeanexampleof_______________.

Multiple-ChoiceQuiz1.Whatisthemostcommonexampleofanaccesstoken?

A.Smartcard

B.Handwritingsample

C.PDA

D.Key

2.Whichoneisnotcommonlyusedasabiometric?A.Eyeretina

B.Handgeometry

C.Shoulder-to-waistgeometry

D.Fingerprint

3.Probablythesimplestphysicalattackonthecomputersystemis:A.AccessinganEthernetjacktoattackthenetwork

B.Usinganimitationtofoolabiometricauthenticator

C.InstallingavirusontheCCTVsystem

D.Outrighttheftofthecomputers

4.Whatisacommonthreattotoken-basedaccesscontrols?

A.Thekey

B.Demagnetizationofthestrip

C.Asystemcrash

D.Lossortheftofthetoken

5.WhycanUSBflashdrivesbeathreat?A.Theyusetoomuchpower.

B.Theycanbringmaliciouscodepastothersecuritymechanisms.

C.Theycanbestolen.

D.Theycanbeencrypted.

6.WhyisHVACimportanttocomputersecurity?A.SabotageoftheACunitcouldtakeouttheelectricalpower.

B.SabotageoftheACunitwouldmakethecomputersoverheatandshutdown.

C.TheACunitscouldbeconnectedtothenetwork.

D.HVACisnotimportanttosecurity.

7.Whyshouldsecurityguardsgetcross-traininginnetworksecurity?A.Theyaretheeyesandearsofthecorporationwhenitcomesto

security.

B.Theyaretheonlypeopleinthebuildingatnight.

C.Theyaremorequalifiedtoknowwhatasecuritythreatis.

D.Theyhavetheauthoritytodetainviolators.

8.Whyisenrollmentimportanttobiometrics?A.Fingerprintsareunique.

B.Itaddsanotherlayertothelayeredaccessmodel.

C.Ifenrollmentisnotdonecarefully,falsepositiveswillincrease.

D.Itcompletelypreventsfalsepositives.

9.Whyisphysicalsecuritysoimportanttogoodnetworksecurity?A.Becauseencryptionisnotinvolved

B.Becausephysicalaccessdefeatsnearlyallnetworksecuritymeasures

C.Becauseanattackercanstealbiometricidentities

D.Authentication

10.Howdoesmultiple-factorauthenticationimprovesecurity?A.Byusingbiometrics,nootherpersoncanauthenticate.

B.Itrestrictsuserstosmallerspaces.

C.Byusingacombinationofauthentications,itismoredifficultforsomeonetogainillegitimateaccess.

D.Itdeniesaccesstoanintrudermultipletimes.

EssayQuestions1.YouhavebeenaskedtoreportonthefeasibilityofinstallinganIP

CCTVcamerasystematyourorganization.DetailtheprosandconsofanIPCCTVsystemandhowyouwouldimplementthesystem.

2.Writeamemojustifyinglayeredaccessfordevicesinanorganization.

3.Writeamemojustifyingmoreusereducationaboutphysicalsecurity.

4.WriteasamplepolicyregardingtheuseofUSBdevicesinan

organization.

LabProjects

•LabProject8.1LoadaLiveCDonyourmachineandexaminethetoolsitprovides.Youwillneedthefollowingmaterials:

AcomputerwithaversionofWindowsinstalledandaCD/DVDburner

AnemptyCDorDVDThendothefollowing:

1.DownloadacopyofKaliLinux.Agoodsitefromwhichtoobtainthisiswww.kali.org/downloads/.

2.BurntheISOfiletotheCD/DVD.

3.Rebootthemachine,allowingtheLiveCDtostartthemachineinLinux.4.OnceKaliLinuxisrunning,openaterminalwindowandtypewireshark.

5.WithWiresharkopenasasniffingprogram,recordthetraffictoandfromthiscomputer.A.OpenCapture|Options.

B.SelectStartonyourEthernetinterface,usuallyeth0.

C.StopCapturebyselectingCapture|Stop.

D.Clickanypacketlistedtoviewtheanalysis.

6.ViewtheothertoolsontheCDunderKDE|Kali.

•LabProject8.2Disableautoplayonyoursystemforseveraltypesofmedia.Youwillneedthefollowingmaterials:

AcomputerwithWindowsAUSBflashdrivethatissettobebootable

ACD/DVDwithanautoplayfile

Thendothefollowing:

1.InserttheCD/DVDandverifythatautoplayisonandworking.

2.Followthischapter’sinstructionsondisablingautoplay.3.ReinserttheCD/DVDandverifythatautoplayisdisabled—nothingshouldappearwhen

theCD/DVDisinsertednow.

4.InserttheUSBflashdriveandseeifautoplayworksforit;ifitdoes,disableitusingthesamemethod.

chapter9 NetworkFundamentals

Thevalueofacommunicationsnetworkisproportionaltothesquareofthenumberofitsusers.

—METCALFE’SLAW

B

Inthischapter,youwilllearnhowto

Identifythebasicnetworkarchitectures

Definethebasicnetworkprotocols

Explainroutingandaddresstranslation

Classifysecurityzones

ythesimplestdefinitioninthedataworld,anetworkisameanstoconnecttwoormorecomputerstogetherforthepurposesofsharinginformation.Theterm“network”hasdifferentmeaningsdependingon

thecontextandusage.Anetworkcanbeagroupoffriendsandassociates,aseriesofinterconnectedtunnels,or,fromacomputer-orientedperspective,acollectionofinterconnecteddevices.Networksizesandshapesvarydrastically,rangingfromtwopersonalcomputersconnectedwithacrossovercableorwirelessrouterallthewayuptotheInternet,encirclingtheglobeandlinkingtogetheruntoldnumbersofindividual,distributedsystems.Thoughdatanetworksvarywidelyinsizeandscope,theyaregenerallydefinedintermsoftheirarchitecture,topology,andprotocols.

NetworkArchitecturesEverynetworkhasanarchitecture—whetherbydesignorbyaccident.Definingordescribingaspecificnetwork’sarchitectureinvolvesidentifyingthenetwork’sphysicalconfiguration,logicaloperation,structure,procedures,dataformats,protocols,andothercomponents.Forthesakeofsimplicityandcategorization,peopletendtodividenetworkarchitecturesintotwomaincategories:LANsandWANs.Alocalareanetwork(LAN)typicallyissmallerintermsofsizeandgeographiccoverageandconsistsoftwoormoreconnecteddevices.HomenetworksandmostsmallofficenetworkscanbeclassifiedasLANs.Awidearea

network(WAN)tendstobelarger,coveringmoregeographicarea,andconsistsoftwoormoresystemsingeographicallyseparatedareasconnectedbyanyofavarietyofmethodssuchasleasedlines,radiowaves,satelliterelays,microwaves,orevendial-upconnections.Withtheadventofwirelessnetworking,optical,andcellulartechnology,thelinesbetweenLANandWANsometimesseemtomergeseamlesslyintoasinglenetworkentity.Forexample,mostcorporationshavemultipleLANswithineachofficelocationthatallconnecttoaWANthatprovidesintercompanyconnectivity.Figure9.1showsanexampleofacorporatenetwork.EachofficelocationwilltypicallyhaveoneormoreLANs,whichareconnectedtotheotherofficesandthecompanyheadquartersthroughacorporateWAN.

•Figure9.1CorporateWANconnectingmultipleoffices

ExamTip:ALANisalocalareanetwork—anofficebuilding,homenetwork,andsoon.AWANisawideareanetwork—acorporatenetworkconnectingofficesinDallas,NewYork,andSanJose,forexample.

Overtime,asnetworkshavegrown,diversified,andmultiplied,thelinebetweenLANandWANhasbecomeblurred.Tobetterdescribeemerging,specializednetworkstructures,newtermshavebeencoinedtoclassifynetworksbasedonsizeanduse:

Campusareanetwork(CAN)Anetworkconnectinganynumberofbuildingsinanofficeoruniversitycomplex(alsoreferredtoasacampuswideareanetwork).

IntranetA“private”networkthatisaccessibleonlytoauthorizedusers.Manylargecorporationshostanintranettofacilitateinformationsharingwithintheirorganization.

InternetThe“globalnetwork”connectinghundredsofmillionsofsystemsandusers.

Metropolitanareanetwork(MAN)Anetworkdesignedforaspecificgeographiclocalitysuchasatownoracity.

Storageareanetwork(SAN)Ahigh-speednetworkconnectingavarietyofstoragedevicessuchastapesystems,RAIDarrays,opticaldrives,fileservers,andothers.

Virtuallocalareanetwork(VLAN)Alogicalnetworkallowingsystemsondifferentphysicalnetworkstointeractasiftheywereconnectedtothesamephysicalnetwork.

Client/serverAnetworkinwhichpowerful,dedicatedsystemscalledserversprovideresourcestoindividualworkstationsorclients.

Peer-to-peerAnetworkinwhicheverysystemistreatedasanequal,suchasahomenetwork.

NetworkTopologyOnemajorcomponentofeverynetwork’sarchitectureisthenetwork’stopology—howthenetworkisphysicallyorlogicallyarranged.Termstoclassifyanetwork’stopologyhavebeendeveloped,oftenreflectingthephysicallayoutofthenetwork.Themainclassesofnetworktopologiesarestar,ring,bus,andmixed.

StartopologyNetworkcomponentsareconnectedtoacentralpoint.(SeeFigure9.2.)

•Figure9.2Startopology

BustopologyNetworkcomponentsareconnectedtothesamecable,oftencalled“thebus”or“thebackbone.”(SeeFigure9.3.)

•Figure9.3Bustopology

RingtopologyNetworkcomponentsareconnectedtoeachotherinaclosedloopwitheachdevicedirectlyconnectedtotwootherdevices.(SeeFigure9.4.)

•Figure9.4Ringtopology

Largernetworks,suchasthoseinsideanofficecomplex,mayusemorethanonetopologyatthesametime.Forexample,anofficecomplexmayhavealargeringtopologythatinterconnectsallthebuildingsinthecomplex.Eachbuildingmayhavealargebustopologytointerconnectstartopologieslocatedoneachfloorofthebuilding.Thisiscalledamixedtopologyorhybridtopology.(SeeFigure9.5.)

•Figure9.5Mixedtopology

Withrecentadvancesintechnology,thesetopologydefinitionsoftenbreakdown.Whileanetworkconsistingoffivecomputersconnectedtothesamecoaxialcableiseasilyclassifiedasabustopology,whataboutthosesamecomputersconnectedtoaswitchusingCat-5cables?Withaswitch,eachcomputerisconnectedtoacentralnode,muchlikeastartopology,butthebackplaneoftheswitchisessentiallyasharedmedium.

Withaswitch,eachcomputerhasitsownexclusiveconnectiontotheswitchlikeastartopology,buthastosharetheswitch’scommunicationsbackbonewithalltheothercomputers,muchlikeabustopology.Toavoidthistypeofconfusion,manypeopleusetopologydefinitionsonlytoidentifythephysicallayoutofthenetwork,focusingonhowthedevicesareconnectedtothenetwork.Ifweapplythislineofthinkingtoourexample,thefive-computernetworkbecomesastartopologywhetherweuseahuboraswitch.

Wirelessnetworksuseradiowavesastheirmediumtotransmitpackets,andthoseradiowavesdon’tstopatthewallsofyourhouseoryourorganization.Anyonewithinrangecan“see”thoseradiowavesandattempttoeithersniffyourtrafficorconnecttoyournetwork.Encryption,MACaddressfiltering,andsuppressionofbeaconframesareallsecuritymechanismstoconsiderwhenusingwirelessnetworks.Wirelessnetworks,becauseofthesignalpropagation,caneasilyassumeameshstructure.

NetworkProtocolsHowdoalltheseinterconnecteddevicescommunicate?WhatmakesaPCinChinaabletoviewwebpagesonaserverinBrazil?Whenengineersfirststartedtoconnectcomputerstogethervianetworks,theyquicklyrealizedtheyneededacommonlyacceptedmethodforcommunicating—aprotocol.

ProtocolsAprotocolisanagreed-uponformatforexchangingortransmittingdatabetweensystems.Aprotocoldefinesanumberofagreed-uponparameters,suchasthedatacompressionmethod,thetypeoferrorcheckingtouse,andmechanismsforsystemstosignalwhentheyhavefinishedeitherreceivingortransmittingdata.Thereisawidevarietyofprotocols,each

designedwithcertainbenefitsandusesinmind.Someofthemorecommonprotocolsthathavebeenusedinnetworkingarelistednext.Today,mostnetworksaredominatedbyEthernetandInternetProtocol.

AppleTalkThecommunicationsprotocoldevelopedbyAppletoconnectMacintoshcomputersandprinters.

AsynchronousTransferMode(ATM)Aprotocolbasedontransferringdatainfixed-sizepackets.Thefixedpacketsizeshelpensurethatnosingledatatypemonopolizestheavailablebandwidth.

EthernetTheLANprotocoldevelopedjointlybyXerox,DEC,andIntel—themostwidelyimplementedLANstandard.

FiberDistributedDataInterface(FDDI)Theprotocolforsendingdigitaldataoverfiber-opticcabling.

InternetProtocols(IP)Theprotocolsformanagingandtransmittingdatabetweenpacket-switchedcomputernetworks,originallydevelopedfortheDepartmentofDefense.MostusersarefamiliarwithInternetprotocolssuchase-mail,FileTransferProtocol(FTP),Telnet,andHypertextTransferProtocol(HTTP).

InternetworkPacketExchange(IPX)ThenetworkingprotocolcreatedbyNovellforusewithNovellNetWareoperatingsystems.

SignalingSystem7(SS7)Thetelecommunicationsprotocolusedbetweenprivatebranchexchanges(PBXs)tohandletaskssuchascallsetup,routing,andteardown.

SystemsNetworkArchitecture(SNA)AsetofnetworkprotocolsdevelopedbyIBM,originallyusedtoconnectIBM’smainframesystems.

TokenRingALANprotocoldevelopedbyIBMthatrequiressystemstopossessthenetwork“token”beforetransmittingdata.

TransmissionControlProtocol/InternetProtocol(TCP/IP)Thecollectionofcommunicationsprotocolsusedtoconnecthostsonthe

Internet.TCP/IPisbyfarthemostcommonlyusednetworkprotocolandisacombinationoftheTCPandIPprotocols.

X.25AprotocolDevelopedbytheComitéConsultatifInternationalTéléphoniqueetTélégraphique(CCITT)foruseinpacket-switchednetworks.TheCCITTwasasubgroupwithintheInternationalTelecommunicationUnion(ITU)beforetheCCITTwasdisbandedin1992.

AlittlehistoryontheIPprotocolfromWikipedia:“InMay,1974,theInstituteofElectricalandElectronicEngineers(IEEE)publishedapaperentitled‘AProtocolforPacketNetworkInterconnection.’Thepaper’sauthors,VintCerfandBobKahn,describedaninternetworkingprotocolforsharingresourcesusingpacket-switchingamongthenodes.”

Inmostcases,communicationsprotocolsweredevelopedaroundtheOpenSystemInterconnection(OSI)model.TheOSImodel,orOSIReferenceModel,isanInternationalOrganizationforStandardization(ISO)standardforworldwidecommunicationsthatdefinesaframeworkforimplementingprotocolsandnetworkingcomponentsinsevendistinctlayers.WithintheOSImodel,controlispassedfromonelayertoanother(top-down)beforeitexitsonesystemandentersanothersystem,wherecontrolispassedbottom-uptocompletethecommunicationscycle.ItisimportanttonotethatmostprotocolsonlylooselyfollowtheOSImodel;severalprotocolscombineoneormorelayersintoasinglefunction.TheOSImodelalsoprovidesacertainlevelofabstractionandisolationforeachlayer,whichonlyneedstoknowhowtointeractwiththelayeraboveandbelowit.Theapplicationlayer,forexample,onlyneedstoknowhowtocommunicatewiththepresentationlayer—itdoesnotneedtotalkdirectlytothephysicallayer.Figure9.6showsthedifferentlayersoftheOSImodel.

•Figure9.6TheOSIReferenceModel

PacketsNetworksarebuilttoshareinformationandresources,butlikeotherformsofcommunication,networksandtheprotocolstheyusehavelimitsandrulesthatmustbefollowedforeffectivecommunication.Forexample,largechunksofdatamusttypicallybebrokenupintosmaller,moremanageablechunksbeforetheyaretransmittedfromonecomputertoanother.Breakingthedatauphasadvantages—youcanmoreeffectivelysharebandwidthwithothersystemsandyoudon’thavetoretransmittheentiredatasetifthereisaproblemintransmission.Whendataisbrokenupintosmallerpiecesfortransmission,eachofthesmallerpiecesistypicallycalledapacket.Eachprotocolhasitsowndefinitionofapacket—

dictatinghowmuchdatacanbecarried,whatinformationisstoredwhere,howthepacketshouldbeinterpretedbyanothersystem,andsoon.

Theconceptofbreakingamessageintopiecesbeforesendingitisasoldasnetworking.Thetermsusedtodescribethesepiecescanvaryfromprotocoltoprotocol.FrameRelayandEthernetbothusethetermframe.ATMcallsthemcells.Manyprotocolsusethegenerictermpacket.IntheOSImodel,thetermdatagramisused.Attheendoftheday,regardlessofwhatitiscalled,thesepiecesareprotocol-defined,formattedstructuresusedtocarryinformation.

Astandardpacketstructureisacrucialelementinaprotocoldefinition.Withoutastandardpacketstructure,systemswouldnotbeabletointerprettheinformationcomingtothemfromothersystems.Packet-basedcommunicationsystemshaveotheruniquecharacteristics,suchassize,whichneedtobeaddressed.Thisisdoneviaadefinedmaximumandfragmentingpacketsthataretoobig,asshowninthenextsections.

MaximumTransmissionUnitWhentransmittingpacketsacrossanetwork,therearemanyinterveningprotocolsandpiecesofequipment,eachwithitsownsetoflimitations.OneofthefactorsusedtodeterminehowmanypacketsamessagemustbebrokenintoistheMaximumTransmissionUnit(MTU).TheMTUisthelargestpacketthatcanbecarriedacrossanetworkchannel.ThevalueoftheMTUisusedbyTCPtopreventpacketfragmentationatinterveningdevices.PacketfragmentationisthesplittingofapacketwhileintransitintotwopacketssothattheyfitpastanMTUbottleneck.

PacketFragmentationBuiltintotheInternetProtocolisamechanismforhandlingofpacketsthatarelargerthanallowedacrossahop.UnderICMPv4,arouterhastwooptionswhenitencountersapacketthatistoolargeforthenexthop:breakthepacketintotwofragments,sendingeachseparately,ordropthepacket

andsendanICMPmessagebacktotheoriginator,indicatingthatthepacketistoobig.Whenafragmentedpacketarrivesatthereceivinghost,itmustbereunitedwiththeotherpacketfragmentsandreassembled.OneoftheproblemswithfragmentationisthatitcancauseexcessivelevelsofpacketretransmissionasTCPmustretransmitanentirepacketforthelossofasinglefragment.InIPv6,toavoidfragmentation,hostsarerequiredtodeterminetheminimalpathMTUbeforetransmissionofpacketstoavoidfragmentationenroute.AnyfragmentationrequirementsinIPv6areresolvedattheorigin,andiffragmentationisrequired,itoccursbeforesending.

TechTip

IPv6andFragmentationIPv6systemscalculatetheMTUandthenadheretothatfromhosttohost.Thispreventsfragmentationenroute;insteadallfragmentationisdonebytheoriginatinghosttofitundertheMTUlimit.

IPfragmentationcanbeexploitedinavarietyofwaystobypasssecuritymeasures.PacketscanbepurposefullyconstructedtosplitexploitcodeintomultiplefragmentstoavoidIDSdetection.Becausethereassemblyoffragmentsisdependentupondatainthefragments,itispossibletomanipulatethefragmentstoresultindatagramsthatexceedthe64KBlimit,resultingindenialofservice.

InternetProtocolTheInternetProtocolisnotasingleprotocolbutasuiteofprotocols.TherelationshipbetweensomeoftheIPsuiteandtheOSImodelisshowninFigure9.7.Asyoucansee,therearedifferencesbetweenthetwoversionsoftheprotocolinuse,v4andv6.Theprotocolelementsandtheirsecurityimplicationsarecoveredinthenextsectionsofthischapter.Oneofthese

differencesisthereplacementoftheInternetGroupManagementProtocol(IGMP)withtheInternetControlMessageProtocol(ICMP)andMulticastListenerDiscovery(MLD)inIPv6.

•Figure9.7InternetProtocolsuitecomponents

IPPacketsTobetterunderstandpacketstructure,let’sexaminethepacketstructuredefinedbytheIPprotocol.AnIPpacket,oftencalledadatagram,hastwomainsections:theheaderandthedatasection(sometimescalledthepayload).Theheadersectioncontainsalloftheinformationneededtodescribethepacket(seeFigure9.8).

•Figure9.8LogicallayoutofanIPpacket,(a)IPv4(b)IPv6

InIPv4,therearecommonfieldstodescribethefollowingoptions.

Whatkindofpacketitis(protocolversionnumber)

Howlargetheheaderofthepacketis(packetheaderlength)

Howtoprocessthispacket(typeofservicetellingthenetworkwhetherornottouseoptionssuchasminimizedelay,maximizethroughput,maximizereliability,andminimizecost)

Howlargetheentirepacketis(overalllengthofpacket—sincethisisa16-bitfield,themaximumsizeofanIPpacketis65,535bytes,butinpracticemostpacketsarearound1500bytes)

Auniqueidentifiersothatthispacketcanbedistinguishedfromotherpackets

Whetherornotthispacketispartofalongerdatastreamandshouldbehandledrelativetootherpackets

Flagsthatindicatewhetherornotspecialhandlingofthispacketisnecessary

Adescriptionofwherethispacketfitsintothedatastreamascomparedtootherpackets(thefragmentoffset)

A“timetolive”fieldthatindicatesthepacketshouldbediscardedifthevalueiszero

Aprotocolfieldthatdescribestheencapsulatedprotocol

Achecksumofthepacketheader(tominimizethepotentialfordatacorruptionduringtransmission)

Wherethepacketisfrom(sourceIPaddress,suchas10.10.10.5)

Wherethepacketisgoing(destinationIPaddress,suchas10.10.10.10)

Optionflagsthatgovernsecurityandhandlingrestrictions,whetherornottorecordtheroutethispackethastaken,whetherornottorecordtimestamps,andsoon

Thedatathispacketcarries

InIPv6,thesourceanddestinationaddressestakeupmuchgreater

room,andforequipmentandpackethandlingreasons,mostoftheinformationaloptionshavebeenmovedtotheoptionalareaaftertheaddresses.Thisseriesofoptionalextensionheadersallowstheefficientuseoftheheaderinprocessingtheroutinginformationduringpacketroutingoperations.OneofthemostcommonoptionsistheIPsecextension,whichisused

toestablishIPsecconnections.IPsecusesencryptiontoprovideavarietyofprotectionstopackets.IPsecisfullycoveredinChapter11.

TechTip

TheImportanceofUnderstandingTCP/IPProtocolsAsecurityprofessionalmustunderstandhowthevariousTCP/IPprotocolsoperate.Forexample,ifyou’relookingatapacketcaptureofasuspectedportscan,youneedtoknowhow“normal”TCPandUDPtrafficworkssoyouwillbeabletospot“abnormal”traffic.Thischapterprovidesaverybasicoverviewofthemostpopularprotocols:TCP,UDP,andICMP.

Asyoucansee,thisstandardpacketdefinitionallowssystemstocommunicate.Withoutthistypeof“commonlanguage,”theglobalconnectivityweenjoytodaywouldbeimpossible—theIPprotocolistheprimarymeansfortransmittinginformationacrosstheInternet.

TCPvs.UDPProtocolsaretypicallydevelopedtoenableacertaintypeofcommunicationorsolveaspecificproblem.Overtheyears,thisapproachhasledtothedevelopmentofmanydifferentprotocols,eachcriticaltothefunctionorprocessitsupports.However,therearetwoprotocolsthathavegrownsomuchinpopularityandusethatwithoutthem,theInternetasweknowitwouldceasetoexist.Thesetwoprotocols,theTransmissionControlProtocol(TCP)andUserDatagramProtocol(UDP),areprotocolsthatrunontopoftheIPnetworkprotocol.Asseparateprotocols,

theyeachhavetheirownpacketdefinitions,capabilities,andadvantages,butthemostimportantdifferencebetweenTCPandUDPistheconceptof“guaranteed”reliabilityanddelivery.

ExamTip:TCPisa“connection-oriented”protocolandoffersreliabilityandguaranteeddeliveryofpackets.UDPisa“connectionless”protocolwithnoguaranteesofdelivery.

UDPisknownasa“connectionless”protocolasithasveryfewerror-recoveryservicesandnoguaranteeofpacketdelivery.WithUDP,packetsarecreatedandsentontheirway.Thesenderhasnoideawhetherthepacketsweresuccessfullyreceivedorwhethertheywerereceivedinorder.Inthatrespect,UDPpacketsaremuchlikepostcards—youaddressthemanddroptheminthemailbox,notreallyknowingif,when,orhowthepostcardsreachyourintendedaudience.Eventhoughpacketlossandcorruptionarerelativelyrareonmodernnetworks,UDPisconsideredtobeanunreliableprotocolandisoftenonlyusedfornetworkservicesthatarenotgreatlyaffectedbytheoccasionallostordroppedpacket.Timesynchronizationrequests,namelookups,andstreamingaudioaregoodexamplesofnetworkservicesbasedonUDP.UDPalsohappenstobeafairly“efficient”protocolintermsofcontentdeliveryversusoverhead.WithUDP,moretimeandspaceisdedicatedtocontent(data)deliverythanwithotherprotocolssuchasTCP.ThismakesUDPagoodcandidateforstreamingprotocols,asmoreoftheavailablebandwidthandresourcesareusedfordatadeliverythanwithotherprotocols.TCPisa“connection-oriented”protocolandwasspecificallydesigned

toprovideareliableconnectionbetweentwohostsexchangingdata.TCPwasalsodesignedtoensurethatpacketsareprocessedinthesameorderinwhichtheyweresent.AspartofTCP,eachpackethasasequencenumbertoshowwherethatpacketfitsintotheoverallconversation.Withthesequencenumbers,packetscanarriveinanyorderandatdifferenttimesandthereceivingsystemwillstillknowthecorrectorderforprocessing

them.Thesequencenumbersalsoletthereceivingsystemknowifpacketsaremissing—receivingpackets1,2,4,and7tellsusthatpackets3,5,and6aremissingandneededaspartofthisconversation.Thereceivingsystemcanthenrequestretransmissionofpacketsfromthesendertofillinanygaps.The“guaranteedandreliable”aspectofTCPmakesitverypopularfor

manynetworkapplicationsandservicessuchasHTTP,FTP,andTelnet.Aspartoftheconnection,TCPrequiresthatsystemsfollowaspecificpatternwhenestablishingcommunications.Thispattern,oftencalledthethree-wayhandshake(showninFigure9.9),isasequenceofveryspecificsteps:

•Figure9.9TCP’sthree-wayhandshake

1.Theoriginatinghost(usuallycalledtheclient)sendsaSYN(synchronize)packettothedestinationhost(usuallycalledtheserver).TheSYNpackettellstheserverwhatporttheclientwantstoconnecttoandtheinitialpacketsequencenumberoftheclient.

2.TheserversendsaSYN/ACKpacketbacktotheclient.ThisSYN/ACK(synchronize/acknowledge)tellstheclient“Ireceivedyourrequest”andalsocontainstheserver’sinitialpacketsequencenumber.

3.TheclientrespondstotheserverwithanACKpackettocompletetheconnectionestablishmentprocess.

Thinkofthethree-wayhandshakeasbeingsimilartoaphonecall.Youplaceacalltoyourfriend—that’stheSYN.Yourfriendanswersthephoneandsays“hello”—that’stheSYN/ACK.Thenyousay“Hi,it’sme”—that’stheACK.Yourconnectionisestablishedandyoucanstartyourconversation.

ICMPWhileTCPandUDParearguablythemostcommonprotocols,theInternetControlMessageProtocol(ICMP)isprobablythethirdmostcommonlyusedprotocol.Duringtheearlydevelopmentoflargenetworks,itwasquicklydiscoveredthatthereneededtobesomemechanismformanagingtheoverallinfrastructure—handlingconnectionstatus,trafficflow,availability,anderrors.ThismechanismisICMP.ICMPisacontrolandinformationprotocolandisusedbynetworkdevicestodeterminesuchthingsasaremotenetwork’savailability,thelengthoftimetoreacharemotenetwork,andthebestrouteforpacketstotakewhentravelingtothatremotenetwork(usingICMPredirectmessages,forexample).ICMPcanalsobeusedtohandletheflowoftraffic,tellingothernetworkdevicesto“slowdown”transmissionspeedsifpacketsarecomingintoofast.

TechTip

TCPPacketFlagsTCPpacketscontainflags—dedicatedfieldsthatareusedtohelptheTCPprotocolcontrolandmanagetheTCPsession.ThereareeightdifferentflagsinaTCPpacket,andwhenaflagis“set,”itissettoavalueof1.Theeightdifferentflagsare

CWR(CongestionWindowReduced)SetbyahosttoindicatethatitreceivedapacketwiththeECEflagsetandistakingactiontohelpreducecongestion.

ECE(ECN-Echo)IndicatesthattheTCPpeerisECNcapablewhenusedduringthethree-wayhandshake.Duringnormaltraffic,thisflagmeansthatapacketwithaCongestionExperiencedflaginitsIPheaderwasreceivedbythehostsendingthis

packet.

URG(Urgent)Whenset,theurgentpointerinthepacketsshouldbereadasvalidandfollowedforadditionaldata.

ACK(Acknowledgment)IndicatesthatthedataintheACKfieldshouldbeprocessed.

PSH(Push)Indicatesthatdatadeliveryshouldstartimmediatelyratherthanwaitingforbufferstofillupfirst.

RST(Reset)Resetsthecurrentconnection—astart-overfeatureoftenusedbyIPS/IDSdevicestointerruptsessions.

SYN(Synchronize)Usedtohelpsynchronizesequencenumbers.FIN(Finish)Indicatesthesenderisfinishedandhasnomoredatatosend.

ICMP,likeUDP,isaconnectionlessprotocol.ICMPwasdesignedtocarrysmallmessagesquicklywithminimaloverheadorimpacttobandwidth.ICMPpacketsaresentusingthesameheaderstructureasIPpackets,withtheprotocolfieldsetto1toindicatethatitisanICMPpacket.ICMPpacketsalsohavetheirownheader,whichfollowstheIPheaderandcontainstype,code,checksum,sequencenumber,identifier,anddatafields.The“type”fieldindicateswhattypeofICMPmessageitis,andthe“code”fieldtellsuswhatthemessagereallymeans.Forexample,anICMPpacketwithatypeof3andacodeof2wouldtellusthisisa“destinationunreachable”messageand,morespecifically,a“hostunreachable”message—usuallyindicatingthatweareunabletocommunicatewiththeintendeddestination.BecauseICMPmessagesinIPv6canuseIPsec,ICMPv6messagescanhavesignificantprotectionsfromalteration.Unfortunately,ICMPhasbeengreatlyabusedbyattackersoverthelast

fewyearstoexecutedenial-of-service(DoS)attacks.BecauseICMPpacketsareverysmallandconnectionless,thousandsandthousandsofICMPpacketscanbegeneratedbyasinglesysteminaveryshortperiodoftime.AttackershavedevelopedmethodstotrickmanysystemsintogeneratingthousandsofICMPpacketswithacommondestination—theattacker’starget.Thiscreatesaliteralfloodoftrafficthatthetarget,andinmostcasesthenetworkthetargetsitson,isincapableofdealingwith.The

ICMPflooddrownsoutanyotherlegitimatetrafficandpreventsthetargetfromaccomplishingitsnormalduties—denyingaccesstotheservicethetargetnormallyprovides.ThishasledtomanyorganizationsblockingallexternalICMPtrafficattheperimeteroftheirorganization.

TechTip

ICMPMessageCodesWithICMPpackets,therealmessageofthepacketiscontainedinthe“typeandcode”fields,notthedatafield.FollowingaresomeofthemorecommonlyseenICMPtypecodes.NotethatICMPv6hasbrokenthelistingintotwotypes:errormessages(0—127)andinformationalmessages(128—255,presentedinthelatterhalfofthetable).IPv6introducesmanynewprotocols,twoofwhichwillhavesignificantimplications:theNeighborDiscoveryProtocol(NDP),whichmanagestheinteractionsbetweenneighboringIPv6nodes,andMulticastListenerDiscovery(MLD),whichmanagesIPv6multicastgroups.

TechTip

Manyofthemessageshaveassociatedcodevaluesthatmakethemessagemorespecific.For

example,ICMPv4messageswithatypeof3canhaveanyofthefollowingcodes:

CrossCheckPingSweepInChapter1youlearnedabouta“pingsweep.”Whatisapingsweepandwhatisitusedfor?WhattypesofICMPpacketscouldyouusetoconductapingsweep?HowdoesthisdifferbetweenICMPv4andICMPv6?

TechTip

ShouldYouBlockICMP?ICMPisaprotocolusedfortroubleshooting,errorreporting,andawidevarietyofassociatedfunctionality.ThisfunctionalityexpandsinICMPv6intomulticasting.ICMPgotabadnameprimarilybecauseofissuesassociatedwithpingandtraceroutecommands,buttheserepresentatinyminorityoftheprotocolfunctionality.TherearenumerousimportantusesassociatedwithICMP,andblockingitinitsentiretyisabadpractice.Blockingspecificcommandsandspecificsourcesmakessense;blanketblockingisapoorpracticethatwillleadtonetworkinefficiencies.BlockingICMPv6initsentiretywillblockalotofIPv6functionalitybecauseICMPisnowanintegralpartoftheprotocolsuite.

IPv4vs.IPv6ThemostcommonversionofIPinuseisIPv4,butthereleaseofIPv6,spurredbythedepletionoftheIPv4addressspace,hasbegunatypicallogarithmicadoptioncurve.IPv6hasmanysimilaritiestothepreviousversion,butitalsohassignificantnewenhancements,manyofwhichhavesignificantsecurityimplications.

ExpandedAddressSpaceTheexpansionoftheaddressspacefrom32bitsto128bitsisasignificantchange.WhereIPv4didnothaveenoughaddressesforeachpersononearth,IPv6hasover1500addressespersquaremeteroftheentireearth’ssurface.Thishasoneimmediateimplication:whereyoucoulduseascannertosearchalladdressesforresponsesinIPv4,doingthesameinIPv6willtakesignificantlylonger.AonemillisecondscaninIPv4equatestoa2.5billionyearscaninIPv6.Intheory,the128bitsofIPv6addressspacewillexpress3.4×1038possiblenodes.TheIPv6addressingprotocolhasbeendesignedtoallowforahierarchaldivisionoftheaddressspaceintoseverallayersofsubnets,toassistinthemaintainingofbothefficientandlogicaladdressallocations.OneexampleistheembeddingoftheIPv4

addressspaceintheIPv6space.Thisalsohasanintentionaleffectofsimplifyingthebackboneroutinginfrastructuresbyreducingtheroutingtablesize.

TechTip

IPv6TopSecurityConcernsTherearenumerousIPv6securityconcerns,sometechnical,someoperational.Someofthetopsecurityconcernsare

LackofIPv6securitytraining/education.

SecuritydevicebypassviaIPv6.PoorIPv6securitypolicies.

Addressnotationmakesgreppingthroughlogsdifficultifnotimpossible.IPv6complexityincreasesoperationalchallengesforcorrectdeployment.

NetworkDiscoveryIPv6introducestheNetworkDiscovery(NDP)protocol,whichisusefulforauto-configurationofnetworks.NDPcanenableavarietyofinterceptionandinterruptionthreatmodes.Amalevolentroutercanattachitselftoanetworkandrerouteorinterrupttrafficflows.

BenefitsofIPv6Changeisalwaysadifficulttask,andwhenthechangewilltouchvirtuallyeverythinginyoursystem,thismakesitevenmoredifficult.ChangingfromIPv4toIPv6isnotasimpletask,foritwillhaveaneffectoneverynetworkedresource.Thegoodnewsisthatthisisnotasuddenorsurpriseprocess;vendorshavebeenmakingproductsIPv6capableforalmostadecade.Bythispoint,virtuallyallthenetworkequipmentyourelyuponwillbedual-stackcapable,meaningthattheycanoperateinbothIPv4andIPv6networks.ThisprovidesamethodforanorderlytransferfromIPv4

toIPv6.IPv6hasmanyusefulbenefitsandultimatelywillbemoresecure

becauseithasmanysecurityfeaturesbuiltintothebaseprotocolseries.IPv6hasasimplifiedpacketheaderandnewaddressingscheme.Thiscanleadtomoreefficientroutingthroughsmallerroutingtablesandfasterpacketprocessing.IPv6wasdesignedtoincorporatemulticastingflowsnatively,whichallowsbandwidth-intensivemultimediastreamstobesentsimultaneouslytomultipledestinations.IPv6hasahostofnewservices,fromauto-configurationtomobiledeviceaddressing,andserviceenhancementstoimprovetherobustnessofQoSandVoIPfunctions.ThesecuritymodelofIPv6isbakedintotheprotocol,andis

significantlyenhancedfromthenonexistentoneinIPv4.IPv6isdesignedtobesecurefromsendertoreceiver,withIPsecavailablenativelyacrosstheprotocol.Thiswillsignificantlyimprovecommunicationlevelsecurity,butithasalsodrawnalotofattention.TheuseofIPsecwillchangethewaysecurityfunctionsareperformedacrosstheenterprise.OldIPv4methods,suchasNATandpacketinspectionmethodsofIDS,willneedtobeadjustedtothenewmodel.Securityapplianceswillhavetoadapttothenewprotocolanditsenhancednature.

PacketDeliveryProtocolsaredesignedtohelpinformationgetfromoneplacetoanother,butinordertodeliverapacketwehavetoknowwhereitisgoing.Packetdeliverycanbedividedintotwosections:localandremote.Ethernetiscommonforlocaldelivery,whileIPworksforremotedelivery.Localpacketdeliveryappliestopacketsbeingsentoutonalocalnetwork,whileremotepacketdeliveryappliestopacketsbeingdeliveredtoaremotesystem,suchasacrosstheInternet.Ultimately,packetsmayfollowalocaldelivery–remotedelivery–localdeliverypatternbeforereachingtheirintendeddestination.Thebiggestdifferenceinlocalversusremotedeliveryishowpacketsareaddressed.Networksystemshaveaddresses,notunlikeofficenumbersorstreetaddresses,andbeforeapacketcanbe

successfullydelivered,thesenderneedstoknowtheaddressofthedestinationsystem.

TechTip

MACAddressesEverynetworkdeviceshouldhaveauniqueMACaddress.ManufacturersofnetworkcardsandnetworkchipsetshaveblocksofMACaddressesassignedtothem,soyoucanoftentellwhattypeofequipmentissendingpacketsbylookingatthefirstthreepairsofhexadecimaldigitsinaMACaddress.Forexample“00-00-0C”wouldindicatethenetworkdevicewasbuiltbyCiscoSystems.

EthernetEthernetisthemostwidelyimplementedLayer2protocol.EthernetisstandardizedunderIEEE802.3.Ethernetworksbyforwardingpacketsonahop-to-hopbasisusingMACaddresses.Layer2addressingcanhavenumeroussecurityimplications.Layer2addressescanbepoisoned,spanningtreealgorithmscanbeattacked,VLANscanbehopped,andmore.Becauseofitsnearubiquity,Ethernetisacommonattackvector.Ithasmanyelementsthatmakeitusefulfromanetworkingpointofview,suchasitsbroadcastnatureanditsabilitytorunoverawiderangeofmedia.Butthesecanalsoactagainstsecurityconcerns.Wirelessconnectionsarefrequentlyconsideredtobeweakfromasecuritypointofview,butsoshouldEthernet,forunlessyouownthenetwork,youshouldconsiderthenetworktobeatrisk.

LocalPacketDeliveryPacketsdeliveredonanetwork,suchasanofficeLAN,areusuallysentusingthedestinationsystem’shardwareaddress,orMediaAccessControl(MAC)address.Eachnetworkcardornetworkdeviceis

supposedtohaveauniquehardwareaddresssothatitcanbespecificallyaddressedfornetworktraffic.MACaddressesareassignedtoadeviceornetworkcardbythemanufacturer,andeachmanufacturerisassignedaspecificblockofMACaddressestopreventtwodevicesfromsharingthesameMACaddress.MACaddressesareusuallyexpressedassixpairsofhexadecimaldigits,suchas00:07:e9:7c:c8:aa.Inorderforasystemtosenddatatoanothersystemonthenetwork,itmustfirstfindoutthedestinationsystem’sMACaddress.

TryThis!FindingMACAddressesonWindowsSystemsOpenacommandpromptonaWindowssystem.Typethecommandipconfig/allandfindyoursystem’sMACaddress.Hint:Itshouldbelistedunder“PhysicalAddress”onyournetworkadapters.Nowtypethecommandarp–aandpressENTER.Whatinformationdoesthisdisplay?CanyoufindtheMACaddressofyourdefaultgateway?

Maintainingalistofeverylocalsystem’sMACaddressisbothcostlyandtimeconsuming,andalthoughasystemmaystoreMACaddressestemporarilyforconvenience,inmanycasesthesendermustfindthedestinationMACaddressbeforesendinganypackets.Tofindanothersystem’sMACaddress,theAddressResolutionProtocol(ARP)isused.Essentially,thisisthecomputer’swayoffindingout“whoownstheblueconvertiblewithlicensenumber123JAK.”Inmostcases,systemsknowtheIPaddresstheywishtosendto,butnottheMACaddress.UsinganARPrequest,thesendingsystemwillsendoutaquery:Whois10.1.1.140?Thisbroadcastqueryisexaminedbyeverysystemonthelocalnetwork,butonlythesystemwhoseIPaddressis10.1.1.140willrespond.Thatsystemwillsendbackaresponsethatsays“I’m10.1.1.140andmyMACaddressis00:07:e9:7c:c8:aa.”Thesendingsystemwillthenformatthepacketfordeliveryanddropitonthenetworkmedia,stampedwiththeMACaddressofthedestinationworkstation.

MACaddressescanbe“spoofed”orfaked.Someoperatingsystemsallowuserswithadministrator-levelprivilegestoexplicitlysettheMACaddressfortheirnetworkcard(s).Forexample,inLinuxoperatingsystemsyoucanusetheifconfigcommandtochangeanetworkadapter’sMACaddress.Thecommandifconfigeth0hwether00:07:e9:7c:c8:aawillsettheMACaddressofadaptereth0to00:07:e9:7c:c8:aa.TherearealsoanumberofsoftwareutilitiesthatallowyoutodothisthroughaGUI,suchastheGNUMACChanger.GUIutilitiestochangeMACaddressesonWindowssystemsarealsoavailable.

CrossCheckMandatoryAccessControlvs.MediaAccessControlInChapter2youlearnedaboutadifferentMAC—mandatoryaccesscontrol.WhatisthedifferencebetweenmandatoryaccesscontrolandMediaAccessControl?Whatiseachusedfor?Whenusingacronymsitcanbecriticaltoensureallpartiesareawareofthecontextoftheirusage.

ARPAttacksARPoperatesinasimplisticandefficientmanner—abroadcastrequestfollowedbyaunicastreply.ThismethodleavesARPopentoattack,whichinturncanresultinlossesofintegrity,confidentiality,andavailability.BecauseARPservestoestablishcommunicationchannels,failuresatthislevelcanleadtosignificantsystemcompromises.ThereisawiderangeofARP-specificattacks,butonecanclassifythemintotypesbasedoneffect.

TechTip

RogueDeviceDetectionThereisalwaysariskofarogue(unauthorized)devicebeinginsertedintothenetwork.Todetectwhenthishappens,maintainingalistofallauthorizedMACaddressescanhelpdetectthesedevices.AlthoughMACscanbecopiedandspoofed,thiswouldalsosetupaconflictif

theoriginaldevicewaspresent.Monitoringfortheseconditionscandetecttheinsertionofaroguedevice.

ARPcanbeavectoremployedtoachieveaman-in-the-middleattack.Therearemanyspecificwaystocreatefalseentriesinamachine’sARPcache,buttheeffectisthesame:communicationswillberoutedtoanattacker.ThistypeofattackiscalledARPpoisoning.Theattackercanusethismethodtoinjecthimselfintothemiddleofacommunication,hijackasession,snifftraffictoobtainpasswordsorothersensitiveitems,orblocktheflowofdata,creatingadenialofservice.AlthoughARPisnotsecure,allisnotlostwithmanyARP-based

attacks.Higher-levelpacketprotectionssuchasIPseccanbeemployedsothatthepacketsareunreadablebyinterlopers.ThisisoneofthesecuritygainsassociatedwithIPv6,becausewhensecurityisemployedattheIPseclevel,packetsareprotectedbelowtheIPlevel,makingLayer2attackslesssuccessful.

RemotePacketDeliveryWhilepacketdeliveryonaLANisusuallyaccomplishedwithMACaddresses,packetdeliverytoadistantsystemisusuallyaccomplishedusingInternetProtocol(IP)addresses.IPaddressesare32-bitnumbersthatusuallyareexpressedasagroupoffournumbers(suchas10.1.1.132).Inordertosendapackettoaspecificsystemontheothersideoftheworld,youhavetoknowtheremotesystem’sIPaddress.StoringlargenumbersofIPaddressesoneveryPCisfartoocostly,andmosthumansarenotgoodatrememberingcollectionsofnumbers.However,humansaregoodatrememberingnames,sotheDomainNameSystem(DNS)protocolwascreated.

DNSDNStranslatesnamesintoIPaddresses.Whenyouenterthenameofyourfavoritewebsiteintothelocationbarofyourwebbrowserandpress

ENTER,thecomputerhastofigureoutwhatIPaddressbelongstothatname.YourcomputertakestheenterednameandsendsaquerytoalocalDNSserver.Essentially,yourcomputeraskstheDNSserver,“WhatIPaddressgoeswithwww.myfavoritesite.com?”TheDNSserver,whosemainpurposeinlifeistohandleDNSqueries,looksinitslocalrecordstoseeifitknowstheanswer.Ifitdoesn’t,theDNSserverqueriesanother,higher-leveldomainserver.Thatserverchecksitsrecordsandqueriestheserveraboveit,andsoonuntilamatchisfound.Thatname-to−IPaddressmatchingispassedbackdowntoyourcomputersoitcancreatethewebrequest,stampitwiththerightdestinationIPaddress,andsendit.

TheDomainNameSystemiscriticaltotheoperationoftheInternet—ifyourcomputercan’ttranslatewww.espn.cominto68.71.212.159,thenyourwebbrowserwon’tbeabletoaccessthelatestscores.(AsDNSisadynamicsystem,theIPaddressmaychangeforwww.espn.com;youcancheckwiththetracertcommand.)

Beforesendingthepacket,yoursystemwillfirstdetermineifthedestinationIPaddressisonalocalorremotenetwork.Inmostcases,itwillbeonaremotenetworkandyoursystemwillnotknowhowtoreachthatremotenetwork.Again,itwouldnotbepracticalforyoursystemtoknowhowtodirectlyreacheveryothersystemontheInternet,soyoursystemwillforwardthepackettoanetworkgateway.Networkgateways,usuallycalledrouters,aredevicesthatareusedtointerconnectnetworksandmovepacketsfromonenetworktoanother.ThatprocessofmovingpacketsfromonenetworktoanotheriscalledroutingandiscriticaltotheflowofinformationacrosstheInternet.Toaccomplishthistask,routersuseforwardingtablestodeterminewhereapacketshouldgo.Whenapacketreachesarouter,therouterlooksatthedestinationaddresstodeterminewheretosendthepacket.Iftherouter’sforwardingtablesindicatewherethepacketshouldgo,theroutersendsthepacketoutalongtheappropriateroute.Iftherouterdoesnotknowwherethedestinationnetworkis,itforwardsthepackettoitsdefinedgateway,whichrepeatsthe

sameprocess.Eventually,aftertraversingvariousnetworksandbeingpassedthroughvariousrouters,yourpacketarrivesattherouterservingthenetworkwiththewebsiteyouaretryingtoreach.ThisrouterdeterminestheappropriateMACaddressofthedestinationsystemandforwardsthepacketaccordingly.

DNSSECBecauseofthecriticalfunctionDNSperformsandthesecurityimplicationsofDNS,acryptographicallysignedversionofDNSwascreated.DNSSECisanextensionoftheoriginalDNSspecification,makingittrustworthy.DNSisoneofthepillarsofauthorityassociatedwiththeInternet—itprovidestheaddressesusedbymachinesforcommunications.LackoftrustinDNSandtheinabilitytoauthenticateDNSmessagesdrovetheneedforandcreationofDNSSEC.TheDNSSECspecificationwasformallypublishedin2005,butsystem-wideadoptionhasbeenslow.In2008,DanKaminskyintroducedamethodofDNScachepoisoning,demonstratingtheneedforDNSSECadoption.AlthoughKaminskyworkedwithvirtuallyallmajorvendorsandwasbehindoneofthemostcoordinatedpatchrolloutsever,theneedforDNSSECstillremainsandenterprisesareslowtoadoptthenewmethods.Oneofthereasonsforslowadoptioniscomplexity.HavingDNSrequestsandrepliesdigitallysignedrequiressignificantlymoreworkandtheincreaseincomplexitygoesagainstthestabilitydesiresofnetworkengineers.DNSwasdesignedinthe1980swhenthethreatmodelwassubstantially

differentthantoday.TheInternettoday,anditsuseforallkindsofcriticalcommunications,needsatrustworthyaddressingmechanism.DNSSECisthatmechanism,andasitrollsout,itwillsignificantlyincreasetheleveloftrustassociatedwithaddresses.Althoughcertificate-baseddigitalsignaturesarenotperfect,thelevelofefforttocompromisethistypeofprotectionmechanismchangesthenatureoftheattackgame,makingitoutofreachtoallbutthemostresourcedplayers.ThecouplednatureofthetrustchainsinDNSalsoservestoalerttoanyinterveningattacks,makingattacksmuchhardertohide.

IPAddressesandSubnettingThelastsectionmentionedthatIPv4addressesare32-bitnumbers.Those32bitsarerepresentedasfourgroupsof8bitseach(calledoctets).YouwillusuallyseeIPaddressesexpressedasfoursetsofdecimalnumbersindotted-decimalnotation,10.120.102.15forexample.Ofthose32bitsinanIPaddress,someareusedforthenetworkportionoftheaddress(thenetworkID),andsomeareusedforthehostportionoftheaddress(thehostID).Subnettingistheprocessthatisusedtodividethose32bitsinanIPaddressandtellyouhowmanyofthe32bitsarebeingusedforthenetworkIDandhowmanyarebeingusedforthehostID.Asyoucanguess,whereandhowyoudividethe32bitsdetermineshowmanynetworksandhowmanyhostaddressesyoumayhave.Tointerpretthe32-bitspacecorrectly,wemustuseasubnetmask,whichtellsusexactlyhowmuchofthespaceisthenetworkportionandhowmuchisthehostportion.Let’slookatanexampleusingtheIPaddress10.10.10.101withasubnetmaskof255.255.255.0.

TechTip

HowDNSWorksDNSisahierarchicaldistributeddatabasestructureofnamesandaddresses.ThissystemisdelegatedfromrootserverstootherDNSserversthateachmanagelocalrequestsforinformation.Thetoplevelofauthorities,referredtoasauthoritativesources,maintainthecorrectauthoritativerecord.Asrecordschange,theyarepushedoutbetweenDNSservers,sorecordscanbemaintainedinasnearacurrentfashionaspossible.TransfersofDNSrecordsbetweenDNSserversarecalledDNSzonetransfers.Becausethesecanresultinmassivepoisoningattacks,zonetransfersneedtobetightlycontrolledbetweentrustedparties.Toavoidrequestcongestion,DNSresponsesarehandledbyamyriadoflowernameservers,referredtoasresolvers.Resolvershaveacounterthatrefreshestheirrecordafteratimelimithasbeenreached.Undernormaloperation,theDNSfunctionisatwo-stepprocess:

1.TheclientrequestsaDNSrecord.2.TheresolverreplieswithaDNSreply.

Iftheresolverisoutofdate,thestepsexpand:

1.TheclientrequestsaDNSrecord.2.Therecursiveresolverqueriestheauthoritativeserver.3.Theauthoritativeserverrepliestotherecursiveresolver.4.TherecursiveresolverreplieswithaDNSresponsetoclient.ForamoredetailedexplanationofDNS,checkoutDNSforRocketScientists,www.zytrax.com/books/dns/.

Firstwemustconverttheaddressandsubnetmasktotheirbinaryrepresentations:

SubnetMask:11111111.11111111.11111111.00000000IPAddress:00001010.00001010.00001010.01100101

Then,weperformabitwiseANDoperationtogetthenetworkaddress.ThebitwiseANDoperationexamineseachsetofmatchingbitsfromthebinaryrepresentationofthesubnetmaskandthebinaryrepresentationoftheIPaddress.Foreachsetwhereboththemaskandaddressbitsare1,theresultoftheANDoperationisa1.Otherwise,ifeitherbitisa0,theresultisa0.So,forourexampleweget

NetworkAddress:00001010.00001010.00001010.00000000

whichindecimalis10.10.10.0,thenetworkIDofourIPnetworkaddress(translatethebinaryrepresentationtodecimal).ThenetworkIDandsubnetmasktogethertellusthatthefirstthree

octetsofouraddressarenetwork-related(10.10.10.),whichmeansthatthelastoctetofouraddressisthehostportion(101inthiscase).Inourexample,thenetworkportionoftheaddressis10.10.10andthehostportionis101.Anothershortcutinidentifyingwhichofthe32bitsisbeingusedinthenetworkIDistolookatthesubnetmaskafterit’sbeenconvertedtoitsbinaryrepresentation.Ifthere’sa1inthesubnetmask,thenthecorrespondingbitinthebinaryrepresentationoftheIPaddressisbeingusedaspartofthenetworkID.Intheprecedingexample,thesubnetmaskof255.255.255.0inbinaryrepresentationis11111111.11111111.11111111.00000000.Wecanseethatthere’sa1inthefirst24spots,whichmeansthatthefirst24bitsoftheIPaddressare

beingusedasthenetworkID(whichisthefirstthreeoctetsof255.255.255).Networkaddressspacesareusuallydividedintooneofthreeclasses:

ClassASupports16,777,214hostsoneachnetworkwithadefaultsubnetmaskof255.0.0.0Subnets:0.0.0.0to126.255.255.255(127.0.0.0to127.255.255.255isreservedforloopback)

ClassBSupports65,534hostsoneachnetworkwithadefaultsubnetmaskof255.255.0.0Subnets:128.0.0.0to191.255.255.255

ClassCSupports253hostsoneachnetworkwithadefaultsubnetmaskof255.255.255.0(seeFigure9.10)Subnets:192.0.0.0to223.255.255.255

•Figure9.10Asubnetmaskof255.255.255.0indicatesthisisaClassCaddressspace.

Everythingabove224.0.0.0isreservedforeithermulticastingorfutureuse.

TechTip

RFC1918—PrivateAddressSpacesRFC1918isthetechnicalspecificationforprivateaddressspace.RFCstandsfor“RequestforComment”andthereareRFCsforjustabouteverythingtodowiththeInternet—protocols,routing,howtohandlee-mail,andsoon.YoucanfindRFCsatwww.ietf.org/rfc.html.

Inaddition,certainsubnetsarereservedforprivateuseandarenotroutedacrosspublicnetworkssuchastheInternet:

10.0.0.0to10.255.255.255

172.16.0.0to172.31.255.255

192.168.0.0to192.168.255.255

169.254.0.0to169.254.255.255(AutomaticPrivateIPAddressing)

Finally,whendeterminingthevalidhoststhatcanbeplacedonaparticularsubnet,youhavetokeepinmindthatthe“all0’s”addressofthehostportionisreservedforthenetworkaddressandthe“all1’s”addressofthehostportionisreservedforthebroadcastaddressofthatparticularsubnet.Againfromourearlierexample:

SubnetNetworkAddress:10.10.10.000001010.00001010.00001010.00000000

BroadcastAddress:10.10.10.25500001010.00001010.00001010.11111111

Intheirforwardingtables,routersmaintainlistsofnetworksandtheaccompanyingsubnetmask.Withthesetwopieces,theroutercanexamine

thedestinationaddressofeachpacketandthenforwardthepacketontotheappropriatedestination.Asmentionedearlier,subnettingallowsustodividenetworksinto

smallerlogicalunits,andweusesubnetmaskstodothis.Buthowdoesthiswork?RememberthatthesubnetmasktellsushowmanybitsarebeingusedtodescribethenetworkID—adjustingthesubnetmask(andthenumberofbitsusedtodescribethenetworkID)allowsustodivideanaddressspaceintomultiple,smallerlogicalnetworks.Let’ssayyouhaveasingleaddressspaceof192.168.45.0thatyouneedtodivideintomultiplenetworks.Thedefaultsubnetmaskis255.255.255.0,whichmeansyou’reusing24bitsasthenetworkIDand8bitsasthehostID.Thisgivesyou254differenthostaddresses.Butwhatifyouneedmorenetworksanddon’tneedasmanyhostaddresses?Youcansimplyadjustyoursubnetmasktoborrowsomeofthehostbitsandusethemasnetworkbits.Ifyouuseasubnetmaskof255.255.255.224,youareessentially“borrowing”thefirst3bitsfromthespaceyouwereusingtodescribehostIDsandusingthemtodescribethenetworkID.ThisgivesyoumorespacetocreatedifferentnetworksbutmeansthateachnetworkwillnowhavefeweravailablehostIDs.Witha255.255.255.224subnetmask,youcancreatesixdifferentsubnets,buteachsubnetcanonlyhave30uniquehostIDs.Ifyouborrow6bitsfromthehostIDportionanduseasubnetmaskof255.255.255.252,youcancreate62differentnetworksbuteachofthemcanonlyhavetwouniquehostIDs.

TryThis!CalculatingSubnetsandHostsGivenanetworkIDof192.168.10.Xandasubnetmaskof255.255.255.224,youshouldbeabletocreateeightnetworkswithspacefor30hostsoneachnetwork.Calculatethenetworkaddress,thefirstusableIPaddressinthatsubnet,andthelastusableIPaddressinthatsubnet.Hint:Thefirstnetworkwillbe192.168.10.0.ThefirstusableIPaddressinthatsubnetis192.168.10.1andthelastusableIPaddressinthatsubnetis192.168.10.30.

TechTip

DynamicHostConfigurationProtocolWhenanadministratorsetsupanetwork,theyusuallyassignIPaddressestosystemsinoneoftwoways:staticallyorthroughDHCP.AstaticIPaddressassignmentisfairlysimple;theadministratordecideswhatIPaddresstoassigntoaserverorPC,andthatIPaddressstaysassignedtothatsystemuntiltheadministratordecidestochangeit.TheotherpopularmethodisthroughtheDynamicHostConfigurationProtocol(DHCP).UnderDHCP,whenasystembootsuporisconnectedtothenetwork,itsendsoutaquerylookingforaDHCPserver.IfaDHCPserverisavailableonthenetwork,itanswersthenewsystemandtemporarilyassignstothenewsystemanIPaddressfromapoolofdedicated,availableaddresses.DHCPisan“asavailable”protocol—iftheserverhasalreadyallocatedalltheavailableIPaddressesintheDHCPpool,thenewsystemwillnotreceiveanIPaddressandwillnotbeabletoconnecttothenetwork.AnotherkeyfeatureofDHCPistheabilitytolimithowlongasystemmaykeepitsDHCP-assignedIPaddress.DHCPaddresseshavealimitedlifespan,andoncethattimeperiodexpires,thesystemusingthatIPaddressmusteitherrenewuseofthataddressorrequestanotheraddressfromtheDHCPserver.TherequestingsystemeithermayendupwiththesameIPaddressormaybeassignedacompletelynewaddress,dependingonhowtheDHCPserverisconfiguredandonthecurrentdemandforavailableaddresses.DHCPisverypopularinlargeuserenvironmentswherethecostofassigningandtrackingIPaddressesamonghundredsorthousandsofusersystemsisextremelyhigh.

NetworkAddressTranslationIfyou’rethinkingthata32-bitaddressspacethat’schoppedupandsubnettedisn’tenoughtohandleallthesystemsintheworld,you’reright.WhileIPv4addressblocksareassignedtoorganizationssuchascompaniesanduniversities,thereusuallyaren’tenoughInternet-visibleIPaddressestoassigntoeverysystemontheplanetaunique,Internet-routableIPaddress.TocompensateforthislackofavailableIPaddressspace,weuseNetworkAddressTranslation(NAT).NATtranslatesprivate(nonroutable)IPaddressesintopublic(routable)IPaddresses.Fromourdiscussionsearlierinthischapter,youmayrememberthat

certainIPaddressblocksarereservedfor“privateuse,”andyou’dprobablyagreethatnoteverysysteminanorganizationneedsadirect,Internet-routableIPaddress.Actually,forsecurityreasons,it’smuch

betterifmostofanorganization’ssystemsarehiddenfromdirectInternetaccess.MostorganizationsbuildtheirinternalnetworksusingtheprivateIPaddressranges(suchas10.1.1.X)topreventoutsidersfromdirectlyaccessingthoseinternalnetworks.However,inmanycasesthosesystemsstillneedtobeabletoreachtheInternet.ThisisaccomplishedbyusingaNATdevice(typicallyafirewallorrouter)thattranslatesthemanyinternalIPaddressesintooneofasmallnumberofpublicIPaddresses.Forexample,considerafictitiouscompany,ACME.com.ACMEhas

severalthousandinternalsystemsusingprivateIPaddressesinthe10.X.X.Xrange.ToallowthoseIPstocommunicatewiththeoutsideworld,ACMEleasesanInternetconnectionandafewpublicIPaddresses,anddeploysaNAT-capabledevice.ACMEadministratorsconfigurealltheirinternalhoststousetheNATdeviceastheirdefaultgateway.Wheninternalhostsneedtosendpacketsoutsidethecompany,theysendthemtotheNATdevice.TheNATdeviceremovestheinternalsourceIPaddressoutoftheoutboundpacketsandreplacesitwiththeNATdevice’spublic,routableaddressandsendsthemontheirway.Whenresponsepacketsarereceivedfromoutsidesources,thedeviceperformsNATinreverse,strippingofftheexternal,publicIPaddressinthedestinationaddressfieldandreplacingitwiththecorrectinternal,privateIPaddressinthedestinationaddressfieldandreplacingitwiththecorrectinternal,privateIPaddressbeforesendingitonintotheprivateACME.comnetwork.Figure9.11illustratesthisNATprocess.

•Figure9.11LogicaldepictionofNAT

TechTip

DifferentApproachesforImplementingNATWhiletheconceptofNATremainsthesame,thereareactuallyseveraldifferentapproachestoimplementingNAT.Forexample:

StaticNATMapsaninternal,privateaddresstoanexternal,publicaddress.Thesamepublicaddressisalwaysusedforthatprivateaddress.Thistechniqueisoftenusedwhenhostingsomethingyouwishthepublictobeabletogetto,suchasawebserver,behindafirewall.

DynamicNATMapsaninternal,privateIPaddresstoapublicIPaddressselectedfromapoolofregistered(public)IPaddresses.Thistechniqueisoftenusedwhentranslatingaddressesforend-userworkstationsandtheNATdevicemustkeeptrackofinternal/externaladdressmappings.

PortAddressTranslation(PAT)Allowsmanydifferentinternal,privateaddressestoshareasingleexternalIPaddress.DevicesperformingPATreplacethesourceIPaddress

withtheNATIPaddressandreplacethesourceportfieldwithaportfromanavailableconnectionpool.PATdeviceskeepatranslationtabletotrackwhichinternalhostsareusingwhichportssothatsubsequentpacketscanbestampedwiththesameportnumber.Whenresponsepacketsarereceived,thePATdevicereversestheprocessandforwardsthepackettothecorrectinternalhost.PATisaverypopularNATtechniqueandinuseatmanyorganizations.

InFigure9.11,weseeanexampleofNATbeingperformed.Aninternalworkstation(10.10.10.12)wantstovisittheESPNwebsiteatwww.espn.com(68.71.212.159).WhenthepacketreachestheNATdevice,thedevicetranslatesthe10.10.10.12sourceaddresstothegloballyroutable63.69.110.110address,theIPaddressofthedevice’sexternallyvisibleinterface.WhentheESPNwebsiteresponds,itrespondstothedevice’saddressjustasiftheNATdevicehadoriginallyrequestedtheinformation.TheNATdevicemustthenrememberwhichinternalworkstationrequestedtheinformationandroutethepackettotheappropriatedestination.

SecurityZonesThefirstaspectofsecurityisalayereddefense.Justasacastlehasamoat,anoutsidewall,aninsidewall,andevenakeep,so,too,doesamodernsecurenetworkhavedifferentlayersofprotection.Differentzonesaredesignedtoprovidelayersofdefense,withtheoutermostlayersprovidingbasicprotectionandtheinnermostlayersprovidingthehighestlevelofprotection.Aconstantissueisthataccessibilitytendstobeinverselyrelatedtolevelofprotection,soitismoredifficulttoprovidecompleteprotectionandunfetteredaccessatthesametime.Trade-offsbetweenaccessandsecurityarehandledthroughzones,withsuccessivezonesguardedbyfirewallsenforcingever-increasinglystrictsecuritypolicies.TheoutermostzoneistheInternet,afreearea,beyondanyspecificcontrols.Betweentheinner,securecorporatenetworkandtheInternetisanareawheremachinesareconsideredatrisk.ThiszonehascometobecalledtheDMZ,afteritsmilitarycounterpart,thedemilitarizedzone,

whereneithersidehasanyspecificcontrols.Onceinsidetheinner,securenetwork,separatebranchesarefrequentlycarvedouttoprovidespecificfunctionality;underthisheading,wewillalsodiscussintranets,extranets,flatnetworks,enclaves,virtualLANs(VLANs),andzonesandconduits.

DMZTheDMZisamilitarytermforgroundseparatingtwoopposingforces,byagreementandforthepurposeofactingasabufferbetweenthetwosides.ADMZinacomputernetworkisusedinthesameway;itactsasabufferzonebetweentheInternet,wherenocontrolsexist,andtheinner,securenetwork,whereanorganizationhassecuritypoliciesinplace(seeFigure9.12).Todemarcatethezonesandenforceseparation,afirewallisusedoneachsideoftheDMZ.Theareabetweenthesefirewallsisaccessiblefromeithertheinner,securenetworkortheInternet.Figure9.12illustratesthesezonesascausedbyfirewallplacement.ThefirewallsarespecificallydesignedtopreventaccessacrosstheDMZdirectly,fromtheInternettotheinner,securenetwork.ItisimportanttonotethattypicallyonlyfilteredInternettrafficisallowedintotheDMZ.Forexample,anorganizationhostingawebserverandanFTPserverinitsDMZmaywantthepublictobeableto“see”thoseservicesbutnothingelse.InthatcasethefirewallmayallowFTP,HTTP,andHTTPStrafficintotheDMZfromtheInternetandthenfilterouteverythingelse.

•Figure9.12TheDMZandzonesoftrust

SpecialattentionshouldbepaidtothesecuritysettingsofnetworkdevicesplacedintheDMZ,andtheyshouldbeconsideredatalltimestobeatriskforcompromisebyunauthorizeduse.Acommonindustryterm,hardenedoperatingsystem,appliestomachineswhosefunctionalityislockeddowntopreservesecurity—unnecessaryservicesandsoftwareareremovedordisabled,functionsarelimited,andsoon.ThisapproachneedstobeappliedtothemachinesintheDMZ,andalthoughitmeansthattheirfunctionalityislimited,suchprecautionsensurethatthemachineswillworkproperlyinaless-secureenvironment.Manytypesofserversbelonginthisarea,includingwebserversthatare

servingcontenttoInternetusers,aswellasremoteaccessserversandexternale-mailservers.Ingeneral,anyserverdirectlyaccessedfromtheoutside,untrustedInternetzoneneedstobeintheDMZ.OtherserversshouldnotbeplacedintheDMZ.Domainnameserversforyourinner,

trustednetworkanddatabaseserversthathousecorporatedatabasesshouldnotbeaccessiblefromtheoutside.Applicationservers,fileservers,printservers—allofthestandardserversusedinthetrustednetwork—shouldbebehindbothfirewallsandtheroutersandswitchesusedtoconnectthesemachines.TheideabehindtheuseoftheDMZtopologyistoprovidepublicly

visibleserviceswithoutallowinguntrustedusersaccesstoyourinternalnetwork.Iftheoutsideusermakesarequestforaresourcefromthetrustednetwork,suchasadataelementfromaninternaldatabasethatisaccessedviaapubliclyvisiblewebpageintheDMZ,thenthisrequestneedstofollowthisscenario:

1.Auserfromtheuntrustednetwork(theInternet)requestsdataviaawebpagefromawebserverintheDMZ.

2.ThewebserverintheDMZrequeststhedatafromtheapplicationserver,whichcanbeintheDMZorintheinner,trustednetwork.

3.Theapplicationserverrequeststhedatafromthedatabaseserverinthetrustednetwork.

4.Thedatabaseserverreturnsthedatatotherequestingapplicationserver.

5.Theapplicationserverreturnsthedatatotherequestingwebserver.6.Thewebserverreturnsthedatatotherequestinguserfromthe

untrustednetwork.

ExamTip:DMZsactasabufferzonebetweenunprotectedareasofanetwork(theInternet)andprotectedareas(sensitivecompanydatastores),allowingforthemonitoringandregulationoftrafficbetweenthesetwozones.

Thisseparationaccomplishestwospecific,independenttasks.First,theuserisseparatedfromtherequestfordataonasecurenetwork.Byhaving

intermediariesdotherequesting,thislayeredapproachallowssignificantsecuritylevelstobeenforced.Usersdonothavedirectaccessorcontrolovertheirrequests,andthisfilteringprocesscanputcontrolsinplace.Second,scalabilityismoreeasilyrealized.Themultiple-serversolutioncanbemadetobeveryscalable,literallytomillionsofusers,withoutslowingdownanyparticularlayer.

InternetTheInternetisaworldwideconnectionofnetworksandisusedtotransporte-mail,files,financialrecords,remoteaccess—younameit—fromonenetworktoanother.TheInternetisnotasinglenetwork,butaseriesofinterconnectednetworksthatallowsprotocolstooperateandenabledatatoflowacrossit.Thismeansthatevenifyournetworkdoesn’thavedirectcontactwitharesource,aslongasaneighbor,oraneighbor’sneighbor,andsoon,cangetthere,socanyou.Thislargeweballowsusersalmostinfiniteabilitytocommunicatebetweensystems.

Thereareover3.2billionusersontheInternet,andEnglishisthemostusedlanguage.

Becauseeverythingandeveryonecanaccessthisinterconnectedwebanditisoutsideofyourcontrolandabilitytoenforcesecuritypolicies,theInternetshouldbeconsideredanuntrustednetwork.AfirewallshouldexistatanyconnectionbetweenyourtrustednetworkandtheInternet.ThisisnottoimplythattheInternetisabadthing—itisagreatresourceforallnetworksandaddssignificantfunctionalitytoourcomputingenvironments.ThetermWorldWideWeb(WWW)isfrequentlyusedsynonymously

torepresenttheInternet,buttheWWWisactuallyjustonesetofservicesavailableviatheInternet.WWWor“theWeb”ismorespecificallytheHypertextTransferProtocol(HTTP)–basedservicesthataremade

availableovertheInternet.Thiscanincludeavarietyofactualservicesandcontent,includingtextfiles,pictures,streamingaudioandvideo,andevenvirusesandworms.

IntranetAnintranetdescribesanetworkthathasthesamefunctionalityastheInternetforusersbutliescompletelyinsidethetrustedareaofanetworkandisunderthesecuritycontrolofthesystemandnetworkadministrators.Typicallyreferredtoascampusorcorporatenetworks,intranetsareusedeverydayincompaniesaroundtheworld.Anintranetallowsadeveloperandauserthefullsetofprotocols—HTTP,FTP,instantmessaging,andsoon—thatisofferedontheInternet,butwiththeaddedadvantageoftrustfromthenetworksecurity.ContentonintranetwebserversisnotavailableovertheInternettountrustedusers.Thislayerofsecurityoffersasignificantamountofcontrolandregulation,allowinguserstofulfillbusinessfunctionalitywhileensuringsecurity.Twomethodscanbeusedtomakeinformationavailabletooutside

users:DuplicationofinformationontomachinesintheDMZcanmakeitavailabletootherusers.Propersecuritychecksandcontrolsshouldbemadepriortoduplicatingthematerialtoensuresecuritypoliciesconcerningspecificdataavailabilityarebeingfollowed.Alternatively,extranets(discussedinthenextsection)canbeusedtopublishmaterialtotrustedpartners.

ExamTip:Anintranetisaprivate,internalnetworkthatusescommonnetworktechnologies(suchasHTTP,FTP,andsoon)toshareinformationandprovideresourcestoorganizationalusers.

ShouldusersinsidetheintranetrequireaccesstoinformationfromtheInternet,aproxyservercanbeusedtomasktherequestor’slocation.This

helpssecuretheintranetfromoutsidemappingofitsactualtopology.AllInternetrequestsgototheproxyserver.Ifarequestpassesfilteringrequirements,theproxyserver,assumingitisalsoacacheserver,looksinitslocalcacheofpreviouslydownloadedwebpages.Ifitfindsthepageinitscache,itreturnsthepagetotherequestorwithoutneedingtosendtherequesttotheInternet.Ifthepageisnotinthecache,theproxyserver,actingasaclientonbehalfoftheuser,usesoneofitsownIPaddressestorequestthepagefromtheInternet.Whenthepageisreturned,theproxyserverrelatesittotheoriginalrequestandforwardsitontotheuser.Thismaskstheuser’sIPaddressfromtheInternet.Proxyserverscanperformseveralfunctionsforafirm;forexample,theycanmonitortrafficrequests,eliminatingimproperrequestssuchasinappropriatecontentforwork.Theycanalsoactasacacheserver,cuttingdownonoutsidenetworkrequestsforthesameobject.Finally,proxyserversprotecttheidentityofinternalIPaddressesusingNAT,althoughthisfunctioncanalsobeaccomplishedthrougharouterorfirewallusingNATaswell.

ExtranetAnextranetisanextensionofaselectedportionofacompany’sintranettoexternalpartners.Thisallowsabusinesstoshareinformationwithcustomers,suppliers,partners,andothertrustedgroupswhileusingacommonsetofInternetprotocolstofacilitateoperations.Extranetscanusepublicnetworkstoextendtheirreachbeyondacompany’sowninternalnetwork,andsomeformofsecurity,typicallyVPN,isusedtosecurethischannel.Theuseofthetermextranetimpliesbothprivacyandsecurity.Privacyisrequiredformanycommunications,andsecurityisneededtopreventunauthorizeduseandeventsfromoccurring.Bothofthesefunctionscanbeachievedthroughtheuseoftechnologiesdescribedinthischapterandotherchaptersinthisbook.Properfirewallmanagement,remoteaccess,encryption,authentication,andsecuretunnelsacrosspublicnetworksareallmethodsusedtoensureprivacyandsecurityforextranets.

ExamTip:Anextranetisasemiprivatenetworkthatusescommonnetworktechnologies(suchasHTTP,FTP,andsoon)toshareinformationandprovideresourcestobusinesspartners.Extranetscanbeaccessedbymorethanonecompany,becausetheyshareinformationbetweenorganizations.

FlatNetworksAsnetworkshavebecomemorecomplex,withmultiplelayersoftiersandinterconnections,aproblemcanariseinconnectivity.OneofthelimitationsoftheSpanningTreeProtocol(STP)isitsinabilitytomanageLayer2trafficefficientlyacrosshighlycomplexnetworks.STPwascreatedtopreventloopsinLayer2networksandhasbeenimprovedtothecurrentversionofRapidSpanningTreeProtocol(RSTP).RSTPcreatesaspanningtreewithinthenetworkofLayer2switches,disablinglinksthatarenotpartofthespanningtree.RSTP,IEEE802.1w,providesamorerapidconvergencetoanewspanningtreesolutionaftertopologychangesaredetected.Theproblemwiththespanningtreealgorithmsisthatthenetworktrafficisinterruptedwhilethesystemrecalculatesandreconfigures.Thesedisruptionscancauseproblemsinnetworkefficienciesandhaveledtoapushforflatnetworkdesigns,whichavoidpacket-loopingissuesthroughanarchitecturethatdoesnothavetiers.Onenameassociatedwithflatnetworktopologiesisnetworkfabric,a

termmeanttodescribeaflat,depthlessnetwork.Thesearebecomingincreasinglypopularindatacenters,andotherareasofhightrafficdensity,astheycanofferincreasedthroughputandlowerlevelsofnetworkjitterandotherdisruptions.Whilethisisgoodforefficiencyofnetworkoperations,this“everyonecantalktoeveryone”ideaisproblematicwithrespecttosecurity.

Enclaves

Modernnetworks,withtheirincreasinglycomplexconnections,resultinsystemswherenavigationcanbecomecomplexbetweennodes.JustasaDMZ-basedarchitectureallowsfordifferinglevelsoftrust,theisolationofspecificpiecesofthenetworkusingsecurityrulescanprovidedifferingtrustenvironments.Theconceptofbreakinganetworkintoenclavescancreateareasoftrustwherespecialprotectionscanbeemployedandtrafficfromoutsidetheenclaveislimitedorproperlyscreenedbeforeadmission.Enclavesarenotdiametricallyopposedtotheconceptofaflatnetwork

structure;theyarejustcarved-outareas,likegatedneighborhoods,whereoneneedsspecialcredentialstoenter.Avarietyofsecuritymechanismscanbeemployedtocreateasecureenclave.Layer2addressing(subnetting)canbeemployed,makingdirectaddressabilityanissue.Firewalls,routers,andapplication-levelproxiescanbeemployedtoscreenpacketsbeforeentryorexitfromtheenclave.Eventhepeoplesideofthesystemcanberestrictedthroughtheuseofaspecialsetofsysadminstomanagethesystems.Enclavesareanimportanttoolinmodernsecurenetworkdesign.Figure

9.13showsanetworkdesignwithastandardtwo-firewallimplementationofaDMZ.Ontheinternalsideofthenetwork,multiplefirewallscanbeseen,carvingoffindividualsecurityenclaves,zoneswherethesamesecurityrulesapply.Commonenclavesincludethoseforhigh-securitydatabases,low-securityusers(callcenters),public-facingkiosks,andthemanagementinterfacestoserversandnetworkdevices.Havingeachoftheseinitsownzoneprovidesformoresecuritycontrol.Onthemanagementlayer,usinganonroutableIPaddressschemeforalloftheinterfacespreventsthemfrombeingdirectlyaccessedfromtheInternet.

•Figure9.13Secureenclaves

VLANsALANisasetofdeviceswithsimilarfunctionalityandsimilarcommunicationneeds,typicallyco-locatedandoperatedoffasingleswitch.Thisisthelowestlevelofanetworkhierarchyanddefinesthedomainforcertainprotocolsatthedatalinklayerforcommunication.AvirtualLAN(VLAN)isalogicalimplementationofaLANandallowscomputersconnectedtodifferentphysicalnetworkstoactandcommunicateasiftheywereonthesamephysicalnetwork.AVLANhasmanyofthesamecharacteristicattributesofaLANandbehavesmuchlikeaphysicalLANbutisimplementedusingswitchesandsoftware.Thisverypowerfultechniqueallowssignificantnetworkflexibility,scalability,andperformanceandallowsadministratorstoperformnetworkreconfigurationswithouthavingtophysicallyrelocateorrecablesystems.

ExamTip:Abroadcastdomainisalogicaldivisionofacomputernetwork.Systemsconnectedtoabroadcastdomaincancommunicatewitheachotherasiftheywereconnectedtothesamephysicalnetworkevenwhentheyarenot.

TrunkingTrunkingistheprocessofspanningasingleVLANacrossmultipleswitches.Atrunk-basedconnectionbetweenswitchesallowspacketsfromasingleVLANtotravelbetweenswitches,asshowninFigure9.14.Twotrunksareshowninthefigure:VLAN10isimplementedwithonetrunkandVLAN20isimplementedwiththeother.HostsondifferentVLANscannotcommunicateusingtrunksandthusareswitchedacrosstheswitchnetwork.TrunksenablenetworkadministratorstosetupVLANsacrossmultipleswitcheswithminimaleffort.WithacombinationoftrunksandVLANs,networkadministratorscansubnetanetworkbyuserfunctionalitywithoutregardtohostlocationonthenetworkortheneedtorecablemachines.

•Figure9.14VLANsandtrunks

SecurityImplicationsVLANsareusedtodivideasinglenetworkintomultiplesubnetsbasedonfunctionality.Thispermitsaccountingandmarketing,forexample,toshareaswitchbecauseofproximityyetstillhaveseparatetrafficdomains.Thephysicalplacementofequipmentandcablesislogicallyandprogrammaticallyseparatedsothatadjacentportsonaswitchcanreferenceseparatesubnets.Thispreventsunauthorizeduseofphysically

closedevicesthroughseparatesubnetsthatareonthesameequipment.VLANsalsoallowanetworkadministratortodefineaVLANthathasnousersandmapalloftheunusedportstothisVLAN(somemanagedswitchesallowadministratorstosimplydisableunusedportsaswell).Then,ifanunauthorizedusershouldgainaccesstotheequipment,thatuserwillbeunabletouseunusedports,asthoseportswillbesecurelydefinedtonothing.BothapurposeandasecuritystrengthofVLANsisthatsystemsonseparateVLANscannotdirectlycommunicatewitheachother.

TrunksandVLANshavesecurityimplicationsthatyouneedtoheedsothatfirewallsandothersegmentationdevicesarenotbreachedthroughtheiruse.YoualsoneedtounderstandhowtousetrunksandVLANs,topreventanunauthorizeduserfromreconfiguringthemtogainundetectedaccesstosecureportionsofanetwork.

ZonesandConduitsThetermszonesandconduitshavespecializedmeaningincontrolsystemnetworks.Controlsystemsarethecomputersusedtocontrolphysicalprocesses,rangingfromtrafficlightstorefineries,manufacturingplants,criticalinfrastructure,andmore.ThesenetworksarenowbeingattachedtoenterprisenetworksandthiswillresultintheinclusionofcontrolsystemnetworkterminologyintoIT/network/securityoperationsterminology.Atermcommonlyusedincontrolsystemnetworksiszone.Azoneisagroupingofelementsthatsharecommonsecurityrequirements.Aconduitisdefinedasthepathfortheflowofdatabetweenzones.Zonesaresimilartoenclavesinthattheyhaveadefinedsetofcommon

securityrequirementsthatdifferfromoutsidethezone.Thezoneismarkedonadiagram,indicatingtheboundarybetweenwhatisinandoutsidethezone.Alldataflowsinoroutofazonemustbebyadefinedconduit.Theconduitallowsameanstofocusthesecurityfunctiononthe

dataflows,ensuringtheappropriateconditionsaremetbeforedataentersorleavesazone.

TunnelingTunnelingisamethodofpackagingpacketssothattheycantraverseanetworkinasecure,confidentialmanner.Tunnelinginvolvesencapsulatingpacketswithinpackets,enablingdissimilarprotocolstocoexistinasinglecommunicationstream,asinIPtrafficroutedoveranAsynchronousTransferMode(ATM)network.Tunnelingalsocanprovidesignificantmeasuresofsecurityandconfidentialitythroughencryptionandencapsulationmethods.ThebestexampleofthisisaVPNthatisestablishedoverapublicnetworkthroughtheuseofatunnel,asshowninFigure9.15,connectingafirm’sBostonofficetoitsNewYorkCity(NYC)office.

•Figure9.15Tunnelingacrossapublicnetwork

Assume,forexample,thatacompanyhasmultiplelocationsanddecidestousethepublicInternettoconnectthenetworksattheselocations.Tomaketheseconnectionssecurefromoutsideunauthorizeduse,thecompanycanemployaVPNconnectionbetweenthedifferentnetworks.Oneachnetwork,anedgedevice,usuallyarouterorVPNconcentrator,connectstoanotheredgedeviceontheothernetwork.Then,usingIPsecprotocols,theseroutersestablishasecure,encryptedpathbetweenthem.

Thissecurelyencryptedsetofpacketscannotbereadbyoutsiderouters;onlytheaddressesoftheedgeroutersarevisible.ThisarrangementactsasatunnelacrossthepublicInternetandestablishesaprivateconnection,securefromoutsidesnoopingoruse.Becauseofeaseofuse,low-costhardware,andstrongsecurity,tunnels

andtheInternetareacombinationthatwillseemoreuseinthefuture.IPsec,VPN,andtunnelswillbecomeamajorsetoftoolsforusersrequiringsecurenetworkconnectionsacrosspublicsegmentsofnetworks.FormoreinformationonVPNsandremoteaccess,refertoChapter11.

AVPNconcentratorisaspecializedpieceofhardwaredesignedtohandletheencryptionanddecryptionrequiredforremote,secureaccesstoanorganization’snetwork.

StorageAreaNetworksStorageareanetworks(SANs)aresystemswhichprovideremotestorageofdataacrossanetworkconnection.ThedesignofSANprotocolsissuchthatthediskappearstoactuallybeontheclientmachineasalocaldriveratherthanasattachedstorage,asinnetworkattachedstorage(NAS).Thismakesthediskvisibleindiskandvolumemanagementutilitiesandallowstheirfunctionality.CommonSANprotocolsincludeiSCSIandFibreChannel.

iSCSITheInternetSmallComputerSystemInterface(iSCSI)isaprotocolforIP-basedstorage.iSCSIcanbeusedtosenddataoverexistingnetworkinfrastructures,enablingSANs.Positionedasalow-costalternativetoFibreChannelstorage,theonlyreallimitationisoneofnetworkbandwidth.

FibreChannelFibreChannel(FC)isahigh-speednetworktechnology(withthroughputupto16Gbps)usedtoconnectstoragetocomputersystems.TheFCprotocolisatransportprotocolsimilartotheTCPprotocolinIPnetworks.Carriedviaspecialcables,oneofthedrawbacksofFC-basedstorageiscost.

FCoETheFibreChanneloverEthernet(FCoE)protocolencapsulatestheFCframes,enablingFCcommunicationover10-GigabitEthernetnetworks.

Chapter9Review

ForMoreInformationNetworkingCompTIANetwork+CertificationAll-in-OneExamGuide,PremiumFifthEdition,McGraw-Hill,2014

TheInternetEngineeringTaskForcewww.ietf.org

Wikipediaarticles:Routinghttp://en.wikipedia.org/wiki/RoutingNAThttp://en.wikipedia.org/wiki/Network_address_translationICMPhttp://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

Subnettinghttp://en.wikipedia.org/wiki/Subnetting

LabManualExercisesThefollowinglabexercisesfromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providepracticalapplicationofmaterialcoveredinthischapter:

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutnetworks.

Identifythebasicnetworkarchitectures

Therearetwobroadcategoriesofnetworks:LANsandWANs.

Thephysicalarrangementofanetworkistypicallycalledthenetwork’stopology.

Therearefourmaintypesofnetworktopologies:ring,bus,star,andmixed.

Definethebasicnetworkprotocols

Protocols,agreed-uponformatsforexchangingortransmittingdatabetweensystems,enablecomputerstocommunicate.

Whendataistransmittedoveranetwork,itisusuallybrokenupintosmallerpiecescalledpackets.

Mostprotocolsdefinethetypesandformatforpacketsusedinthatprotocol.

TCPisconnectionoriented,requiresthethree-wayhandshaketoinitiateaconnection,andprovidesguaranteedandreliabledatadelivery.

UDPisconnectionless,lightweight,andprovideslimitederrorcheckingandnodeliveryguarantee.

EachnetworkdevicehasauniquehardwareaddressknownasaMACaddress.TheMACaddressisusedforpacketdelivery.

Networkdevicesarealsotypicallyassigneda32-bitnumberknownasanIPaddress.

TheDomainNameService(DNS)translatesnames,likewww.cnn.com,intoIPaddresses.

Explainroutingandaddresstranslation

Theprocessofmovingpacketsfromoneenddevicetoanotherthroughdifferentnetworksiscalledrouting.

Subnettingistheprocessofdividinganetworkaddressspaceintosmallernetworks.

DHCPallowsnetworkdevicestobeautomaticallyconfiguredonanetworkandtemporarilyassignedanIPaddress.

NetworkAddressTranslation(NAT)convertsprivate,internalIPaddressestopublic,routableIPaddressesandviceversa.

Classifysecurityzones

ADMZisabufferzonebetweennetworkswithdifferenttrustlevels.CompaniesoftenplacepublicresourcesinaDMZsothatInternetusersandinternalusersmayaccessthoseresourceswithoutexposingtheinternalcompanynetworktotheInternet.

Anintranetisaprivate,internalnetworkthatusescommonnetworktechnologies(suchasHTTP,FTP,andsoon)toshareinformationandprovideresourcestoorganizationalusers.

Anextranetisasemiprivatenetworkthatusescommonnetworktechnologies(suchasHTTP,FTP,andsoon)toshareinformationandprovideresourcestobusinesspartners.

Anenclaveisaspecializedsecurityzonewithcommonsecurityrequirements.

AVLAN(orvirtualLAN)isagroupofportsonaswitchthatisconfiguredtocreatealogicalnetworkofcomputerthatappearstobeconnectedtothesamenetworkeveniftheyarelocatedondifferentphysicalnetworksegments.SystemsonaVLANcancommunicatewitheachotherbutcannotcommunicatedirectlywithsystemsonotherVLANs.

TrunkingistheprocessofspanningasingleVLANacrossmultipleswitches.

Tunnelingisamethodofpackagingpacketssothattheycantraverseanetworkinasecure,confidentialmanner.

KeyTermsAddressResolutionProtocol(ARP)(234)bustopology(222)datagram(226)denial-of-service(DoS)(229)

DomainNameSystem(DNS)(235)DMZ(240)DynamicHostConfigurationProtocol(DHCP)(238)enclave(243)Ethernet(233)extranet(243)flatnetwork(243)InternetControlMessageProtocol(ICMP)(229)InternetProtocol(IP)(226)intranet(242)localareanetwork(LAN)(221)MediaAccessControl(MAC)address(233)NetworkAddressTranslation(NAT)(238)network(220)packet(225)protocol(223)ringtopology(222)routing(235)startopology(222)storageareanetwork(SAN)(221)subnetting(236)subnetmask(236)three-wayhandshake(228)topology(222)TransmissionControlProtocol(TCP)(228)trunking(245)tunneling(246)UserDatagramProtocol(UDP)(228)virtuallocalareanetwork(VLAN)(222)wideareanetwork(WAN)(221)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.A(n)_______________isagroupoftwoormoredeviceslinkedtogethertosharedata.

2.ApacketinanIPnetworkissometimescalleda(n)_______________.

3.Movingpacketsfromsourcetodestinationacrossmultiplenetworksiscalled____________.

4.The_______________isthehardwareaddressusedtouniquelyidentifyeachdeviceonanetwork.

5.A(n)_______________tellsyouwhatportionofa32-bitIPaddressisbeingusedasthenetworkIDandwhatportionisbeingusedasthehostID.

6.Theshapeorarrangementofanetwork,suchasbus,star,ring,ormixed,isknownasthe_______________ofthenetwork.

7.Asmall,typicallylocalnetworkcoveringarelativelysmallareasuchasasinglefloorofanofficebuildingiscalleda(n)_______________.

8.A(n)_______________isanagreed-uponformatforexchanginginformationbetweensystems.

9.Thepacketexchangesequence(SYN,SYN/ACK,ACK)thatinitiatesaTCPconnectioniscalledthe_______________.

10._______________istheprotocolthatallowstheuseofprivate,internalIPaddressesforinternaltrafficandpublicIPaddressesforexternaltraffic.

Multiple-ChoiceQuiz1.WhatisLayer1oftheOSImodelcalled?

A.Thephysicallayer

B.Thenetworklayer

C.Theinitiallayer

D.Thepresentationlayer

2.TheUDPprotocol:A.Providesexcellenterror-checkingalgorithms

B.Isaconnectionlessprotocol

C.Guaranteesdeliveryofpackets

D.Requiresapermanentconnectionbetweensourceanddestination

3.TheprocessthatdynamicallyassignsanIPaddresstoanetworkdeviceiscalled:

A.NAT

B.DNS

C.DHCP

D.Routing

4.Whatisthethree-wayhandshakesequenceusedtoinitiateTCPconnections?

A.ACK,SYN/ACK,ACK

B.SYN,SYN/ACK,ACK

C.SYN,SYN,ACK/ACK

D.ACK,SYN/ACK,SYN

5.Whichofthefollowingisacontrolandinformationprotocolusedbynetworkdevicestodeterminesuchthingsasaremotenetwork’savailabilityandthelengthoftimerequiredtoreacharemotenetwork?

A.UDP

B.NAT

C.TCP

D.ICMP

6.WhatisthenameoftheprotocolthattranslatesnamesintoIPaddresses?

A.TCP

B.DNS

C.ICMP

D.DHCP

7.Dividinganetworkaddressspaceintosmaller,separatenetworksiscalledwhat?

A.Translating

B.Networkconfiguration

C.Subnetting

D.Addresstranslation

8.Whichprotocoltranslatesprivate(nonroutable)IPaddressesintopublic(routable)IPaddresses?

A.NAT

B.DHCP

C.DNS

D.ICMP

9.TheTCPprotocol:A.Isconnectionless

B.Providesnoerrorchecking

C.Allowsforpacketstobeprocessedintheordertheyweresent

D.Hasnooverhead

10.WhichofthefollowingwouldbeavalidMACaddress?A.00:07:e9

B.00:07:e9:7c:c8

C.00:07:e9:7c:c8:aa

D.00:07:e9:7c:c8:aa:ba

EssayQuiz1.Adeveloperinyourcompanyisbuildinganewapplicationandhas

askedyouifitshoulduseTCP-orUDP-basedcommunications.Provideherwithabriefdiscussionoftheadvantagesanddisadvantagesofeachprotocol.

2.YourbosswantstoknowifDHCPisappropriateforbothserverandPCenvironments.ProvideherwithyouropinionandbesuretoincludeadiscussionofhowDHCPworks.

3.Describethethreebasictypesofnetworktopologiesandprovideasamplediagramofeachtype.

4.Describethethree-wayhandshakeprocessusedtoinitiateTCP

connections.

5.Yourbosswantstoknowhowsubnettingworks.Provideherwithabriefdescriptionandbesuretoincludeanexampletoillustratehowsubnettingworks.

LabProjects

•LabProject9.1Aclientofyoursonlyhasfiveexternal,routableIPaddressesbuthasover50systemsthatitwantstobeabletoreachtheInternetforwebsurfing,e-mail,andsoon.Designanetworksolutionfortheclientthataddressestheirimmediateneedsbutwillstillletthemgrowinthefuture.

•LabProject9.2Yourbosswantsyoutolearnhowtousethearpandnslookupcommands.FindaWindowsmachineandopenacommand/DOSprompt.TypeinarpandpressENTERtoseetheoptionsforthearpcommand.UsethearpcommandtofindtheMACaddressofyoursystemandatleastfiveothersystemsonyournetwork.Whenyouarefinishedwitharp,typeinnslookupandpressENTER.Attheprompt,typeinthenameofyourfavoritewebsite,suchaswww.cnn.com.ThenslookupcommandwillreturntheIPaddressesthatmatchthatdomainname.FindtheIPaddressesofatleastfivedifferentwebsites.

chapter10 InfrastructureSecurity

Thehigheryourstructureistobe,thedeepermustbeitsfoundation.

—SAINTAUGUSTINE

I

Inthischapter,youwilllearnhowto

Constructnetworksusingdifferenttypesofnetworkdevices

Enhancesecurityusingsecuritydevices

EnhancesecurityusingNAC/NAPmethodologies

Identifythedifferenttypesofmediausedtocarrynetworksignals

Describethedifferenttypesofstoragemediausedtostoreinformation

Usebasicterminologyassociatedwithnetworkfunctionsrelatedtoinformationsecurity

Describethedifferenttypesandusesofcloudcomputing

nfrastructuresecuritybeginswiththedesignoftheinfrastructureitself.Theproperuseofcomponentsimprovesnotonlyperformancebutsecurityaswell.Networkcomponentsarenotisolatedfromthe

computingenvironmentandareanessentialaspectofatotalcomputingenvironment.Fromtherouters,switches,andcablesthatconnectthedevices,tothefirewallsandgatewaysthatmanagecommunication,fromthenetworkdesign,totheprotocolsthatareemployed—alltheseitemsplayessentialrolesinbothperformanceandsecurity.

DevicesAcompletenetworkcomputersolutionintoday’sbusinessenvironmentconsistsofmorethanjustclientcomputersandservers.Devicesareneededtoconnecttheclientsandserversandtoregulatethetrafficbetweenthem.Devicesarealsoneededtoexpandthisnetworkbeyondsimpleclientcomputersandserverstoincludeyetotherdevices,suchaswirelessandhandheldsystems.Devicescomeinmanyformsandwithmanyfunctions,fromhubsandswitches,torouters,wirelessaccesspoints,andspecial-purposedevicessuchasvirtualprivatenetwork(VPN)devices.Eachdevicehasaspecificnetworkfunctionandplaysaroleinmaintaining

networkinfrastructuresecurity.

CrossCheckTheImportanceofAvailabilityInChapter2,weexaminedtheCIAofsecurity:confidentiality,integrity,andavailability.Unfortunately,theavailabilitycomponentisoftenoverlooked,eventhoughavailabilityiswhathasmovedcomputingintothemodernnetworkedframeworkandplaysasignificantroleinsecurity.Securityfailurescanoccurintwoways.First,afailurecanallowunauthorizedusersaccessto

resourcesanddatatheyarenotauthorizedtouse,compromisinginformationsecurity.Second,afailurecanpreventauserfromaccessingresourcesanddatatheuserisauthorizedtouse.Thissecondfailureisoftenoverlooked,butitcanbeasseriousasthefirst.Theprimarygoalofnetworkinfrastructuresecurityistoallowallauthorizeduseanddenyallunauthorizeduseofresources.

WorkstationsMostusersarefamiliarwiththeclientcomputersusedintheclient/servermodelcalledworkstationdevices.Theworkstationisthemachinethatsitsonthedesktopandisusedeverydayforsendingandreadinge-mail,creatingspreadsheets,writingreportsinawordprocessingprogram,andplayinggames.Ifaworkstationisconnectedtoanetwork,itisanimportantpartofthesecuritysolutionforthenetwork.Manythreatstoinformationsecuritycanstartataworkstation,butmuchcanbedoneinafewsimplestepstoprovideprotectionfrommanyofthesethreats.

CrossCheckWorkstationsandServersServersandworkstationsarekeynodesonnetworks.ThespecificsforsecuringthesedevicesarescoveredinChapter14.

ServersServersarethecomputersinanetworkthathostapplicationsanddataforeveryonetoshare.Serverscomeinmanysizes,fromsmallsingle-CPUboxesthatmaybelesspowerfulthanaworkstation,tomultiple-CPUmonsters,uptoandincludingmainframes.TheoperatingsystemsusedbyserversrangefromWindowsServer,toUNIX,toMultipleVirtualStorage(MVS)andothermainframeoperatingsystems.TheOSonaservertendstobemorerobustthantheOSonaworkstationsystemandisdesignedtoservicemultipleusersoveranetworkatthesametime.Serverscanhostavarietyofapplications,includingwebservers,databases,e-mailservers,fileservers,printservers,andapplicationserversformiddlewareapplications.

VirtualizationVirtualizationtechnologyisusedtoallowacomputertohavemorethanoneOSpresentand,inmanycases,operatingatthesametime.VirtualizationisanabstractionoftheOSlayer,creatingtheabilitytohostmultipleOSsonasinglepieceofhardware.Oneofthemajoradvantagesofvirtualizationistheseparationofthesoftwareandthehardware,creatingabarrierthatcanimprovemanysystemfunctions,includingsecurity.Theunderlyinghardwareisreferredtoasthehostmachine,andonitisahostOS.EitherthehostOShasbuilt-inhypervisorcapabilityoranapplicationisneededtoprovidethehypervisorfunctiontomanagethevirtualmachines(VMs).ThevirtualmachinesaretypicallyreferredtoastheguestOSs.

ExamTip:Ahypervisoristheinterfacebetweenavirtualmachineandthehostmachinehardware.Hypervisorsarethelayerthatenablesvirtualization.

NewerOSsaredesignedtonativelyincorporatevirtualizationhooks,enablingvirtualmachinestobeemployedwithgreaterease.Thereareseveralcommonvirtualizationsolutions,includingMicrosoftHyper-V,VMware,OracleVMVirtualBox,Parallels,andCitrixXen.ItisimportanttodistinguishbetweenvirtualizationandbootloadersthatallowdifferentOSstobootonhardware.Apple’sBootCampallowsyoutobootintoMicrosoftWindowsonApplehardware.ThisisdifferentfromParallels,aproductwithcompletevirtualizationcapabilityforApplehardware.Virtualizationoffersmuchintermsofhost-basedmanagementofa

system.Fromsnapshotsthatalloweasyrollbacktopreviousstates,fastersystemdeploymentviapreconfiguredimages,easeofbackup,andtheabilitytotestsystems,virtualizationoffersmanyadvantagestosystemowners.Theseparationoftheoperationalsoftwarelayerfromthehardwarelayercanoffermanyimprovementsinthemanagementofsystems.

SnapshotsAsnapshotisapoint-in-timesavingofthestateofavirtualmachine.Snapshotshavegreatutilitybecausetheyarelikeasavepointforanentiresystem.Snapshotscanbeusedtorollasystembacktoapreviouspointintime,undooperations,orprovideaquickmeansofrecoveryfromacomplex,system-alteringchangethathasgoneawry.Snapshotsactasaformofbackupandaretypicallymuchfasterthannormalsystembackupandrecoveryoperations.

PatchCompatibilityHavinganOSoperateinavirtualenvironmentdoesnotchangetheneedforsecurityassociatedwiththeOS.Patchesarestillneededandshouldbeapplied,independentofthevirtualizationstatus.Becauseofthenatureofavirtualenvironment,itshouldhavenoeffectontheutilityofpatching,asthepatchisfortheguestOS.

HostAvailability/ElasticityWhenyousetupavirtualizationenvironment,protectingthehostOSandhypervisorleveliscriticalforsystemstability.Thebestpracticeistoavoidtheinstallationofanyapplicationsonthehost-levelmachine.Allappsshouldbehousedandruninavirtualenvironment.ThisaidsinthestabilitybyprovidingseparationbetweentheapplicationandthehostOS.Thetermelasticityreferstotheabilityofasystemtoexpand/contractassystemrequirementsdictate.Oneoftheadvantagesofvirtualizationisthatavirtualmachinecanbemovedtolargerorsmallerenvironmentsbasedonneeds.IfaVMneedsmoreprocessingpower,thenmigratingtheVMtoanewhardwaresystemwithgreaterCPUcapacityallowsthesystemtoexpandwithouthavingtorebuildit.

SecurityControlTestingWhenapplyingsecuritycontrolstoasystemtomanagesecurityoperations,itisimportanttotestthecontrolstoensurethattheyareprovidingthedesiredresults.PuttingasystemintoaVMdoesnotchangethisrequirement.Infact,itmaycomplicateitbecauseofthenatureoftheguestOStohypervisorrelationship.Itisessentialtospecificallytestallsecuritycontrolsinsidethevirtualenvironmenttoensuretheirbehaviorisstilleffective.

SandboxingSandboxingreferstothequarantineorisolationofasystemfromitssurroundings.Virtualizationcanbeusedasaformofsandboxingwithrespecttoanentiresystem.YoucanbuildaVM,testsomethinginsidetheVM,and,basedontheresults,makeadecisionwithregardtostabilityorwhateverconcernwaspresent.

MobileDevicesMobiledevicessuchaslaptops,tablets,andmobilephonesarethelatest

devicestojointhecorporatenetwork.Mobiledevicescancreateamajorsecuritygap,asausermayaccessseparatee-mailaccounts,onepersonal,withoutantivirusprotection,andtheothercorporate.MobiledevicesarecoveredindetailinChapter12.

DeviceSecurity,CommonConcernsAsmoreandmoreinteractivedevices(thatis,devicesyoucaninteractwithprogrammatically)arebeingdesigned,anewthreatsourcehasappeared.Inanattempttobuildsecurityintodevices,typically,adefaultaccountandpasswordmustbeenteredtoenabletheusertoaccessandconfigurethedeviceremotely.Thesedefaultaccountsandpasswordsarewellknowninthehackercommunity,sooneofthefirststepsyoumusttaketosecuresuchdevicesistochangethedefaultcredentials.Anyonewhohaspurchasedahomeofficerouterknowsthedefaultconfigurationsettingsandcanchecktoseeifanotheruserhaschangedtheirs.Iftheyhavenot,thisisahugesecurityhole,allowingoutsidersto“reconfigure”theirnetworkdevices.

TechTip

DefaultAccountsAlwaysreconfigurealldefaultaccountsonalldevicesbeforeexposingthemtoexternaltraffic.Thisistopreventothersfromreconfiguringyourdevicesbasedonknownaccesssettings.

NetworkAttachedStorageBecauseofthespeedoftoday’sEthernetnetworks,itispossibletomanagedatastorageacrossthenetwork.ThishasledtoatypeofstorageknownasNetworkAttachedStorage(NAS).Thecombinationofinexpensiveharddrives,fastnetworks,andsimpleapplication-based

servershasmadeNASdevicesintheterabyterangeaffordableforevenhomeusers.Becauseofthelargesizeofvideofiles,thishasbecomepopularforsomeusersasamethodofstoringTVandvideolibraries.BecauseNASisanetworkdevice,itissusceptibletovariousattacks,includingsniffingofcredentialsandavarietyofbrute-forceattackstoobtainaccesstothedata.

RemovableStorageBecauseremovabledevicescanmovedataoutsideofthecorporate-controlledenvironment,theirsecurityneedsmustbeaddressed.Removabledevicescanbringunprotectedorcorrupteddataintothecorporateenvironment.Allremovabledevicesshouldbescannedbyantivirussoftwareuponconnectiontothecorporateenvironment.Corporatepoliciesshouldaddressthecopyingofdatatoremovabledevices.ManymobiledevicescanbeconnectedviaUSBtoasystemandusedtostoredata—andinsomecasesvastquantitiesofdata.Thiscapabilitycanbeusedtoavoidsomeimplementationsofdatalosspreventionmechanisms.

NetworkingNetworksareusedtoconnectdevicestogether.Networksarecomposedofcomponentsthatperformnetworkingfunctionstomovedatabetweendevices.Networksbeginwithnetworkinterfacecards,thencontinueinlayersofswitchesandrouters.Specializednetworkingdevicesareusedforspecificpurposes,suchassecurityandtrafficmanagement.

NetworkInterfaceCardsToconnectaserverorworkstationtoanetwork,adeviceknownasanetworkinterfacecard(NIC)isused.ANICisacardwithaconnectorportforaparticulartypeofnetworkconnection,eitherEthernetorToken

Ring.ThemostcommonnetworktypeinuseforLANsistheEthernetprotocol,andthemostcommonconnectoristheRJ-45connector.ANICisthephysicalconnectionbetweenacomputerandthenetwork.

ThepurposeofaNICistoprovidelower-levelprotocolfunctionalityfromtheOSI(OpenSystemInterconnection)model.BecausetheNICdefinesthetypeofphysicallayerconnection,differentNICsareusedfordifferentphysicalprotocols.NICscomeassingle-portandmultiport,andmostworkstationsuseonlyasingle-portNIC,asonlyasinglenetworkconnectionisneeded.Figure10.1showsacommonformofaNIC.Forservers,multiportNICsareusedtoincreasethenumberofnetworkconnections,increasingthedatathroughputtoandfromthenetwork.

•Figure10.1Linksysnetworkinterfacecard(NIC)

EachNICportisserializedwithauniquecode,48bitslong,referredtoasaMediaAccessControladdress(MACaddress).Thesearecreatedbythemanufacturer,with24bitsrepresentingthemanufacturerand24bitsbeingaserialnumber,guaranteeinguniqueness.MACaddressesareusedintheaddressinganddeliveryofnetworkpacketstothecorrectmachineandinavarietyofsecuritysituations.Unfortunately,theseaddressescanbechanged,or“spoofed,”rathereasily.Infact,itiscommonforpersonalrouterstocloneaMACaddresstoallowuserstousemultipledevicesoveranetworkconnectionthatexpectsasingleMAC.

HubsAhubisnetworkingequipmentthatconnectsdevicesthatareusingthesameprotocolatthephysicallayeroftheOSImodel.Ahuballowsmultiplemachinesinanareatobeconnectedtogetherinastarconfiguration,withthehubasthecenter.ThisconfigurationcansavesignificantamountsofcableandisanefficientmethodofconfiguringanEthernetbackbone.Allconnectionsonahubshareasinglecollisiondomain,asmallclusterinanetworkwherecollisionsoccur.Asnetworktrafficincreases,itcanbecomelimitedbycollisions.Thecollisionissuehasmadehubsobsoleteinnewer,higherperformancenetworks,withinexpensiveswitchesandswitchedEthernetkeepingcostslowandusablebandwidthhigh.Hubsalsocreateasecurityweaknessinthatallconnecteddevicesseealltraffic,enablingsniffingandeavesdroppingtooccur.Intoday’snetworks,hubshaveallbutdisappeared,beingreplacedbylow-costswitches.

TechTip

Device/OSILevelInteraction

DifferentnetworkdevicesoperateusingdifferentlevelsoftheOSInetworkingmodeltomovepacketsfromdevicetodevice:

BridgesBridgesarenetworkingequipmentthatconnectdevicesusingthesameprotocolatthedatalinklayeroftheOSImodel.Abridgeoperatesatthedatalinklayer,filteringtrafficbasedonMACaddresses.Bridgescanreducecollisionsbyseparatingpiecesofanetworkintotwoseparatecollisiondomains,butthisonlycutsthecollisionprobleminhalf.Althoughbridgesareuseful,abettersolutionistouseswitchesfornetworkconnections.

SwitchesAswitchformsthebasisforconnectionsinmostEthernet-basedLANs.Althoughhubsandbridgesstillexist,intoday’shigh-performancenetworkenvironment,switcheshavereplacedboth.Aswitchhasseparatecollision

domainsforeachport.Thismeansthatforeachport,twocollisiondomainsexist:onefromtheporttotheclientonthedownstreamside,andonefromtheswitchtothenetworkupstream.Whenfullduplexisemployed,collisionsarevirtuallyeliminatedfromthetwonodes,hostandclient.Thisalsoactsasahub-basedsystem,whereasinglesniffercanseeallofthetraffictoandfromconnecteddevices.Switchesoperateatthedatalinklayer,whileroutersactatthenetwork

layer.Forintranets,switcheshavebecomewhatroutersareontheInternet—thedeviceofchoiceforconnectingmachines.Asswitcheshavebecometheprimarynetworkconnectivitydevice,additionalfunctionalityhasbeenaddedtothem.AswitchisusuallyaLayer2device,butLayer3switchesincorporateroutingfunctionality.Hubshavebeenreplacedbyswitchesbecauseswitchesperforma

numberoffeaturesthathubscannotperform.Forexample,theswitchimprovesnetworkperformancebyfilteringtraffic.Itfilterstrafficbyonlysendingthedatatotheportontheswitchthatthedestinationsystemresideson.Theswitchknowswhatporteachsystemisconnectedtoandsendsthedataonlytothatport.Theswitchalsoprovidessecurityfeatures,suchastheoptiontodisableaportsothatitcannotbeusedwithoutauthorization.Theswitchalsosupportsafeaturecalledportsecurity,whichallowstheadministratortocontrolwhichsystemscansenddatatoeachoftheports.TheswitchusestheMACaddressofthesystemstoincorporatetrafficfilteringandportsecurityfeatures,whichiswhyitisconsideredaLayer2device.

ExamTip:MACfilteringcanbeemployedonswitches,permittingonlyspecifiedMACstoconnecttotheswitch.ThiscanbebypassedifanattackercanlearnanallowedMAC,astheycanclonethepermittedMAContotheirownNICcardandspooftheswitch.Tofilteredgeconnections,IEEE802.1XismoresecureandiscoveredinChapter11.ThiscanalsobereferredtoasMAClimiting.Becarefultopayattentiontocontextontheexam,however,becauseMAClimitingalsocanrefertopreventingfloodingattacksonswitchesbylimitingthenumberofMACaddressesthatcanbe“learned”byaswitch.

PortaddresssecuritybasedonMACaddressescandeterminewhetherapacketisallowedorblockedfromaconnection.Thisistheveryfunctionthatafirewallusesforitsdetermination,andthissamefunctionalityiswhatallowsan802.1Xdevicetoactasan“edgedevice.”

ExamTip:Networktrafficsegregationbyswitchescanalsoactasasecuritymechanism,preventingaccesstosomedevicesfromotherdevices.Thiscanpreventsomeonefromaccessingcriticaldataserversfromamachineinapublicarea.

Oneofthesecurityconcernswithswitchesisthat,likerouters,theyareintelligentnetworkdevicesandarethereforesubjecttohijackingbyhackers.Shouldahackerbreakintoaswitchandchangeitsparameters,hemightbeabletoeavesdroponspecificorallcommunications,virtuallyundetected.SwitchesarecommonlyadministeredusingtheSimpleNetworkManagementProtocol(SNMP)andTelnetprotocol,bothofwhichhaveaseriousweaknessinthattheysendpasswordsacrossthenetworkincleartext.Ahackerarmedwithasnifferthatobservesmaintenanceonaswitchcancapturetheadministrativepassword.Thisallowsthehackertocomebacktotheswitchlaterandconfigureitasanadministrator.Anadditionalproblemisthatswitchesareshippedwithdefaultpasswords,andifthesearenotchangedwhentheswitchissetup,theyofferanunlockeddoortoahacker.

Tosecureaswitch,youshoulddisableallaccessprotocolsotherthanasecureseriallineorasecureprotocolsuchasSecureShell(SSH).Usingonlysecuremethodstoaccessaswitchwilllimittheexposuretohackersandmalicioususers.Maintainingsecurenetworkswitchesisevenmoreimportantthansecuringindividualboxes,forthespanofcontroltointerceptdataismuchwideronaswitch,especiallyifit’sreprogrammedbyahacker.

Switchesarealsosubjecttoelectronicattacks,suchasARPpoisoning

andMACflooding.ARPpoisoningiswhereadevicespoofstheMACaddressofanotherdevice,attemptingtochangetheARPtablesthroughspoofedtrafficandtheARPtable-updatemechanism.MACfloodingiswhereaswitchisbombardedwithpacketsfromdifferentMACaddresses,floodingtheswitchtableandforcingthedevicetorespondbyopeningallportsandactingasahub.Thisenablesdevicesonothersegmentstosnifftraffic.

LoopProtectionSwitchesoperateatLayer2,atwhichthereisnocountdownmechanismtokillpacketsthatgetcaughtinloopsoronpathsthatwillneverresolve.TheLayer2spaceactsasamesh,wherepotentiallytheadditionofanewdevicecancreateloopsintheexistingdeviceinterconnections.Topreventloops,atechnologycalledspanningtreesisemployedbyvirtuallyallswitches.TheSpanningTreeProtocol(STP)allowsformultiple,redundantpaths,whilebreakingloopstoensureaproperbroadcastpattern.LoopprotectioniscoveredindetailinChapter9.

RoutersArouterisanetworktrafficmanagementdeviceusedtoconnectdifferentnetworksegmentstogether.Routersoperateatthenetworklayer(Layer3)oftheOSImodel,usingthenetworkaddress(typicallyanIPaddress)toroutetrafficandusingroutingprotocolstodetermineoptimalroutingpathsacrossanetwork.RoutersformthebackboneoftheInternet,movingtrafficfromnetworktonetwork,inspectingpacketsfromeverycommunicationastheymovetrafficinoptimalpaths.Routersoperatebyexaminingeachpacket,lookingatthedestination

address,andusingalgorithmsandtablestodeterminewheretosendthepacketnext.Thisprocessofexaminingtheheadertodeterminethenexthopcanbedoneinquickfashion.

ACLscanrequiresignificantefforttoestablishandmaintain.Creatingthemisastraightforwardtask,buttheirjudicioususewillyieldsecuritybenefitswithalimitedamountofmaintenance.CiscoroutershavestandardandextendedACLs;standardACLscanfiltertrafficbasedonlyonthesourceIPaddress,whereasextendedACLscanfiltertrafficbysource/destinationIPaddress,protocol,andport.ThiscanbeveryimportantinsecurityzonessuchasaDMZandatedgedevices,blockingundesiredoutsidecontactwhileallowingknowninsidetraffic.

Routersuseaccesscontrollists(ACLs)asamethodofdecidingwhetherapacketisallowedtoenterthenetwork.WithACLs,itisalsopossibletoexaminethesourceaddressanddeterminewhetherornottoallowapackettopass.ThisallowsroutersequippedwithACLstodroppacketsaccordingtorulesbuiltintotheACLs.Thiscanbeacumbersomeprocesstosetupandmaintain,andastheACLgrowsinsize,routingefficiencycanbedecreased.Itisalsopossibletoconfiguresomerouterstoactasquasi–applicationgateways,performingstatefulpacketinspectionandusingcontentsaswellasIPaddressestodeterminewhetherornottopermitapackettopass.Thiscantremendouslyincreasethetimeforaroutertopasstrafficandcansignificantlydecreaserouterthroughput.ConfiguringACLsandotheraspectsofsettinguproutersforthistypeofusearebeyondthescopeofthisbook.Oneserioussecurityconcernregardingrouteroperationislimitingwho

hasaccesstotherouterandcontrolofitsinternalfunctions.Likeaswitch,aroutercanbeaccessedusingSNMPandTelnetandprogrammedremotely.Becauseofthegeographicseparationofrouters,thiscanbecomeanecessity,formanyroutersintheworldoftheInternetcanbehundredsofmilesapart,inseparatelockedstructures.Physicalcontroloverarouterisabsolutelynecessary,forifanydevice,beitaserver,switch,orrouter,isphysicallyaccessedbyahacker,itshouldbeconsideredcompromised.Thus,suchaccessmustbeprevented.Aswithswitches,itisimportanttoensurethattheadministratorpasswordisneverpassedintheclear,thatonlysecuremechanismsareusedtoaccesstherouter,andthatallofthedefaultpasswordsareresettostrongpasswords.

Aswithswitches,themostassuredpointofaccessforroutermanagementcontrolisviatheserialcontrolinterfaceport.Thisallowsaccesstothecontrolaspectsoftherouterwithouthavingtodealwithtraffic-relatedissues.Forinternalcompanynetworks,wherethegeographicdispersionofroutersmaybelimited,third-partysolutionstoallowout-of-bandremotemanagementexist.Thisallowscompletecontrolovertherouterinasecurefashion,evenfromaremotelocation,althoughadditionalhardwareisrequired.Routersareavailablefromnumerousvendorsandcomeinsizesbigand

small.Atypicalsmallhomeofficerouterforusewithcablemodem/DSLserviceisshowninFigure10.2.Largerrouterscanhandletrafficofuptotensofgigabytespersecondperchannel,usingfiber-opticinputsandmovingtensofthousandsofconcurrentInternetconnectionsacrossthenetwork.Theserouters,whichcancosthundredsofthousandsofdollars,formanessentialpartofe-commerceinfrastructure,enablinglargeenterprisessuchasAmazonandeBaytoservemanycustomers’useconcurrently.

•Figure10.2Asmallhomeofficerouterforcablemodem/DSL

FirewallsAfirewallisanetworkdevice—hardware,software,oracombinationthereof—whosepurposeistoenforceasecuritypolicyacrossitsconnectionsbyallowingordenyingtraffictopassintooroutofthenetwork.Afirewallisalotlikeagateguardatasecurefacility.Theguardexaminesallthetraffictryingtoenterthefacility—carswiththecorrectstickerordeliverytruckswiththeappropriatepaperworkareallowedin;everyoneelseisturnedaway(seeFigure10.3).

•Figure10.3Howafirewallworks

ExamTip:Afirewallisanetworkdevice(hardware,software,orcombinationofthetwo)thatenforcesasecuritypolicy.Allnetworktrafficpassingthroughthefirewallisexamined—trafficthatdoesnotmeetthespecifiedsecuritycriteriaorviolatesthefirewallpolicyisblocked.

Theheartofafirewallisthesetofsecuritypoliciesthatitenforces.Managementdetermineswhatisallowedintheformofnetworktrafficbetweendevices,andthesepoliciesareusedtobuildrulesetsforthefirewalldevicesusedtofilternetworktrafficacrossthenetwork.

TechTip

FirewallRulesFirewallsareinrealitypolicyenforcementdevices.Eachruleinafirewallshouldhaveapolicybehindit,asthisistheonlymannerofmanagingfirewallrulesetsovertime.Thestepsforsuccessfulfirewallmanagementbeginandendwithmaintainingapolicylistbyfirewallofthetrafficrestrictionstobeimposed.Managingthislistviaaconfigurationmanagementprocessisimportanttopreventnetworkinstabilitiesfromfaultyrulesetsorunknown“left-over”rules.

Orphanorleft-overrulesarerulesthatwerecreatedforaspecialpurpose(testing,emergency,visitororvendor,etc.)andthenforgottenaboutandnotremovedaftertheiruseended.Theserulescanclutterupafirewallandresultinunintendedchallengestothenetworksecurityteam.

Firewallsecuritypoliciesareaseriesofrulesthatdefineswhattrafficispermissibleandwhattrafficistobeblockedordenied.Thesearenotuniversalrules,andtherearemanydifferentsetsofrulesforasinglecompanywithmultipleconnections.AwebserverconnectedtotheInternetmaybeconfiguredonlytoallowtrafficonport80forHTTP,and

haveallotherportsblocked.Ane-mailservermayhaveonlynecessaryportsfore-mailopen,withothersblocked.Akeytosecuritypoliciesforfirewallsisthesameashasbeenseenforothersecuritypolicies—theprincipleofleastaccess.Onlyallowthenecessaryaccessforafunction;blockordenyallunneededfunctionality.Howanorganizationdeploysitsfirewallsdetermineswhatisneededforsecuritypoliciesforeachfirewall.Youmayevenhaveasmalloffice–homeofficefirewallatyourhouse,suchastheRVS4000showninFigure10.4.ThisdevicefromLinksysprovidesbothroutingandfirewallfunctions.

•Figure10.4LinksysRVS4000SOHOfirewall

Thesecuritytopologydetermineswhatnetworkdevicesareemployedatwhatpointsinanetwork.Ataminimum,thecorporateconnectiontotheInternetshouldpassthroughafirewall,asshowninFigure10.5.Thisfirewallshouldblockallnetworktrafficexceptthatspecificallyauthorizedbythesecuritypolicy.Thisisactuallyeasytodo:blockingcommunicationsonaportissimplyamatteroftellingthefirewalltoclosetheport.Theissuecomesindecidingwhatservicesareneededandby

whom,andthuswhichportsshouldbeopenandwhichshouldbeclosed.Thisiswhatmakesasecuritypolicyusefulbut,insomecases,difficulttomaintain.

•Figure10.5LogicaldepictionofafirewallprotectinganorganizationfromtheInternet

Theperfectfirewallpolicyisonethattheenduserneverseesandonethatneverallowsevenasingleunauthorizedpackettoenterthenetwork.Aswithanyotherperfectitem,itwillberaretofindtheperfectsecuritypolicyforafirewall.Todevelopacompleteandcomprehensivesecuritypolicy,itisfirst

necessarytohaveacompleteandcomprehensiveunderstandingofyournetworkresourcesandtheiruses.Onceyouknowwhatyournetworkwillbeusedfor,youwillhaveanideaofwhattopermit.Also,onceyouunderstandwhatyouneedtoprotect,youwillhaveanideaofwhattoblock.Firewallsaredesignedtoblockattacksbeforetheygettoatargetmachine.Commontargetsarewebservers,e-mailservers,DNSservers,FTPservices,anddatabases.Eachofthesehasseparatefunctionality,andeachofthesehasseparatevulnerabilities.Onceyouhavedecidedwhoshouldreceivewhattypeoftrafficandwhattypesshouldbeblocked,youcanadministerthisthroughthefirewall.

Routershelpcontroltheflowoftrafficintoandoutofyournetwork.ThroughtheuseofACLs,routerscanactasfirst-levelfirewallsandcanhelpweedoutmalicioustraffic.

HowDoFirewallsWork?Firewallsenforcetheestablishedsecuritypolicies.Theycandothisthroughavarietyofmechanisms,including:

NetworkAddressTranslation(NAT)AsyoumayrememberfromChapter9,NATtranslatesprivate(nonroutable)IPaddressesintopublic(routable)IPaddresses.

BasicpacketfilteringBasicpacketfilteringlooksateachpacketenteringorleavingthenetworkandtheneitheracceptsthepacketorrejectsthepacketbasedonuser-definedrules.Eachpacketisexaminedseparately.

StatefulpacketfilteringStatefulpacketfilteringalsolooksateachpacket,butitcanexaminethepacketinitsrelationtootherpackets.Statefulfirewallskeeptrackofnetworkconnectionsandcanapplyslightlydifferentrulesetsbasedonwhetherthepacketispartofanestablishedsessionornot.

NATistheprocessofmodifyingnetworkaddressinformationindatagrampacketheaderswhileintransitacrossatrafficroutingdevice,suchasarouterorfirewall,forthepurposeofremappingagivenaddressspaceintoanother.SeeChapter9foramoredetaileddiscussiononNAT.

Accesscontrollists(ACLs)ACLsaresimplerulesetsthatareappliedtoportnumbersandIPaddresses.Theycanbeconfiguredforinboundandoutboundtrafficandaremostcommonlyusedonroutersandswitches.

ApplicationlayerproxiesAnapplicationlayerproxycanexaminethecontentofthetrafficaswellastheportsandIPaddresses.Forexample,anapplicationlayerhastheabilitytolookinsideauser’swebtraffic,detectamaliciouswebsiteattemptingtodownloadmalwaretotheuser’ssystem,andblockthemalware.

OneofthemostbasicsecurityfunctionsprovidedbyafirewallisNAT.Thisserviceallowsyoutomasksignificantamountsofinformationfromoutsideofthenetwork.Thisallowsanoutsideentitytocommunicatewithanentityinsidethefirewallwithouttrulyknowingitsaddress.Basicpacketfiltering,alsoknownasstatelesspacketinspection,

involveslookingatpackets,theirprotocolsanddestinations,andcheckingthatinformationagainstthesecuritypolicy.TelnetandFTPconnectionsmaybeprohibitedfrombeingestablishedtoamailordatabaseserver,buttheymaybeallowedfortherespectiveserviceservers.Thisisafairlysimplemethodoffilteringbasedoninformationineachpacketheader,likeIPaddressesandTCP/UDPports.Thiswillnotdetectandcatchallundesiredpackets,butitisfastandefficient.Tolookatallpackets,determiningtheneedforeachanditsdata,

requiresstatefulpacketfiltering.Advancedfirewallsemploystatefulpacketfilteringtopreventseveraltypesofundesiredcommunications.Shouldapacketcomefromoutsidethenetwork,inanattempttopretendthatitisaresponsetoamessagefrominsidethenetwork,thefirewallwill

havenorecordofitbeingrequestedandcandiscardit,blockingaccess.Asmanycommunicationswillbetransferredtohighports(above1023),statefulmonitoringwillenablethesystemtodeterminewhichsetsofhigh-portcommunicationsarepermissibleandwhichshouldbeblocked.Thedisadvantagetostatefulmonitoringisthatittakessignificantresourcesandprocessingtodothistypeofmonitoring,andthisreducesefficiencyandrequiresmorerobustandexpensivehardware.However,thistypeofmonitoringisessentialintoday’scomprehensivenetworks,particularlygiventhevarietyofremotelyaccessibleservices.

TechTip

FirewallsandAccessControlListsManyfirewallsreadfirewallandACLrulesfromtoptobottomandapplytherulesinsequentialordertothepacketstheyareinspecting.Typicallytheywillstopprocessingruleswhentheyfindarulethatmatchesthepackettheyareexamining.Ifthefirstlineinyourrulesetreads“allowalltraffic,”thenthefirewallwillpassanynetworktrafficcomingintoorleavingthefirewall—ignoringtherestofyourrulesbelowthatline.Manyfirewallshaveanimplied“denyall”lineaspartoftheirrulesets.Thismeansthatanytrafficthatisnotspecificallyallowedbyarulewillgetblockedbydefault.

Astheyareinrouters,switches,servers,andothernetworkdevices,ACLsareacornerstoneofsecurityinfirewalls.Justasyoumustprotectthedevicefromphysicalaccess,ACLsdothesametaskforelectronicaccess.FirewallscanextendtheconceptofACLsbyenforcingthematapacketlevelwhenpacket-levelstatefulfilteringisperformed.Thiscanaddanextralayerofprotection,makingitmoredifficultforanoutsidehackertobreachafirewall.

ExamTip:Manyfirewallscontain,bydefault,animplicitdenyattheendofeveryACLorfirewallruleset.Thissimplymeansthatanytrafficnotspecificallypermittedbyapreviousrule

intherulesetisdenied.

Somehigh-securityfirewallsalsoemployapplicationlayerproxies.Asthenameimplies,packetsarenotallowedtotraversethefirewall,butdatainsteadflowsuptoanapplicationthatinturndecideswhattodowithit.Forexample,anSMTPproxymayacceptinboundmailfromtheInternetandforwardittotheinternalcorporatemailserver,asdepictedinFigure10.6.Whileproxiesprovideahighlevelofsecuritybymakingitverydifficultforanattackertomanipulatetheactualpacketsarrivingatthedestination,andwhiletheyprovidetheopportunityforanapplicationtointerpretthedatapriortoforwardingittothedestination,theygenerallyarenotcapableofthesamethroughputasstatefulpacket-inspectionfirewalls.Thetrade-offbetweenperformanceandspeedisacommononeandmustbeevaluatedwithrespecttosecurityneedsandperformancerequirements.

•Figure10.6FirewallwithSMTPapplicationlayerproxy

TechTip

FirewallOperationsApplicationlayerfirewallssuchasproxyserverscananalyzeinformationintheheaderanddataportionofthepacket,whereaspacket-filteringfirewallscananalyzeonlytheheaderofa

packet.

Firewallscanalsoactasnetworktrafficregulatorsinthattheycanbeconfiguredtomitigatespecifictypesofnetwork-basedattacks.Indenial-of-serviceanddistributeddenial-of-serviceattacks,anattackercanattempttofloodanetworkwithtraffic.Firewallscanbetunedtodetectthesetypesofattacksandactasfloodguards,mitigatingtheeffectonthenetwork.

ExamTip:Firewallscanactasfloodguards,detectingandmitigatingspecifictypesofDoS/DDoSattacks.

Next-GenerationFirewallsFirewallsoperatebyinspectingpacketsandbyusingrulesassociatedwithIPaddressesandports.Next-generationfirewallshavesignificantlymorecapabilityandarecharacterizedbythesefeatures:

Deeppacketinspection

Movebeyondport/protocolinspectionandblocking

Addapplication-levelinspection

Addintrusionprevention

Bringintelligencefromoutsidethefirewall

Next-generationfirewallsaremorethanjustafirewallandIDScoupledtogether;theyofferadeeperlookatwhatthenetworktrafficrepresents.Inalegacyfirewall,withport80open,allwebtrafficisallowedtopass.Usinganext-generationfirewall,trafficoverport80canbeseparatedbywebsite,orevenactivityonawebsite(forexample,allowFacebook,butnotgamesonFacebook).Becauseofthedeeperpacketinspectionandthe

abilitytocreaterulesbasedoncontent,trafficcanbemanagedbasedoncontent,notmerelysiteorURL.

WebApplicationFirewallsvs.NetworkFirewallsIncreasingly,theterm“firewall”isgettingattachedtoanydeviceorsoftwarepackagethatisusedtocontroltheflowofpacketsordataintooroutofanorganization.Forexample,awebapplicationfirewallisthetermgiventoanysoftwarepackage,appliance,orfilterthatappliesarulesettoHTTP/HTTPStraffic.WebapplicationfirewallsshapewebtrafficandcanbeusedtofilteroutSQLinjectionattacks,malware,cross-sitescripting(XSS),andsoon.Bycontrast,anetworkfirewallisahardwareorsoftwarepackagethatcontrolstheflowofpacketsintoandoutofanetwork.Webapplicationfirewallsoperateontrafficatamuchhigherlevelthannetworkfirewalls,aswebapplicationfirewallsmustbeabletodecodethewebtraffictodeterminewhetherornotitismalicious.Networkfirewallsoperateonmuchsimpleraspectsofnetworktrafficsuchassource/destinationportandsource/destinationaddress.

ConcentratorsNetworkdevicescalledconcentratorsactastrafficmanagementdevices,managingflowsfrommultiplepointsintosinglestreams.Concentratorstypicallyactasendpointsforaparticularprotocol,suchasSSL/TLSorVPN.Theuseofspecializedhardwarecanenablehardware-basedencryptionandprovideahigherlevelofspecificservicethanageneral-purposeserver.Thisprovidesbotharchitecturalandfunctionalefficiencies.

WirelessDevicesWirelessdevicesbringadditionalsecurityconcerns.Thereis,bydefinition,nophysicalconnectiontoawirelessdevice;radiowavesor

infraredcarrydata,whichallowsanyonewithinrangeaccesstothedata.Thismeansthatunlessyoutakespecificprecautions,youhavenocontroloverwhocanseeyourdata.Placingawirelessdevicebehindafirewalldoesnotdoanygood,becausethefirewallstopsonlyphysicallyconnectedtrafficfromreachingthedevice.Outsidetrafficcancomeliterallyfromtheparkinglotdirectlytothewirelessdeviceandintothenetwork.Thepointofentryfromawirelessdevicetoawirednetworkis

performedatadevicecalledawirelessaccesspoint.Wirelessaccesspointscansupportmultipleconcurrentdevicesaccessingnetworkresourcesthroughthenetworknodetheycreate.Atypicalwirelessaccesspointisshownhere.

•Atypicalwirelessaccesspoint

Topreventunauthorizedwirelessaccesstothenetwork,configurationofremoteaccessprotocolstoawirelessaccesspointiscommon.Forcingauthenticationandverifyingauthorizationisaseamlessmethodofperformingbasicnetworksecurityforconnectionsinthisfashion.TheseaccessprotocolsarecoveredinChapter11.

Severalmechanismscanbeusedtoaddwirelessfunctionalitytoamachine.ForPCs,thiscanbedoneviaanexpansioncard.Fornotebooks,aPCMCIAadapterforwirelessnetworksisavailablefromseveralvendors.ForbothPCsandnotebooks,vendorshaveintroducedUSB-basedwirelessconnectors.Thefollowingillustrationshowsonevendor’scard—notetheextendedlengthusedasanantenna.Notallcardshavethesameconfiguration,althoughtheyallperformthesamefunction:toenableawirelessnetworkconnection.Thenumerouswirelessprotocols(802.11a,b,g,i,andn)arecoveredinChapter12.Wirelessaccesspointsandcardsmustbematchedbyprotocolforproperoperation.

ModemsModemswereonceaslowmethodofremoteconnectionthatwasusedtoconnectclientworkstationstoremoteservicesoverstandardtelephonelines.Modemisashortenedformofmodulator/demodulator,convertinganalogsignalstodigitalandviceversa.Connectingadigitalcomputersignaltotheanalogtelephonelinerequiredoneofthesedevices.Today,theuseofthetermhasexpandedtocoverdevicesconnectedtospecialdigitaltelephonelines—DSLmodems—andtocabletelevisionlines—cablemodems.Althoughthesedevicesarenotactuallymodemsinthetruesenseoftheword,thetermhasstuckthroughmarketingeffortsdirectedtoconsumers.DSLandcablemodemsofferbroadbandhigh-speedconnectionsandtheopportunityforcontinuousconnectionstotheInternet.Alongwiththesenewdesirablecharacteristicscomesomeundesirableones,however.Althoughtheybothprovidethesametypeofservice,cableandDSLmodemshavesomedifferences.ADSLmodemprovidesadirect

connectionbetweenasubscriber’scomputerandanInternetconnectionatthelocaltelephonecompany’sswitchingstation.Thisprivateconnectionoffersadegreeofsecurity,asitdoesnotinvolveotherssharingthecircuit.Cablemodemsaresetupinsharedarrangementsthattheoreticallycouldallowaneighbortosniffauser’scablemodemtraffic.

•AtypicalPCMCIAwirelessnetworkcard

Cablemodemsweredesignedtoshareapartylineintheterminalsignalarea,andthecablemodemstandard,DataOverCableServiceInterfaceSpecification(DOCSIS),wasdesignedtoaccommodatethisconcept.DOCSISincludesbuilt-insupportforsecurityprotocols,including

authenticationandpacketfiltering.Althoughthisdoesnotguaranteeprivacy,itpreventsordinarysubscribersfromseeingothers’trafficwithoutusingspecializedhardware.Figure10.7isamoderncablemodem.Ithasanimbeddedwireless

accesspoint,aVoIPconnection,alocalrouter,andDHCPserver.Thesizeofthedeviceisfairlylarge,butithasabuilt-inlead-acidbatterytoprovideVoIPservicewhenpowerisout.

•Figure10.7Moderncablemodem

BothcableandDSLservicesaredesignedforacontinuousconnection,whichbringsupthequestionofIPaddresslifeforaclient.AlthoughsomeservicesoriginallyusedastaticIParrangement,virtuallyallhavenowadoptedtheDynamicHostConfigurationProtocol(DHCP)tomanagetheiraddressspace.AstaticIPaddresshasanadvantageofremainingthesameandenablingconvenientDNSconnectionsforoutsideusers.AscableandDSLservicesareprimarilydesignedforclientservicesasopposedtohostservices,thisisnotarelevantissue.AsecurityissueofastaticIPaddressisthatitisastationarytargetforhackers.ThemovetoDHCPhasnotsignificantlylessenedthisthreat,however,becausethetypicalIPleaseonacablemodemDHCPserverisfordays.Thisisstillrelativelystationary,andsomeformoffirewallprotectionneedstobeemployedbytheuser.

Cable/DSLSecurityThemodemequipmentprovidedbythesubscriptionserviceconvertsthecableorDSLsignalintoastandardEthernetsignalthatcanthenbeconnectedtoaNIContheclientdevice.Thisisstilljustadirectnetworkconnection,withnosecuritydeviceseparatingthetwo.Themostcommonsecuritydeviceusedincable/DSLconnectionsisarouterthatactsasahardwarefirewall.Thefirewall/routerneedstobeinstalledbetweenthecable/DSLmodemandclientcomputers.

TelephonyAprivatebranchexchange(PBX)isanextensionofthepublictelephonenetworkintoabusiness.Althoughtypicallyconsideredseparateentitiesfromdatasystems,PBXsarefrequentlyinterconnectedandhavesecurityrequirementsaspartofthisinterconnection,aswellassecurityrequirementsoftheirown.PBXsarecomputer-basedswitchingequipment

designedtoconnecttelephonesintothelocalphonesystem.Basicallydigitalswitchingsystems,theycanbecompromisedfromtheoutsideandusedbyphonehackers(phreakers)tomakephonecallsatthebusiness’sexpense.Althoughthistypeofhackinghasdecreasedasthecostoflong-distancecallinghasdecreased,ithasnotgoneaway,andasseveralfirmslearneveryyear,voicemailboxesandPBXscanbecompromisedandthelong-distancebillscangetveryhigh,veryfast.

TechTip

CoexistingCommunicationsDataandvoicecommunicationshavecoexistedinenterprisesfordecades.RecentconnectionsinsidetheenterpriseofVoiceoverIP(VoIP)andtraditionalprivatebranchexchange(PBX)solutionsincreasebothfunctionalityandsecurityrisks.Specificfirewallstoprotectagainstunauthorizedtrafficovertelephonyconnectionsareavailabletocountertheincreasedrisk.

AnotherproblemwithPBXsariseswhentheyareinterconnectedtothedatasystems,eitherbycorporateconnectionorbyroguemodemsinthehandsofusers.Ineithercase,apathexistsforconnectiontooutsidedatanetworksandtheInternet.Justasafirewallisneededforsecurityondataconnections,oneisneededfortheseconnectionsaswell.TelecommunicationsfirewallsareadistincttypeoffirewalldesignedtoprotectboththePBXandthedataconnections.Thefunctionalityofatelecommunicationsfirewallisthesameasthatofadatafirewall:itistheretoenforcesecuritypolicies.Telecommunicationsecuritypoliciescanbeenforcedeventocoverhoursofphoneuse,topreventunauthorizedlong-distanceusagethroughtheimplementationofaccesscodesand/orrestrictedservicehours.

VPNConcentratorAvirtualprivatenetwork(VPN)isaconstructusedtoprovideasecure

communicationchannelbetweenusersacrosspublicnetworkssuchastheInternet.ThemostcommonimplementationofVPNisviaIPsec,aprotocolforIPsecurity.IPsecismandatedinIPv6andisoptionalinIPv4.IPseccanbeimplementedinhardware,software,oracombinationofbothandisusedtoencryptallIPtraffic.InChapter11,avarietyoftechniquesaredescribedthatcanbeemployedtoinstantiateaVPNconnection.Theuseofencryptiontechnologiesallowseitherthedatainapackettobeencryptedortheentirepackettobeencrypted.Ifthedataisencrypted,thepacketheadercanstillbesniffedandobservedbetweensourceanddestination,buttheencryptionprotectsthecontentsofthepacketfrominspection.Iftheentirepacketisencrypted,itisthenplacedintoanotherpacketandsentviatunnelacrossthepublicnetwork.Tunnelingcanprotecteventheidentityofthecommunicatingparties.

ExamTip:AVPNconcentratorisahardwaredevicedesignedtoactasaVPNendpoint,managingVPNconnectionstoanenterprise.

SecurityDevicesTherearearangeofsecuritydevicesthatcanbeemployedatthenetworklayertoinstantiatesecurityfunctionalityinthenetworklayer.Devicescanbeusedforintrusiondetection,networkaccesscontrol,andawiderangeofothersecurityfunctions.Eachdevicehasaspecificnetworkfunctionandplaysaroleinmaintainingnetworkinfrastructuresecurity.

IntrusionDetectionSystemsIntrusiondetectionsystems(IDSs)areanimportantelementofinfrastructuresecurity.IDSsaredesignedtodetect,log,andrespondtounauthorizednetworkorhostuse,bothinrealtimeandafterthefact.IDSs

areavailablefromawideselectionofvendorsandareanessentialpartofacomprehensivenetworksecurityprogram.Thesesystemsareimplementedusingsoftware,butinlargenetworksorsystemswithsignificanttrafficlevels,dedicatedhardwareistypicallyrequiredaswell.IDSscanbedividedintotwocategories:network-basedsystemsandhost-basedsystems.

CrossCheckIntrusionDetectionFromanetworkinfrastructurepointofview,network-basedIDSscanbeconsideredpartofinfrastructure,whereashost-basedIDSsaretypicallyconsideredpartofacomprehensivesecurityprogramandnotnecessarilyinfrastructure.Twoprimarymethodsofdetectionareused:signature-basedandanomaly-based.IDSsarecoveredindetailinChapter13.

NetworkAccessControlNetworkscompriseconnectedworkstationsandservers.Managingsecurityonanetworkinvolvesmanagingawiderangeofissues,fromvariousconnectedhardwareandthesoftwareoperatingthesedevices.Assumingthatthenetworkissecure,eachadditionalconnectioninvolvesrisk.Managingtheendpointsonacase-by-casebasisastheyconnectisasecuritymethodologyknownasnetworkaccesscontrol.Twomaincompetingmethodologiesexistthatdealwithnetworkaccesscontrol:NetworkAccessProtection(NAP)isaMicrosofttechnologyforcontrollingnetworkaccessofacomputerhost,andNetworkAdmissionControl(NAC)isCisco’stechnologyforcontrollingnetworkadmission.

TechTip

NACandNAPInteroperabilityAlthoughMicrosoft’sNAPandCisco’sNACappeartobecompetingmethodologies,theyare

infactcomplementary.NAPallowsmuchfiner-graincontrolforWindows-baseddevices,whileNACisamoregeneral-purposemethodologyforcontrollingadmissionthroughedgedevices.Recognizinghowtheycanworktogether,MicrosoftandCiscohavedeployedguidesonhowtocombinethesetwosystems,preservingtheadvantagesandinvestmentsineach.

Microsoft’sNAPsystemisbasedonmeasuringthesystemhealthoftheconnectingmachine,includingpatchlevelsoftheOS,antivirusprotection,andsystempolicies.TheobjectivebehindNAPistoenforcepolicyandgovernancestandardsonnetworkdevicesbeforetheyarealloweddata-levelaccesstoanetwork.NAPwasfirstutilizedinWindowsXPServicePack3,WindowsVista,andWindowsServer2008,anditrequiresadditionalinfrastructureserverstoimplementthehealthchecks.Thesystemincludesenforcementagentsthatinterrogateclientsandverifyadmissioncriteria.AdmissioncriteriacanincludeclientmachineID,statusofupdates,andsoforth.UsingNAP,networkadministratorscandefinegranularlevelsofnetworkaccessbasedonmultiplecriteria;whoaclientis,whatgroupsaclientbelongsto,andthedegreetowhichthatclientiscompliantwithcorporateclienthealthrequirements.ThesehealthrequirementsincludeOSupdates,antivirusupdates,andcriticalpatches.Responseoptionsincluderejectionoftheconnectionrequestorrestrictionofadmissiontoasubnet.NAPalsoprovidesamechanismforautomaticremediationofclienthealthrequirementsandrestorationofnormalaccesswhenhealthy.Cisco’sNACsystemisbuiltaroundanappliancethatenforcespolicies

chosenbythenetworkadministrator.Aseriesofthird-partysolutionscaninterfacewiththeappliance,allowingtheverificationofmanydifferentoptions,includingclientpolicysettings,softwareupdates,andclientsecurityposture.Theuseofthird-partydevicesandsoftwaremakesthisanextensiblesystemacrossawiderangeofequipment.BothCiscoNACandMicrosoftNAPareintheirearlystagesof

widespreadimplementation,withonlylargeenterprisestypicallytakingthesesteps.Althoughtheyhavebeenavailableforover5years,theyarenotbeingembracedacrossmostfirms.Theconceptofautomatedadmissioncheckingbasedonclientdevicecharacteristicsisheretostay,as

itprovidestimelycontrolintheever-changingnetworkworldoftoday’senterprises.

NetworkMonitoring/DiagnosticAcomputernetworkitselfcanbeconsideredalargecomputersystem,withperformanceandoperatingissues.Justasacomputerneedsmanagement,monitoring,andfaultresolution,sodonetworks.SNMPwasdevelopedtoperformthisfunctionacrossnetworks.Theideaistoenableacentralmonitoringandcontrolcentertomaintain,configure,andrepairnetworkdevices,suchasswitchesandrouters,aswellasothernetworkservices,suchasfirewalls,IDSs,andremoteaccessservers.SNMPhassomesecuritylimitations,andmanyvendorshavedevelopedsoftwaresolutionsthatsitontopofSNMPtoprovidebettersecurityandbettermanagementtoolsuites.

SNMP,SimpleNetworkManagementProtocol,isapartoftheInternetProtocolsuiteofprotocols.Itisanopenstandard,designedfortransmissionofmanagementfunctionsbetweendevices.DonotconfusethiswithSMTP,SimpleMailTransferProtocol,whichisusedtotransfermailbetweenmachines.

Theconceptofanetworkoperationscenter(NOC)comesfromtheoldphonecompanynetworkdays,whencentralmonitoringcentersmonitoredthehealthofthetelephonenetworkandprovidedinterfacesformaintenanceandmanagement.Thissameconceptworkswellwithcomputernetworks,andcompanieswithmidsizeandlargernetworksemploythesamephilosophy.TheNOCallowsoperatorstoobserveandinteractwiththenetwork,usingtheself-reportingand,insomecases,self-healingnatureofnetworkdevicestoensureefficientnetworkoperation.Althoughgenerallyaboringoperationundernormalconditions,whenthingsstarttogowrong,asinthecaseofavirusorwormattack,theNOC

canbecomeabusyandstressfulplaceasoperatorsattempttoreturnthesystemtofullefficiencywhilenotinterruptingexistingtraffic.Asnetworkscanbespreadoutliterallyaroundtheworld,itisnot

feasibletohaveapersonvisiteachdeviceforcontrolfunctions.SoftwareenablescontrollersatNOCstomeasuretheactualperformanceofnetworkdevicesandmakechangestotheconfigurationandoperationofdevicesremotely.Theabilitytomakeremoteconnectionswiththisleveloffunctionalityisbothablessingandasecurityissue.Althoughthisallowsefficientnetworkoperationsmanagement,italsoprovidesanopportunityforunauthorizedentryintoanetwork.Forthisreason,avarietyofsecuritycontrolsareused,fromsecondarynetworkstoVPNsandadvancedauthenticationmethodswithrespecttonetworkcontrolconnections.Networkmonitoringisanongoingconcernforanysignificantnetwork.

Inadditiontomonitoringtrafficflowandefficiency,monitoringofsecurity-relatedeventsisnecessary.IDSsactmerelyasalarms,indicatingthepossibilityofabreachassociatedwithaspecificsetofactivities.Theseindicationsstillneedtobeinvestigatedandanappropriateresponseneedstobeinitiatedbysecuritypersonnel.Simpleitemssuchasportscansmaybeignoredbypolicy,butanactualunauthorizedentryintoanetworkrouter,forinstance,wouldrequireNOCpersonneltotakespecificactionstolimitthepotentialdamagetothesystem.Inanysignificantnetwork,coordinatingsystemchanges,dynamicnetworktrafficlevels,potentialsecurityincidents,andmaintenanceactivitiesisadauntingtaskrequiringnumerouspersonnelworkingtogether.Softwarehasbeendevelopedtohelpmanagetheinformationflowrequiredtosupportthesetasks.Suchsoftwarecanenableremoteadministrationofdevicesinastandardfashion,sothatthecontrolsystemscanbedevisedinahardwarevendor–neutralconfiguration.SNMPisthemainstandardembracedbyvendorstopermit

interoperability.AlthoughSNMPhasreceivedalotofsecurity-relatedattentionoflateduetovarioussecurityholesinitsimplementation,itisstillanimportantpartofasecuritysolutionassociatedwithnetworkinfrastructure.Manyusefultoolshavesecurityissues;thekeyisto

understandthelimitationsandtousethetoolswithincorrectboundariestolimittheriskassociatedwiththevulnerabilities.Blinduseofanytechnologywillresultinincreasedrisk,andSNMPisnoexception.Properplanning,setup,anddeploymentcanlimitexposuretovulnerabilities.Continuousauditingandmaintenanceofsystemswiththelatestpatchesisanecessarypartofoperationsandisessentialtomaintainingasecureposture.

LoadBalancersCertainsystems,suchasservers,aremorecriticaltobusinessoperationsandshouldthereforebetheobjectoffault-tolerancemeasures.Loadbalancersaredesignedtodistributetheprocessingloadovertwoormoresystems.Theyareusedtohelpimproveresourceutilizationandthroughputbutalsohavetheaddedadvantageofincreasingthefaulttoleranceoftheoverallsystemsinceacriticalprocessmaybesplitacrossseveralsystems.Shouldanyonesystemfail,theotherscanpickuptheprocessingitwashandling.

ProxiesProxiesservetomanageconnectionsbetweensystems,actingasrelaysforthetraffic.Proxiescanfunctionatthecircuitlevel,wheretheysupportmultipletraffictypes,ortheycanbeapplication-levelproxies,whicharedesignedtorelayspecificapplicationtraffic.AnHTTPproxycanmanageanHTTPconversationasitunderstandsthetypeandfunctionofthecontent.Application-specificproxiescanserveassecuritydevicesiftheyareprogrammedwithspecificrulesdesignedtoprovideprotectionagainstundesiredcontent.Thoughnotstrictlyasecuritytool,aproxyserver(orsimplyproxy)can

beusedtofilteroutundesirabletrafficandpreventemployeesfromaccessingpotentiallyhostilewebsites.Aproxyservertakesrequestsfromaclientsystemandforwardsthemtothedestinationserveronbehalfofthe

client,asshowninFigure10.8.Proxyserverscanbecompletelytransparent(theseareusuallycalledgatewaysortunnelingproxies),oraproxyservercanmodifytheclientrequestbeforesendingiton,orevenservetheclient’srequestwithoutneedingtocontactthedestinationserver.Severalmajorcategoriesofproxyserversareinuse:

•Figure10.8HTTPproxyhandlingclientrequestsandwebserverresponses

AnonymizingproxyAnanonymizingproxyisdesignedtohideinformationabouttherequestingsystemandmakeauser’swebbrowsingexperience“anonymous.”Thistypeofproxyserviceisoften

usedbyindividualswhoareconcernedabouttheamountofpersonalinformationbeingtransferredacrosstheInternetandtheuseoftrackingcookiesandothermechanismstotrackbrowsingactivity.

CachingproxyThistypeofproxykeepslocalcopiesofpopularclientrequestsandisoftenusedinlargeorganizationstoreducebandwidthusageandincreaseperformance.Whenarequestismade,theproxyserverfirstcheckstoseewhetherithasacurrentcopyoftherequestedcontentinthecache;ifitdoes,itservicestheclientrequestimmediatelywithouthavingtocontactthedestinationserver.Ifthecontentisoldorthecachingproxydoesnothaveacopyoftherequestedcontent,therequestisforwardedtothedestinationserver.

Content-filteringproxyContent-filteringproxiesexamineeachclientrequestandcompareittoanestablishedacceptableusepolicy(AUP).Requestscanusuallybefilteredinavarietyofways,includingbytherequestedURL,destinationsystem,ordomainnameorbykeywordsinthecontentitself.Content-filteringproxiestypicallysupportuser-levelauthentication,soaccesscanbecontrolledandmonitoredandactivitythroughtheproxycanbeloggedandanalyzed.Thistypeofproxyisverypopularinschools,corporateenvironments,andgovernmentnetworks.

OpenproxyAnopenproxyisessentiallyaproxythatisavailabletoanyInternetuserandoftenhassomeanonymizingcapabilitiesaswell.Thistypeofproxyhasbeenthesubjectofsomecontroversy,withadvocatesforInternetprivacyandfreedomononesideoftheargument,andlawenforcement,corporations,andgovernmententitiesontheotherside.Asopenproxiesareoftenusedtocircumventcorporateproxies,manycorporationsattempttoblocktheuseofopenproxiesbytheiremployees.

ReverseproxyAreverseproxyistypicallyinstalledontheserversideofanetworkconnection,ofteninfrontofagroupofwebservers.Thereverseproxyinterceptsallincomingwebrequestsandcanperformanumberoffunctions,includingtrafficfilteringandshaping,SSL

decryption,servingofcommonstaticcontentsuchasgraphics,andperformingloadbalancing.

WebproxyAwebproxyissolelydesignedtohandlewebtrafficandissometimescalledawebcache.Mostwebproxiesareessentiallyspecializedcachingproxies.

ExamTip:Aproxyserverisasystemorapplicationthatactsasago-betweenforclients’requestsfornetworkservices.Theclienttellstheproxyserverwhatitwantsand,iftheclientisauthorizedtohaveit,theproxyserverconnectstotheappropriatenetworkserviceandgetstheclientwhatitaskedfor.Webproxiesarethemostcommonlydeployedtypeofproxyserver.

Deployingaproxysolutionwithinanetworkenvironmentisusuallydoneeitherbysettinguptheproxyandrequiringallclientsystemstoconfiguretheirbrowserstousetheproxyorbydeployinganinterceptingproxythatactivelyinterceptsallrequestswithoutrequiringclient-sideconfiguration.Fromasecurityperspective,proxiesaremostusefulintheirabilityto

controlandfilteroutboundrequests.Bylimitingthetypesofcontentandwebsitesemployeescanaccessfromcorporatesystems,manyadministratorshopetoavoidlossofcorporatedata,hijackedsystems,andinfectionsfrommaliciouswebsites.AdministratorsalsouseproxiestoenforcecorporateAUPsandtrackuseofcorporateresources.Mostproxiescanbeconfiguredtoeitheralloworrequireindividualuserauthentication—thisgivesthemtheabilitytologandcontrolactivitybasedonspecificusersorgroups.Forexample,anorganizationmightwanttoallowthehumanresourcesgrouptobrowseFacebookduringbusinesshoursbutnotallowtherestoftheorganizationtodoso.

WebSecurityGatewaysSomesecurityvendorscombineproxyfunctionswithcontent-filtering

functionstocreateaproductcalledawebsecuritygateway.Websecuritygatewaysareintendedtoaddressthesecuritythreatsandpitfallsuniquetoweb-basedtraffic.Websecuritygatewaystypicallyprovidethefollowingcapabilities:

Real-timemalwareprotection(a.k.a.malwareinspection)Theabilitytoscanalloutgoingandincomingwebtraffictodetectandblockundesirabletrafficsuchasmalware,spyware,adware,maliciousscripts,file-basedattacks,andsoon.

ContentmonitoringTheabilitytomonitorthecontentofwebtrafficbeingexaminedtoensurethatitcomplieswithorganizationalpolicies.

ProductivitymonitoringTheabilitytomeasuretypesandquantitiesofwebtrafficthatisbeinggeneratedbyspecificusers,groupsofusers,ortheentireorganization.

DataprotectionandcomplianceScanningwebtrafficforsensitiveorproprietaryinformationbeingsentoutsideoftheorganizationaswellastheuseofsocialnetworksitesorinappropriatesites.

InternetContentFiltersWiththedramaticproliferationofInternettrafficandthepushtoprovideInternetaccesstoeverydesktop,manycorporationshaveimplementedcontent-filteringsystems,calledanInternetcontentfilter,toprotectthemfromemployees’viewingofinappropriateorillegalcontentattheworkplaceandthesubsequentcomplicationsthatoccurwhensuchviewingtakesplace.Internetcontentfilteringisalsopopularinschools,libraries,homes,governmentoffices,andanyotherenvironmentwherethereisaneedtolimitorrestrictaccesstoundesirablecontent.Inadditiontofilteringundesirablecontent,suchaspornography,somecontentfilterscanalsofilteroutmaliciousactivitysuchasbrowserhijackingattemptsorXSSattacks.Inmanycases,contentfilteringisperformedwithorasapartofaproxysolutionasthecontentrequestscanbefilteredandservicedby

thesamedevice.Contentcanbefilteredinavarietyofways,includingviatherequestedURL,thedestinationsystem,thedomainname,bykeywordsinthecontentitself,andbytypeoffilerequested.

Theterm“Internetcontentfilter”or“contentfilter”isappliedtoanydevice,application,orsoftwarepackagethatexaminesnetworktraffic(especiallywebtraffic)forundesirableorrestrictedcontent.AcontentfiltercouldbeasoftwarepackageloadedonaspecificPCoranetworkappliancecapableoffilteringanentireorganization’swebtraffic.

Content-filteringsystemsfacemanychallenges,becausetheever-changingInternetmakesitdifficulttomaintainlistsofundesirablesites(sometimecalledblacklists);termsusedonamedicalsitecanalsobeusedonapornographicsite,makingkeywordfilteringchallenging;anddeterminedusersarealwaysseekingwaystobypassproxyfilters.Tohelpadministrators,mostcommercialcontent-filteringsolutionsprovideanupdateservice,muchlikeIDSorantivirusproductsthatupdateskeywordsandundesirablesitesautomatically.

DataLossPreventionDatalossprevention(DLP)referstotechnologyemployedtodetectandpreventtransfersofdataacrossanenterprise.Employedatkeylocations,DLPtechnologycanscanpacketsforspecificdatapatterns.Thistechnologycanbetunedtodetectaccountnumbers,secrets,specificmarkers,orfiles.Whenspecificdataelementsaredetected,thesystemcanblockthetransfer.TheprimarychallengeinemployingDLPtechnologiesistheplacementofthesensor.TheDLPsensorneedstobeableobservethedata,soifthechannelisencrypted,DLPtechnologycanbethwarted.

UnifiedThreatManagementManysecurityvendorsoffer“all-in-onesecurityappliances,”whichare

devicesthatcombinemultiplefunctionsintothesamehardwareappliance.Mostcommonlythesefunctionsarefirewall,IDS/IPS,andantivirus,althoughall-in-oneappliancescanincludeVPNcapabilities,antispam,maliciouswebtrafficfiltering,antispyware,contentfiltering,trafficshaping,andsoon.All-in-oneappliancesareoftensoldasbeingcheaper,easiertomanage,andmoreefficientthanhavingseparatesolutionsthataccomplisheachofthefunctionstheall-in-oneapplianceiscapableofperforming.Acommonnamefortheseall-in-oneappliancesisaunifiedthreatmanagement(UTM)appliance.UsingaUTMsolutionsimplifiesthesecurityactivityasasingletask,underacommonsoftwarepackageforoperations.Thisreducesthelearningcurvetoasingletoolratherthanacollectionoftools.AUTMsolutioncanhavebetterintegrationandefficienciesinhandlingnetworktrafficandincidentsthanacollectionoftoolsconnectedtogether.Figure10.9illustratestheadvantagesofUTMprocessing.Ratherthan

processingelementsinalinearfashion,asshownin10.9a,thepacketsareprocessedinaparallelizedfashion(b).Thereisaneedtocoordinatebetweentheelementsandmanymodernsolutionsdothiswithparallelizedhardware.

•Figure10.9Unifiedthreatmanagementarchitecture

URLFilteringURLfiltersblockconnectionstowebsitesthatareinaprohibitedlist.TheuseofaUTMappliance,typicallybackedbyaservicetokeepthelistofprohibitedwebsitesupdated,providesanautomatedmeanstoblockaccesstositesdeemeddangerousorinappropriate.Becauseofthehighlyvolatilenatureofwebcontent,automatedenterprise-levelprotectionisneededtoensureareasonablechanceofblockingsourcesofinappropriate

content,malware,andothermaliciouscontent.

ContentInspectionInsteadofjustrelyingonaURLtodeterminetheacceptabilityofcontent,UTMappliancescanalsoinspecttheactualcontentbeingserved.Contentinspectionisusedtofilterwebrequeststhatreturncontentwithspecificcomponents,suchasnamesofbodyparts,musicorvideocontent,andothercontentthatisinappropriateforthebusinessenvironment.

MalwareInspectionMalwareisanotheritemthatcanbedetectedduringnetworktransmission,andUTMappliancescanbetunedtodetectmalware.Network-basedmalwaredetectionhastheadvantageofhavingtoupdateonlyasinglesystemasopposedtoallmachines.

MediaThebaseofcommunicationsbetweendevicesisthephysicallayeroftheOSImodel.Thisisthedomainoftheactualconnectionbetweendevices,whetherbywire,fiber,orradiofrequencywaves.Thephysicallayerseparatesthedefinitionsandprotocolsrequiredtotransmitthesignalphysicallybetweenboxesfromhigher-levelprotocolsthatdealwiththedetailsofthedataitself.Fourcommonmethodsareusedtoconnectequipmentatthephysicallayer:

Coaxialcable

Twisted-paircable

Fiber-optics

Wireless

CoaxialCableCoaxialcableisfamiliartomanyhouseholdsasamethodofconnectingtelevisionstoVCRsortosatelliteorcableservices.Itisusedbecauseofitshighbandwidthandshieldingcapabilities.Comparedtostandardtwisted-pairlinessuchastelephonelines,coaxialcable(“coax”)ismuchlesspronetooutsideinterference.Itisalsomuchmoreexpensivetorun,bothfromacost-per-footmeasureandfromacable-dimensionmeasure.Coaxcostsmuchmoreperfootthanstandardtwisted-pairwiresandcarriesonlyasinglecircuitforalargewirediameter.

•Acoaxconnector

AnoriginaldesignspecificationforEthernetconnections,coaxwasusedfrommachinetomachineinearlyEthernetimplementations.Theconnectorswereeasytouseandensuredgoodconnections,andthelimiteddistanceofmostofficeLANsdidnotcarryalargecostpenalty.Today,almostallofthisolderEthernetspecificationhasbeenreplacedbyfaster,cheapertwisted-pairalternatives,andtheonlyplaceyou’relikelytoseecoaxinadatanetworkisfromthecableboxtothecablemodem.

•Atypical8-wireUTPline

Becauseofitsphysicalnature,itispossibletodrillaholethroughtheouterpartofacoaxcableandconnecttothecenterconnector.Thisiscalleda“vampiretap”andisaneasymethodtogetaccesstothesignalanddatabeingtransmitted.

UTP/STPTwisted-pairwireshaveallbutcompletelyreplacedcoaxialcablesinEthernetnetworks.Twisted-pairwiresusethesametechnologyusedbythephonecompanyforthemovementofelectricalsignals.Singlepairsoftwistedwiresreduceelectricalcrosstalkandelectromagneticinterference.Multiplegroupsoftwistedpairscanthenbebundledtogetherincommongroupsandeasilywiredbetweendevices.

•Atypical8-wireSTPline

•AbundleofUTPwires

Twistedpairscomeintwotypes,shieldedandunshielded.Shieldedtwisted-pair(STP)hasafoilshieldaroundthepairstoprovideextrashieldingfromelectromagneticinterference.Unshieldedtwisted-pair(UTP)reliesonthetwisttoeliminateinterference.UTPhasacostadvantageoverSTPandisusuallysufficientforconnections,exceptinverynoisyelectricalareas.

Twisted-pairlinesarecategorizedbythelevelofdatatransmissiontheycansupport.Threecurrentcategoriesareinuse:

Category3(Cat3)Minimumforvoiceand10-MbpsEthernet.Category5(Cat5/Cat5e)For100-MbpsFastEthernet;Cat5eisanenhancedversionoftheCat5specificationtoaddressfar-endcrosstalkandissuitablefor1000Mbps.

Category6(Cat6/Cat6a)For10-GigabitEthernetovershortdistances;Cat6aisusedforlonger,upto100m,10-Gbpscables.

Thestandardmethodforconnectingtwisted-paircablesisviaan8-pinconnector,calledanRJ-45connectorthatlookslikeastandardphonejackconnectorbutisslightlylarger.Oneniceaspectoftwisted-paircablingisthatit’seasytospliceandchangeconnectors.ManyanetworkadministratorhasmadeEthernetcablesfromstockCat-5wire,twoconnectors,andacrimpingtool.Thiseaseofconnectionisalsoasecurityissue;becausetwisted-paircablesareeasytospliceinto,rogueconnectionsforsniffingcouldbemadewithoutdetectionincableruns.Bothcoaxandfiberaremuchmoredifficulttosplicebecauseeachrequiresataptoconnect,andtapsareeasiertodetect.

FiberFiber-opticcableusesbeamsoflaserlighttoconnectdevicesoverathinglasswire.Thebiggestadvantagetofiberisitsbandwidth,withtransmissioncapabilitiesintotheterabitspersecondrange.Fiber-opticcableisusedtomakehigh-speedconnectionsbetweenserversandisthebackbonemediumoftheInternetandlargenetworks.Forallofitsspeedandbandwidthadvantages,fiberhasonemajordrawback—cost.Thecostofusingfiberisatwo-edgedsword.Whenmeasuredby

bandwidth,usingfiberischeaperthanusingcompetingwiredtechnologies.Thelengthofrunsoffibercanbemuchlonger,andthedatacapacityoffiberismuchhigher.Butconnectionstoafiberaredifficult

andexpensive,andfiberisimpossibletosplice.Makingthepreciseconnectionontheendofafiber-opticlineisahighlyskilledjobandisdonebyspeciallytrainedprofessionalswhomaintainalevelofproficiency.Oncetheconnectorisfittedontheend,severalformsofconnectorsandblocksareused,asshownintheimagesabove.

•Atypeoffiberterminator

•Atypicalfiber-opticfiber,terminator,andconnectorblock

Splicingfiberispracticallyimpossible;thesolutionistoaddconnectorsandconnectthrougharepeater.Thisaddstothesecurityoffiberinthatunauthorizedconnectionsareallbutimpossibletomake.Thehighcostofconnectionstofiberandthehighercostoffiberperfootalsomakeitlessattractiveforthefinalmileinpublicnetworkswhereusersareconnectedtothepublicswitchingsystems.Forthisreason,cablecompaniesusecoaxandDSLprovidersusetwisted-pairtohandlethe“lastmile”scenario.

UnguidedMedia

Electromagneticwaveshavebeentransmittedtoconveysignalsliterallysincetheinceptionofradio.Unguidedmediaisaphraseusedtocoveralltransmissionmedianotguidedbywire,fiber,orotherconstraints;itincludesradiofrequency,infrared,andmicrowavemethods.Unguidedmediahaveoneattributeincommon:theyareunguidedandassuchcantraveltomanymachinessimultaneously.Transmissionpatternscanbemodulatedbyantennas,butthetargetmachinecanbeoneofmanyinareceptionzone.Assuch,securityprinciplesareevenmorecritical,astheymustassumethatunauthorizedusershaveaccesstothesignal.

InfraredInfrared(IR)isabandofelectromagneticenergyjustbeyondtheredendofthevisiblecolorspectrum.IRhasbeenusedinremote-controldevicesforyears.IRmadeitsdebutincomputernetworkingasawirelessmethodtoconnecttoprinters.Nowthatwirelesskeyboards,wirelessmice,andmobiledevicesexchangedataviaIR,itseemstobeeverywhere.IRcanalsobeusedtoconnectdevicesinanetworkconfiguration,butitisslowcomparedtootherwirelesstechnologies.IRcannotpenetratewallsbutinsteadbouncesoffthem.Norcanitpenetrateothersolidobjects,soifyoustackafewitemsinfrontofthetransceiver,thesignalislost.

RF/MicrowaveTheuseofradiofrequency(RF)wavestocarrycommunicationsignalsgoesbacktothebeginningofthe20thcentury.RFwavesareacommonmethodofcommunicatinginawirelessworld.Theyuseavarietyoffrequencybands,eachwithspecialcharacteristics.ThetermmicrowaveisusedtodescribeaspecificportionoftheRFspectrumthatisusedforcommunicationandothertasks,suchascooking.Point-to-pointmicrowavelinkshavebeeninstalledbymanynetwork

providerstocarrycommunicationsoverlongdistancesandroughterrain.Manydifferentfrequenciesareusedinthemicrowavebandsformanydifferentpurposes.Today,homeuserscanusewirelessnetworkingthroughouttheirhouseandenablelaptopstosurftheWebwhilethey’re

movedaroundthehouse.Corporateusersareexperiencingthesamephenomenon,withwirelessnetworkingenablingcorporateuserstochecke-mailonlaptopswhileridingashuttlebusonabusinesscampus.ThesewirelesssolutionsarecoveredindetailinChapter12.

TechTip

WirelessOptionsTherearenumerousradio-basedalternativesforcarryingnetworktraffic.Theyvaryincapacity,distance,andotherfeatures.CommonlyfoundexamplesareWiFi,WiMAX,ZigBee,Bluetooth,900MHz,andNFC.UnderstandingthesecurityrequirementsassociatedwitheachisimportantandiscoveredinmoredetailinChapter12.

OnekeyfeatureofmicrowavecommunicationsisthatmicrowaveRFenergycanpenetratereasonableamountsofbuildingstructure.Thisallowsyoutoconnectnetworkdevicesinseparaterooms,anditcanremovetheconstraintsonequipmentlocationimposedbyfixedwiring.Anotherkeyfeatureisbroadcastcapability.Byitsnature,RFenergyisunguidedandcanbereceivedbymultipleuserssimultaneously.Microwavesallowmultipleusersaccessinalimitedarea,andmicrowavesystemsareseeingapplicationasthelastmileoftheInternetindensemetropolitanareas.Point-to-multipointmicrowavedevicescandeliverdatacommunicationtoallthebusinessusersinadowntownmetropolitanareathroughrooftopantennas,reducingtheneedforexpensivebuilding-to-buildingcables.Justasmicrowavescarrycellphoneandotherdatacommunications,thesametechnologiesofferamethodtobridgethelast-milesolution.The“lastmile”problemistheconnectionofindividualconsumerstoa

backbone,anexpensivepropositionbecauseofthesheernumberofconnectionsandunsharedlineatthispointinanetwork.Again,costisanissue,astransceiverequipmentisexpensive,butindenselypopulatedareas,suchasapartmentsandofficebuildingsinmetropolitanareas,theuserdensitycanhelpdefrayindividualcosts.Speedoncommercialmicrowavelinkscanexceed10Gbps,sospeedisnotaproblemfor

connectingmultipleusersorforhigh-bandwidthapplications.

RemovableMediaOneconceptcommontoallcomputerusersisdatastorage.Sometimesstorageoccursonafileserverandsometimesitoccursonmovablemedia,allowingittobetransportedbetweenmachines.Movingstoragemediarepresentsasecurityriskfromacoupleofangles,thefirstbeingthepotentiallossofcontroloverthedataonthemovingmedia.Secondistheriskofintroducingunwanteditems,suchasavirusoraworm,whenthemediaareattachedbacktoanetwork.Bothoftheseissuescanberemediedthroughpoliciesandsoftware.Thekeyistoensurethatthepoliciesareenforcedandthesoftwareiseffective.Todescribemedia-specificissues,mediacanbedividedintothreecategories:magnetic,optical,andelectronic.

Removableandtransportablemediamakethephysicalsecurityofthedataamoredifficulttask.Theonlysolutiontothisproblemisencryption,whichiscoveredinChapter5.

MagneticMediaMagneticmediastoredatathroughtherearrangementofmagneticparticlesonanonmagneticsubstrate.Commonformsincludeharddrives,floppydisks,zipdisks,andmagnetictape.Althoughthespecificformatcandiffer,thebasicconceptisthesame.Allthesedevicessharesomecommoncharacteristics:Eachhassensitivitytoexternalmagneticfields.Attachafloppydisktotherefrigeratordoorwithamagnetifyouwanttotestthesensitivity.Theyarealsoaffectedbyhightemperatures,asinfires,andbyexposuretowater.

HardDrivesHarddrivesusedtorequirelargemachinesinmainframes.Nowtheyaresmallenoughtoattachtomobiledevices.Theconceptsremainthesameamongallofthem:aspinningplatterrotatesthemagneticmediabeneathheadsthatreadthepatternsintheoxidecoating.Asdriveshavegottensmallerandrotationspeedshaveincreased,thecapacitieshavealsogrown.Todaygigabytesofdatacanbestoredinadeviceslightlylargerthanabottlecap.Portableharddrivesinthe1TBto3TBrangearenowavailableandaffordable.

•2TBUSBharddrive

Oneofthesecuritycontrolsavailabletohelpprotecttheconfidentialityofthedataisfulldriveencryptionbuiltintothedrivehardware.Usingakeythatiscontrolled,throughaTrustedPlatformModule(TPM)interface

forinstance,thistechnologyprotectsthedataifthedriveitselfislostorstolen.ThismaynotbeimportantifathieftakesthewholePC,butinlargerstorageenvironments,drivesareplacedinseparateboxesandremotelyaccessed.Inthespecificcaseofnotebookmachines,thislayercanbetiedtosmartcardinterfacestoprovidemoresecurity.Asthisisbuiltintothecontroller,encryptionprotocolssuchasAdvancedEncryptionStandard(AES)andTripleDataEncryptionStandard(3DES)canbeperformedatfulldrivespeed.

DiskettesFloppydiskswerethecomputerindustry’sfirstattemptatportablemagneticmedia.Themovablemediumwasplacedinaprotectivesleeve,andthedriveremainedinthemachine.Capacitiesupto1.4MBwereachieved,butthefragilityofthedeviceasthesizeincreased,aswellascompetingmedia,hasrenderedfloppiesalmostobsolete.Diskettesarepartofhistorynow.

TapeMagnetictapehasheldaplaceincomputercenterssincethebeginningofcomputing.Itsprimaryusehasbeenbulkofflinestorageandbackup.Tapefunctionswellinthisrolebecauseofitslowcost.Thedisadvantageoftapeisitsnatureasaserialaccessmedium,makingitslowtoworkwithforlargequantitiesofdata.Severaltypesofmagnetictapeareinusetoday,rangingfromquarterinchtodigitallineartape(DLT)anddigitalaudiotape(DAT).Thesecartridgescanholdupwardof60GBofcompresseddata.Tapesarestillamajorconcernfromasecurityperspective,astheyare

usedtobackupmanytypesofcomputersystems.Thephysicalprotectionaffordedthetapesisofconcern,becauseifatapeisstolen,anunauthorizedusercouldestablishanetworkandrecoveryourdataonhissystem,becauseit’sallstoredonthetape.Offsitestorageisneededforproperdisasterrecoveryprotection,butsecureoffsitestorageandtransportiswhatisreallyneeded.Thisimportantissueisfrequentlyoverlookedin

manyfacilities.Thesimplesolutiontomaintaincontroloverthedataevenwhenyoucan’tcontrolthetapeisthroughencryption.Backuputilitiescansecurethebackupswithencryption,butthisoptionisfrequentlynotused,foravarietyofreasons.Regardlessoftherationalefornotencryptingdata,onceatapeislost,notusingtheencryptionoptionbecomesalamenteddecision.

•Amagnetictapecartridgeforbackups

OpticalMediaOpticalmediainvolvetheuseofalasertoreaddatastoredonaphysical

device.Insteadofhavingamagneticheadthatpicksupmagneticmarksonadisk,alaserpicksupdeformitiesembeddedinthemediathatcontaintheinformation.Aswithmagneticmedia,opticalmediacanberead-write,althoughtheread-onlyversionisstillmorecommon.

CD-R/DVDThecompactdisc(CD)tookthemusicindustrybystorm,andthenittookthecomputerindustrybystormaswell.AstandardCDholdsmorethan640MBofdata,insomecasesupto800MB.Thedigitalvideodisc(DVD)canholdalmost5GBofdatasinglesided,8.5GBduallayer.Thesedevicesoperateasopticalstorage,withlittlemarksburnedinthemtorepresent1’sand0’sonamicroscopicscale.ThemostcommontypeofCDistheread-onlyversion,inwhichthedataiswrittentothedisconceandonlyreadafterward.Thishasbecomeapopularmethodfordistributingcomputersoftware,althoughhigher-capacityDVDshavereplacedCDsforprogramdistribution.

•ADVD(left)andCD(right)

Asecond-generationdevice,therecordablecompactdisc(CD-R),allowsuserstocreatetheirownCDsusingaburnerdeviceintheirPCandspecialsoftware.Userscannowbackupdata,maketheirownaudioCDs,anduseCDsashigh-capacitystorage.Theirrelativelylowcosthasmadethemeconomicaltouse.CDshaveathinlayerofaluminuminsidetheplastic,uponwhichbumpsareburnedbythelaserwhenrecorded.CD-Rsuseareflectivelayer,suchasgold,uponwhichadyeisplacedthatchangesuponimpactbytherecordinglaser.Anewertype,CD-RW,hasadifferentdyethatallowsdiscstobeerasedandreused.ThecostofthemediaincreasesfromCD,toCD-R,toCD-RW.

Blu-rayDiscsThelatestversionofopticaldiscistheBlu-raydisc.Usingasmaller,violet-bluelaser,thissystemcanholdsignificantlymoreinformationthanaDVD.Blu-raydiscscanholdupto128GBinfourlayers.ThetransferspeedofBlu-rayat>48MbpsisoverfourtimesgreaterthanthatofDVDsystems.Designedforhigh-definition(HD)video,Blu-rayofferssignificantstoragefordataaswell.

TechTip

BackupLifetimesAcommonmisconceptionisthatdatabackedupontomagneticmediawilllastforlongperiodsoftime.Althoughoncetoutedaslastingdecades,modernmicro-encodingmethodsareprovinglessdurablethanexpected,sometimeswithlifetimeslessthantenyears.Asecondaryproblemismaintainingoperatingsystemaccessviadriverstolegacyequipment.Astechnologymovesforward,findingdriversforten-year-oldtapedrivesforWindows7orthelatestversionofLinuxwillprovetobeamajorhurdle.

DVDsnowoccupythesamerolethatCDshaveintherecentpast,exceptthattheyholdmorethanseventimesthedataofaCD.Thismakesfull-lengthmovierecordingpossibleonasingledisc.TheincreasedcapacitycomesfromfinertolerancesandthefactthatDVDscanholddata

onbothsides.AwiderangeofformatsforDVDsincludeDVD+R,DVD-R,duallayer,andnowHDformats,HD-DVDandBlu-ray.Thisvarietyisduetocompeting“standards”andcanresultinconfusion.DVD+Rand-Raredistinguishableonlywhenrecording,andmostdevicessince2004shouldreadboth.Duallayersaddadditionalspacebutrequireappropriatedual-layer–enableddrives.

ElectronicMediaThelatestformofremovablemediaiselectronicmemory.Electroniccircuitsofstaticmemory,whichcanretaindataevenwithoutpower,fillanichewherehighdensityandsmallsizeareneeded.Originallyusedinaudiodevicesanddigitalcameras,theseelectronicmediacomeinavarietyofvendor-specifictypes,suchassmartcards,SmartMedia,SDcards,flashcards,memorysticks,andCompactFlashdevices.Thesememorydevicesrangefromsmallcard-likedevices,ofwhichmicroSDcardsaresmallerthandimesandhold2GB,toUSBsticksthatholdupto64GB.Thesedevicesarebecomingubiquitous,withnewPCsandnetbookscontainingbuilt-inslotstoreadthemlikeanyotherstoragedevice.

•SD,microSD,andCompactFlashcards

Althoughtheyareusedprimarilyforphotosandmusic,thesedevicescouldbeusedtomoveanydigitalinformationfromonemachinetoanother.Toamachineequippedwithaconnectorport,thesedeviceslooklikeanyotherfilestoragelocation.TheycanbeconnectedtoasystemthroughaspecialreaderordirectlyviaaUSBport.InnewerPCsystems,aUSBbootdevicehasreplacedtheolderfloppydrive.Thesedevicesaresmall,canholdasignificantamountofdata—over128GBattimeofwriting—andareeasytomovefrommachinetomachine.Anothernovelinterfaceisamousethathasaslotforamemorystick.Thisdual-purposedeviceconservesspace,conservesUSBports,andiseasytouse.Thememorystickisplacedinthemouse,whichcanthenbeusednormally.Thestickiseasilyremovableandtransportable.Themouseworkswithorwithoutthememorystick;itisjustaconvenientdevicetouseforaportal.

Theadventoflarge-capacityUSBstickshasenableduserstobuildentiresystems,OSs,andtoolsontothemtoensuresecurityandveracityoftheOSandtools.Withtheexpandinguseofvirtualization,ausercouldcarryanentiresystemonaUSBstickandbootitusingvirtuallyanyhardware.WithUSB3.0andits640-Mbpsspeeds,thisisahighlyversatileformofmemorythatenablesmanynewcapabilities.

•128GBUSB3.0memorystick

Solid-StateHardDrivesWiththeriseofsolid-statememorytechnologiescomesasolid-state“harddrive.”Solid-statedrives(SSDs)aremovingintomobiledevices,desktops,andevenservers.Memorydensitiesaresignificantlybeyondphysicaldrives,therearenomovingpartstowearoutorfail,andSSDshavevastlysuperiorperformancespecifications.Figure10.10showsa512GBSSDfromalaptop,onahalf-heightminicardmSATAinterface.Theonlyfactorthathasslowedthespreadofthistechnologyhasbeencost,butrecentcostreductionshavemadethisformofmemoryafirst

choiceinmanysystems.

Figure10.10 512GBsolid-statehalf-heightminicard

SecurityConcernsforTransmissionMediaTheprimarysecurityconcernforasystemadministratorhastobe

preventingphysicalaccesstoaserverbyanunauthorizedindividual.Suchaccesswillalmostalwaysspelldisaster,forwithdirectaccessandthecorrecttools,anysystemcanbeinfiltrated.Oneoftheadministrator’snextmajorconcernsshouldbepreventingunfetteredaccesstoanetworkconnection.Accesstoswitchesandroutersisalmostasbadasdirectaccesstoaserver,andaccesstonetworkconnectionswouldrankthirdintermsofworst-casescenarios.Preventingsuchaccessiscostly,yetthecostofreplacingaserverbecauseoftheftisalsocostly.

PhysicalSecurityConcernsAbalancedapproachisthemostsensibleapproachwhenaddressingphysicalsecurity,andthisappliestotransmissionmediaaswell.Keepingnetworkswitchroomssecureandcablerunssecureseemsobvious,butcasesofusingjanitorialclosetsforthisvitalbusinesspurposeabound.Oneofthekeystomountingasuccessfulattackonanetworkisinformation.Usernames,passwords,serverlocations—allofthesecanbeobtainedifsomeonehastheabilitytoobservenetworktrafficinaprocesscalledsniffing.Asniffercanrecordallthenetworktraffic,andthisdatacanbeminedforaccounts,passwords,andtrafficcontent,allofwhichcanbeusefultoanunauthorizeduser.Onestartingpointformanyintrusionsistheinsertionofanunauthorizedsnifferintothenetwork,withthefruitsofitslaborsdrivingtheremainingunauthorizedactivities.Manycommonscenariosexistwhenunauthorizedentrytoanetworkoccurs,includingthese:

Insertinganodeandfunctionalitythatisnotauthorizedonthenetwork,suchasasnifferdeviceorunauthorizedwirelessaccesspoint

Modifyingfirewallsecuritypolicies

ModifyingACLsforfirewalls,switches,orrouters

Modifyingnetworkdevicestoechotraffictoanexternalnode

Networkdevicesandtransmissionmediabecometargetsbecausetheyaredispersedthroughoutanorganization,andphysicalsecurityofmanydisperseditemscanbedifficulttomanage.Althoughlimitingphysicalaccessisdifficult,itisessential.Theleastlevelofskillisstillmorethansufficienttoaccomplishunauthorizedentryintoanetworkifphysicalaccesstothenetworksignalsisallowed.Thisisonefactordrivingmanyorganizationstousefiber-optics,forthesecablesaremuchmoredifficulttotap.AlthoughmanytrickscanbeemployedwithswitchesandVLANstoincreasesecurity,itisstillessentialthatyoupreventunauthorizedcontactwiththenetworkequipment.

CrossCheckPhysicalInfrastructureSecurityThebestfirsteffortistosecuretheactualnetworkequipmenttopreventthistypeofintrusion.AsyoushouldrememberfromChapter8,physicalaccesstonetworkinfrastructureprovidesamyriadofissues,andmostofthemcanbecatastrophicwithrespecttosecurity.Physicallysecuringaccesstonetworkcomponentsisoneofthe“mustdos”ofacomprehensivesecurityeffort.

Wirelessnetworksmaketheintruder’staskeveneasier,astheytakethenetworktotheusers,authorizedornot.Atechniquecalledwar-drivinginvolvesusingalaptopandsoftwaretofindwirelessnetworksfromoutsidethepremises.Atypicaluseofwar-drivingistolocateawirelessnetworkwithpoor(orno)securityandobtainfreeInternetaccess,butotherusescanbemoredevastating.Asimplesolutionistoplaceafirewallbetweenthewirelessaccesspointandtherestofthenetworkandauthenticateusersbeforeallowingentry.BusinessusersuseVPNtechnologytosecuretheirconnectiontotheInternetandotherresources,andhomeuserscandothesamethingtopreventneighborsfrom“sharing”theirInternetconnections.Toensurethatunauthorizedtrafficdoesnotenteryournetworkthroughawirelessaccesspoint,youmusteitheruseafirewallwithanauthenticationsystemorestablishaVPN.

CloudComputingCloudcomputingisacommontermusedtodescribecomputerservicesprovidedoveranetwork.Thesecomputingservicesarecomputing,storage,applications,andservicesthatareofferedviatheInternetProtocol.Oneofthecharacteristicsofcloudcomputingistransparencytotheenduser.Thisimprovesusabilityofthisformofserviceprovisioning.Cloudcomputingoffersmuchtotheuser:improvementsinperformance,scalability,flexibility,security,andreliability,amongotheritems.Theseimprovementsareadirectresultofthespecificattributesassociatedwithhowcloudservicesareimplemented.Securityisaparticularchallengewhendataandcomputationare

handledbyaremoteparty,asincloudcomputing.Thespecificchallengeishowdoesoneallowdataoutsidetheirenterpriseandyetremainincontroloverhowthedataisused,andthecommonanswerisencryption.Byproperlyencryptingdatabeforeitleavestheenterprise,externalstoragecanstillbeperformedsecurely.Cloudscanbecreatedbymanyentities,internalandexternaltoan

organization.Commercialcloudservicesarealreadyavailableandofferedbyavarietyoffirms,aslargeasGoogleandAmazon,tosmaller,localproviders.Internalservicescanreplicatetheadvantagesofcloudcomputingwhileimprovingtheutilityoflimitedresources.Thepromiseofcloudcomputingisimprovedutilityand,assuch,ismarketedundertheconceptsofSoftwareasaService,PlatformasaService,andInfrastructureasaService.

PrivateIfyourorganizationishighlysensitivetosharingresources,youmaywishtoconsidertheuseofaprivatecloud.Privatecloudsareessentiallyreservedresourcesusedonlyforyourorganization—yourownlittlecloudwithinthecloud.Thisservicewillbeconsiderablymoreexpensive,butitshouldalsocarrylessexposureandshouldenableyourorganizationto

betterdefinethesecurity,processing,andhandlingofdatathatoccurswithinyourcloud.

PublicThetermpubliccloudreferstowhenthecloudserviceisrenderedoverasystemthatisopenforpublicuse.Inmostcases,thereislittleoperationaldifferencebetweenpublicandprivatecloudarchitectures,butthesecurityramificationscanbesubstantial.Althoughpubliccloudserviceswillseparateuserswithsecurityrestrictions,thedepthandleveloftheserestrictions,bydefinition,willbesignificantlylessinapubliccloud.

HybridAhybridcloudstructureisonewhereelementsarecombinedfromprivate,public,andcommunitycloudstructures.Whenexaminingahybridstructure,youneedtoremaincognizantthatoperationallythesedifferingenvironmentsmaynotactuallybejoined,butratherusedtogether.Sensitiveinformationcanbestoredintheprivatecloudandissue-relatedinformationcanbestoredinthecommunitycloud,allofwhichinformationisaccessedbyanapplication.Thismakestheoverallsystemahybridcloudsystem.

CommunityAcommunitycloudsystemisonewhereseveralorganizationswithacommoninterestshareacloudenvironmentforthespecificpurposesofthesharedendeavor.Forexample,localpublicentitiesandkeylocalfirmsmayshareacommunityclouddedicatedtoservingtheinterestsofcommunityinitiatives.Thiscanbeanattractivecost-sharingmechanismforspecificdata-sharinginitiatives.

ExamTip:BesureyouunderstandthedifferencesbetweencloudcomputingservicemodelsPlatformasaService,SoftwareasaService,andInfrastructureasaService.

SoftwareasaServiceSoftwareasaService(SaaS)istheofferingofsoftwaretoendusersfromwithinthecloud.Ratherthaninstallingsoftwareonclientmachines,SaaSactsassoftwareondemandwherethesoftwarerunsfromthecloud.Thishasseveraladvantages,asupdatesareoftenseamlesstoendusersandintegrationbetweencomponentsisenhanced.

PlatformasaServicePlatformasaService(PaaS)isamarketingtermusedtodescribetheofferingofacomputingplatforminthecloud.Multiplesetsofsoftware,workingtogethertoprovideservices,suchasdatabaseservices,canbedeliveredviathecloudasaplatform.

InfrastructureasaServiceInfrastructureasaService(IaaS)isatermusedtodescribecloud-basedsystemsthataredeliveredasavirtualplatformforcomputing.Ratherthanbuildingdatacenters,IaaSallowsfirmstocontractforutilitycomputingasneeded.

Chapter10Review

LabManualExerciseThefollowinglabexercisefromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providespracticalapplicationofmaterialcoveredinthischapter:

Lab7.3lConfiguringaPersonalFirewallinLinux

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaspectsofnetworkingandsecureinfrastructures.

Constructnetworksusingdifferenttypesofnetworkdevices

Understandthedifferencesbetweenbasicnetworkdevices,suchashubs,bridges,switches,androuters.

Understandthesecurityimplicationsofnetworkdevicesandhowtoconstructasecurenetworkinfrastructure.

Enhancesecurityusingsecuritydevices

Understandtheuseoffirewalls,next-generationfirewalls,andintrusiondetectionsystems.

Understandtheroleofloadbalancersandproxyserversaspartofasecurenetworksolution.

Understandtheuseofsecurityappliances,suchaswebsecuritygateways,datalossprevention,andunifiedthreatmanagement.

EnhancesecurityusingNAC/NAPmethodologies

TheCiscoNACprotocolandtheMicrosoftNAPprotocolprovidesecurityfunctionalitywhenattachingdevicestoanetwork.

NACandNAPplayacrucialroleinthesecuringofinfrastructureasdevicesenterandleavethenetwork.

NACandNAPcanbeusedtogethertotakeadvantageofthestrengthsandinvestmentsineachtechnologytoformastrongnetworkadmissionmethodology.

Identifythedifferenttypesofmediausedtocarrynetworksignals

Guidedandunguidedmediacanbothcarrynetworktraffic.

Wiredtechnologyfromcoaxcable,throughtwisted-pairEthernet,providesacost-effectivemeansofcarryingnetworktraffic.

Fibertechnologyisusedtocarryhigherbandwidth.

Unguidedmedia,includinginfraredandRF(includingwirelessandBluetooth),provideshort-rangenetworkconnectivity.

Describethedifferenttypesofstoragemediausedtostoreinformation

Thereareawidearrayofremovablemediatypesfrommemorystickstoopticaldiscstoportabledrives.

Datastorageonremovablemedia,becauseofincreasedphysicalaccess,createssignificantsecurityimplications.

Usebasicterminologyassociatedwithnetworkfunctionsrelatedtoinformationsecurity

Understandingandusingthecorrectvocabularyfordevicenamesandrelationshipstonetworkingisimportantasasecurityprofessional.

Securityappliancesaddterminology,includingspecificitemsforIDSandfirewalls.

Describethedifferenttypesandusesofcloudcomputing

Understandthetypesofcloudsinuse.

UnderstandtheuseofSoftwareasaService,InfrastructureasaService,andPlatformasaService.

KeyTermsbasicpacketfiltering(261)bridge(257)cloudcomputing(283)coaxialcable(274)collisiondomain(257)concentrator(264)datalossprevention(DLP)(272)firewall(260)hub(257)InfrastructureasaService(IaaS)(284)Internetcontentfilter(272)loadbalancer(269)modem(265)networkaccesscontrol(267)NetworkAccessProtection(NAP)(267)NetworkAdmissionControl(NAC)(268)NetworkAttachedStorage(NAS)(255)networkinterfacecard(NIC)(256)networkoperationscenter(NOC)(268)next-generationfirewall(263)PlatformasaService(PaaS)(284)privatebranchexchange(PBX)(266)proxyserver(270)router(258)sandboxing(255)servers(253)

shieldedtwisted-pair(STP)(275)SoftwareasaService(SaaS)(284)solid-statedrive(SSD)(281)switch(257)unifiedthreatmanagement(UTM)(272)unshieldedtwisted-pair(UTP)(275)virtualization(254)websecuritygateway(271)wirelessaccesspoint(264)workstation(253)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.A(n)_______________routespacketsbasedonIPaddresses.2.Tooffersoftwaretoendusersfromthecloudisaformof

_______________.

3.Toconnectacomputertoanetwork,youusea(n)_______________.

4.A(n)_______________or_______________distributestrafficbasedonMACaddresses.

5.Toverifythatacomputerisproperlyconfiguredtoconnecttoanetwork,thenetworkcanuse_______________.

6._______________isanameforthetypicalcomputerauserusesonanetwork.

7.A(n)_______________repeatsalldatatrafficacrossallconnectedports.

8.Cat5isanexampleof_______________cable.9.Basicpacketfilteringoccursatthe____________.

10.A(n)_______________isanextensionofthetelephoneserviceintoafirm’stelecommunicationsnetwork.

Multiple-ChoiceQuiz1.SwitchesoperateatwhichlayeroftheOSImodel?

A.Physicallayer

B.Networklayer

C.Datalinklayer

D.Applicationlayer

2.UTPcablesareterminatedforEthernetusingwhattypeofconnector?

A.ABNCplug

B.AnEthernetconnector

C.Astandardphonejackconnector

D.AnRJ-45connector

3.Coaxialcablecarrieshowmanyphysicalchannels?A.Two

B.Four

C.One

D.Noneoftheabove

4.Networkaccesscontrolisassociatedwithwhichofthefollowing?

A.NAP

B.IPsec

C.IPv6

D.NAT

5.Thepurposeoftwistingthewiresintwisted-paircircuitsisto:A.Increasespeed

B.Increasebandwidth

C.Reducecrosstalk

D.Alloweasiertracing

6.MicrosoftNAPpermits:A.Restrictionofconnectionstoarestrictedsubnetonly

B.CheckingofaclientOSpatchlevelbeforeanetworkconnectionispermitted

C.Denialofaconnectionbasedonclientpolicysettings

D.Alloftheabove

7.SNMPisaprotocolusedforwhichofthefollowingfunctions?A.Securee-mail

B.Secureencryptionofnetworkpackets

C.Remoteaccesstouserworkstations

D.Remoteaccesstonetworkinfrastructure

8.Firewallscanusewhichofthefollowingintheiroperation?A.Statefulpacketinspection

B.Portblockingtodenyspecificservices

C.NATtohideinternalIPaddresses

D.Alloftheabove

9.SMTPisaprotocolusedforwhichofthefollowingfunctions?A.E-mail

B.Secureencryptionofnetworkpackets

C.Remoteaccesstouserworkstations

D.Noneoftheabove

10.USB-basedflashmemoryischaracterizedby:A.Highcost

B.Lowcapacity

C.Slowaccess

D.Noneoftheabove

EssayQuiz1.Compareandcontrastroutersandswitchesbydescribingwhatthe

advantagesanddisadvantagesareofeach.

2.Describethecommonthreatstothetransmissionmediainanetwork,bytypeoftransmissionmedia.

LabProjects

•LabProject10.1UsingtwoPCsandasmallhomeoffice–typerouter,configurethemtocommunicateacrossthenetworkwitheachother.

•LabProject10.2DemonstratenetworkconnectivityusingWindowscommand-linetools.

chapter11 AuthenticationandRemoteAccess

WeshouldsetanationalgoalofmakingcomputersandInternetaccessavailableforeveryAmerican.

O

—WILLIAMJEFFERSONCLINTON

Inthischapter,youwilllearnhowto

Identifythedifferencesamonguser,group,androlemanagement

Implementpasswordanddomainpasswordpolicies

Describemethodsofaccountmanagement(SSO,timeofday,logicaltoken,accountexpiration)

Describemethodsofaccessmanagement(MAC,DAC,andRBAC)

Discussthemethodsandprotocolsforremoteaccesstonetworks

Identifyauthentication,authorization,andaccounting(AAA)protocols

Explainauthenticationmethodsandthesecurityimplicationsintheiruse

Implementvirtualprivatenetworks(VPNs)andtheirsecurityaspects

DescribeInternetProtocolSecurity(IPsec)anditsuseinsecuringcommunications

nsingle-usersystemssuchasPCs,theindividualusertypicallyhasaccesstomostofthesystem’sresources,processingcapability,andstoreddata.Onmultiusersystems,suchasserversandmainframes,an

individualusertypicallyhasverylimitedaccesstothesystemandthedatastoredonthatsystem.Anadministratorresponsibleformanagingandmaintainingthemultiusersystemhasmuchgreateraccess.Sohowdoesthecomputersystemknowwhichusersshouldhaveaccesstowhatdata?Howdoestheoperatingsystemknowwhatapplicationsauserisallowedtouse?Onearlycomputersystems,anyonewithphysicalaccesshadfairly

significantrightstothesystemandcouldtypicallyaccessanyfileorexecuteanyapplication.Ascomputersbecamemorepopularanditbecameobviousthatsomewayofseparatingandrestrictinguserswasneeded,theconceptsofusers,groups,andprivilegescameintobeing(privilegesmeanyouhavetheabilityto“dosomething”onacomputersystemsuchascreateadirectory,deleteafile,orrunaprogram).Theseconceptscontinuetobedevelopedandrefinedandarenowpartofwhat

wecallprivilegemanagement.Privilegemanagementistheprocessofrestrictingauser’sabilityto

interactwiththecomputersystem.Essentially,everythingausercandotoorwithacomputersystemfallsintotherealmofprivilegemanagement.Privilegemanagementoccursatmanydifferentpointswithinanoperatingsystemorevenwithinapplicationsrunningonaparticularoperatingsystem.Remoteaccessisanotherkeyissueformultiusersystemsintoday’s

worldofconnectedcomputers.Isolatedcomputers,notconnectedtonetworksortheInternet,arerareitemsthesedays.Exceptforsomespecial-purposemachines,mostcomputersneedinterconnectivitytofulfilltheirpurpose.Remoteaccessenablesusersoutsideanetworktohavenetworkaccessandprivilegesasiftheywereinsidethenetwork.Beingoutsideanetworkmeansthattheuserisworkingonamachinethatisnotphysicallyconnectedtothenetworkandmustthereforeestablishaconnectionthrougharemotemeans,suchasbydialingin,connectingviatheInternet,orconnectingthroughawirelessconnection.Authenticationistheprocessofestablishingauser’sidentitytoenable

thegrantingofpermissions.Toestablishnetworkconnections,avarietyofmethodsareused,thechoiceofwhichdependsonnetworktype,thehardwareandsoftwareemployed,andanysecurityrequirements.

User,Group,andRoleManagementTomanagetheprivilegesofmanydifferentpeopleeffectivelyonthesamesystem,amechanismforseparatingpeopleintodistinctentities(users)isrequired,soyoucancontrolaccessonanindividuallevel.Atthesametime,it’sconvenientandefficienttobeabletolumpuserstogetherwhengrantingmanydifferentpeople(groups)accesstoaresourceatthesametime.Atothertimes,it’susefultobeabletograntorrestrictaccessbasedonaperson’sjoborfunctionwithintheorganization(role).Whileyoucanmanageprivilegesonthebasisofusersalone,managinguser,group,androleassignmentstogetherisfarmoreconvenientandefficient.

TechTip

UserIDvs.UsernameTheterms“userID”and“username”aresometimesusedinterchangeably,buttraditionallythetermuserIDismoreoftenassociatedwithUNIXoperatingsystems.InUNIXoperatingsystems,eachuserisidentifiedbyanunsignedintegercalledauseridentifier,oftenshortenedtouserID.

UserThetermusergenerallyappliestoanypersonaccessingacomputersystem.Inprivilegemanagement,auserisasingleindividual,suchas“JohnForthright”or“SallyJenkins.”Thisisgenerallythelowestleveladdressedbyprivilegemanagementandthemostcommonareaforaddressingaccess,rights,andcapabilities.Whenaccessingacomputersystem,eachuserisgenerallygivenausername—auniquealphanumericidentifierheorshewillusetoidentifyhimselforherselfwhenloggingintooraccessingthesystem.Whendevelopingaschemeforselectingusernames,youshouldkeepinmindthatusernamesmustbeuniquetoeachuser,buttheymustalsobefairlyeasyfortheusertorememberanduse.

ExamTip:Ausernameisauniquealphanumericidentifierusedtoidentifyausertoacomputersystem.Permissionscontrolwhatauserisallowedtodowithobjectsonacomputersystem—whatfilestheycanopen,whatprinterstheycanuse,andsoon.InWindowssecuritymodels,permissionsdefinetheactionsausercanperformonanobject(openafile,deleteafolder,andsoon).Rightsdefinetheactionsausercanperformonthesystemitself,suchaschangethetime,adjustauditinglevels,andsoon.Rightsaretypicallyappliedtooperatingsystem–leveltasks.

Withsomenotableexceptions,ingeneralauserwhowantstoaccessacomputersystemmustfirsthaveausernamecreatedforhimonthesystem

hewishestouse.Thisisusuallydonebyasystemadministrator,securityadministrator,orotherprivilegeduser,andthisisthefirststepinprivilegemanagement—ausershouldnotbeallowedtocreatetheirownaccount.Oncetheaccountiscreatedandausernameisselected,the

administratorcanassignspecificpermissionstothatuser.Permissionscontrolwhattheuserisallowedtodowithobjectsonthesystem—whichfileshemayaccess,whichprogramshemayexecute,andsoon.WhilePCstypicallyhaveonlyoneortwouseraccounts,largersystemssuchasserversandmainframescanhavehundredsofaccountsonthesamesystem.Figure11.1showstheUsersmanagementtaboftheComputerManagementutilityonaWindowsServer2008system.Notethatseveraluseraccountshavebeencreatedonthissystem,eachidentifiedbyauniqueusername.

•Figure11.1UserstabonaWindowsServer2008system

Afew“special”useraccountsdon’ttypicallymatchupone-to-onewitharealperson.Theseaccountsarereservedforspecialfunctionsandtypicallyhavemuchmoreaccessandcontroloverthecomputersystemthantheaverageuseraccount.TwosuchaccountsaretheadministratoraccountunderWindowsandtherootaccountunderUNIX.Eachoftheseaccountsisalsoknownasthesuperuser—ifsomethingcanbedoneonthesystem,thesuperuserhasthepowertodoit.Theseaccountsarenottypicallyassignedtoaspecificindividualandarerestricted,accessedonlywhenthefullcapabilitiesofthataccountarerequired.

Auditinguseraccounts,groupmembership,andpasswordstrengthonaregularbasisisanextremelyimportantsecuritycontrol.Manycomplianceauditsfocusonthepresenceorlackofindustry-acceptedsecuritycontrols.

Duetothepowerpossessedbytheseaccounts,andthefew,ifany,restrictionsplacedonthem,theymustbeprotectedwithstrongpasswordsthatarenoteasilyguessedorobtained.Theseaccountsarealsothemostcommontargetsofattackers—iftheattackercangainrootaccessorassumetheprivilegelevelassociatedwiththerootaccount,shecanbypassmostaccesscontrolsandaccomplishanythingshewantsonthatsystem.

TechTip

GenericAccountsGenericaccountsareaccountswithoutanameduserbehindthem.Thesecanbeemployedforspecialpurposes,suchasrunningservicesandbatchprocesses,butbecausetheycannotbeattributedtoanindividual,theyshouldnothaveloginability.Itisalsoimportantthatiftheyhaveelevatedprivileges,theiractivitiesbecontinuallymonitoredastowhatfunctionstheyareperformingversuswhattheyareexpectedtobedoing.Generaluseofgenericaccountsshouldbeavoidedbecauseoftheincreasedriskassociatedwithnoattributioncapability.

Anotheraccountthatfallsintothe“special”categoryisthesystemaccountusedbyWindowsoperatingsystems.ThesystemaccounthasthesamefileprivilegesastheadministratoraccountandisusedbytheoperatingsystemandbyservicesthatrununderWindows.Bydefault,thesystemaccountisgrantedfullcontroltoallfilesonanNTFSvolume.ServicesandprocessesthatneedthecapabilitytologoninternallywithinWindowswillusethesystemaccount—forexample,theDNSServerandDHCPServerservicesinWindowsServer2008usetheLocalSystemaccount.

GroupUnderprivilegemanagement,agroupisacollectionofuserswithsomecommoncriteria,suchasaneedforaccesstoaparticulardatasetorgroupofapplications.Agroupcanconsistofoneuserorhundredsofusers,andeachusercanbelongtooneormoregroups.Figure11.2showsacommonapproachtogroupingusers—buildinggroupsbasedonjobfunction.

•Figure11.2Logicalrepresentationofgroups

Byassigningmembershipinaspecificgrouptoauser,youmakeitmucheasiertocontrolthatuser’saccessandprivileges.Forexample,if

everymemberoftheengineeringdepartmentneedsaccesstoproductdevelopmentdocuments,administratorscanplacealltheusersintheengineeringdepartmentinasinglegroupandallowthatgrouptoaccessthenecessarydocuments.Onceagroupisassignedpermissionstoaccessaparticularresource,addinganewusertothatgroupwillautomaticallyallowthatusertoaccessthatresource.Ineffect,theuser“inherits”thepermissionsofthegroupassoonassheisplacedinthatgroup.AsFigure11.3shows,acomputersystemcanhavemanydifferentgroups,eachwithitsownrightsandpermissions.

•Figure11.3GroupstabonaWindowsServer2008system

AsyoucanseefromthedescriptionfortheAdministratorsgroupinFigure11.3,thisgrouphascompleteandunrestrictedaccesstothesystem.

Thisincludesaccesstoallfiles,applications,anddatasets.AnyonewhobelongstotheAdministratorsgrouporisplacedinthisgroupwillhaveagreatdealofaccessandcontroloverthesystem.Someoperatingsystems,suchasWindows,havebuilt-ingroups—

groupsthatarealreadydefinedwithintheoperatingsystem,suchasAdministrators,PowerUsers,andEveryone.Thewholeconceptofgroupsrevolvesaroundmakingthetasksofassigningandmanagingpermissionseasier,andbuilt-ingroupscertainlyhelptomakethesetaskseasier.Individualusersaccountscanbeaddedtobuilt-ingroups,allowingadministratorstograntpermissionsetstousersquicklyandeasilywithouthavingtospecifypermissionsmanually.Forexample,addingauseraccountnamed“bjones”tothePowerUsersgroupgivesbjonesallthepermissionsassignedtothebuilt-inPowerUsersgroup,suchasinstallingdrivers,modifyingsettings,andinstallingsoftware.

RoleAnothercommonmethodofmanagingaccessandprivilegesisbyroles.Aroleisusuallysynonymouswithajoborsetoffunctions.Forexample,theroleofsecurityadmininMicrosoftSQLServermaybeappliedtosomeonewhoisresponsibleforcreatingandmanaginglogins,readingerrorlogs,andauditingtheapplication.Securityadminsneedtoaccomplishspecificfunctionsandneedaccesstocertainresourcesthatotherusersdonot—forexample,theyneedtobeabletocreateanddeletelogins,openandreaderrorlogs,andsoon.Ingeneral,anyoneservingintheroleofsecurityadminneedsthesamerightsandprivilegesaseveryothersecurityadmin.Forsimplicityandefficiency,rightsandprivilegescanbeassignedtotherolesecurityadmin,andanyoneassignedtofulfillthatroleautomaticallyhasthecorrectrightsandprivilegestoperformtherequiredtasks.

PasswordPolicies

Theusername/passwordcombinationisbyfarthemostcommonmeansofcontrollingaccesstoapplications,websites,andcomputersystems.Theaverageusermayhaveadozenormoreusernameandpasswordcombinationsbetweenschool,work,andpersonaluse.Tohelpusersselectagood,difficult-to-guesspassword,mostorganizationsimplementandenforceapasswordpolicy,whichtypicallyhasthefollowingcomponents:

TechTip

TOTPATime-basedOne-TimePassword(TOTP)generatorusesthecurrenttimeasoneoftheseedsinaone-timepassword.Thispreventsreplayattacksutilizingacapturedpassword.

PasswordconstructionHowmanycharactersapasswordshouldhave;theuseofcapitalization,numbers,andspecialcharacters;notbasingthepasswordonadictionarywordorpersonalinformation;notmakingthepasswordaslightmodificationofanexistingpassword;andsoon

ReuserestrictionsWhetherornotpasswordscanbereused,and,ifso,withwhatfrequency(howmanydifferentpasswordsmustyouusebeforeyoucanuseoneyou’veusedbefore)

DurationTheminimumandmaximumnumberofdaysapasswordcanbeusedbeforeitcanbechangedormustbechanged

ProtectionofpasswordsNotwritingdownpasswordswhereotherscanfindthem,notsavingpasswordsandnotallowingautomatedlogins,notsharingpasswordswithotherusers,andsoon

ConsequencesConsequencesassociatedwithviolationofornoncompliancewiththepolicy

TheSANSInstituteoffersseveralexamplesofpasswordpolicies(alongwithmanyothercommoninformationsecuritypolicies)onitswebsite

(www.sans.org—typepasswordpolicyintothesearchboxatthetopoftheSANSwebsite).Theoverallguidanceestablishedbytheorganization’ssecuritypolicyshouldberefinedintospecificguidancethatadministratorscanenforceattheoperatingsystemlevel.

ExamTip:Apasswordpolicyisasetofrulesdesignedtoenhancecomputersecuritybyrequiringuserstoemployandmaintainstrongpasswords.Adomainpasswordpolicyisapasswordpolicythatappliestoaspecificdomain.

DomainPasswordPolicyAdomainpasswordpolicyisapasswordpolicyforaspecificdomain.AsthesepoliciesareusuallyassociatedwiththeWindowsoperatingsystem,adomainpasswordpolicyisimplementedandenforcedonthedomaincontroller,whichisacomputerthatrespondstosecurityauthenticationrequests,suchasloggingintoacomputer,foraWindowsdomain.Thedomainpasswordpolicyusuallyfallsunderagrouppolicyobject(GPO)andhasthefollowingelements(seeFigure11.4):

•Figure11.4PasswordpolicyoptionsinWindowsLocalSecurityPolicy

EnforcepasswordhistoryTellsthesystemhowmanypasswordstorememberanddoesnotallowausertoreuseanoldpassword.

MaximumpasswordageSpecifiesthemaximumnumberofdaysapasswordmaybeusedbeforeitmustbechanged.

MinimumpasswordageSpecifiestheminimumnumberofdaysapasswordmustbeusedbeforeitcanbechangedagain.

MinimumpasswordlengthSpecifiestheminimumnumberof

charactersthatmustbeusedinapassword.

PasswordmustmeetcomplexityrequirementsSpecifiesthatthepasswordmustmeettheminimumlengthrequirementandhavecharactersfromatleastthreeofthefollowingfourgroups:Englishuppercasecharacters(AthroughZ),Englishlowercasecharacters(athroughz),numerals(0through9),andnon-alphabeticcharacters(suchas!,$,#,%).

StorepasswordsusingreversibleencryptionReversibleencryptionisaformofencryptionthatcaneasilybedecryptedandisessentiallythesameasstoringaplaintextversionofthepassword(becauseit’ssoeasytoreversetheencryptionandgetthepassword).Thisshouldbeusedonlywhenapplicationsuseprotocolsthatrequiretheuser’spasswordforauthentication(suchasChallenge-HandshakeAuthenticationProtocol,orCHAP).

Notonlyisitessentialtoensureeveryaccounthasastrongpassword,butalsoitisessentialtodisableordeleteunnecessaryaccounts.Ifyoursystemdoesnotneedtosupportguestoranonymousaccounts,thendisablethem.Whenuseroradministratoraccountsarenolongerneeded,removeordisablethem.Asabestpractice,alluseraccountsshouldbeauditedperiodicallytoensuretherearenounnecessary,outdated,orunneededaccountsonyoursystems.

Domainsarelogicalgroupsofcomputersthatshareacentraldirectorydatabase,knownastheActiveDirectorydatabaseforthemorerecentWindowsoperatingsystems.Thedatabasecontainsinformationabouttheuseraccountsandsecurityinformationforallresourcesidentifiedwithinthedomain.Eachuserwithinthedomainisassignedhisorherownuniqueaccount(thatis,adomainisnotasingleaccountsharedbymultipleusers),whichisthenassignedaccesstospecificresourceswithinthedomain.Inoperatingsystemsthatprovidedomaincapabilities,thepasswordpolicyissetintherootcontainerforthedomainandappliestoalluserswithinthatdomain.Settingapasswordpolicyforadomainissimilartosettingother

passwordpoliciesinthatthesamecriticalelementsneedtobeconsidered(passwordlength,complexity,life,andsoon).Ifachangetooneoftheseelementsisdesiredforagroupofusers,anewdomainneedstobecreatedbecausethedomainisconsideredasecurityboundary.InaWindowsoperatingsystemthatemploysActiveDirectory,thedomainpasswordpolicycanbesetintheActiveDirectoryUsersandComputersmenuintheAdministrativeToolssectionoftheControlPanel.

TechTip

CalculatingUniquePasswordCombinationsOneoftheprimaryreasonsadministratorsrequireuserstohavelongerpasswordsthatuseupper-andlowercaseletters,numbers,andatleastone“special”characteristohelpdeterpassword-guessingattacks.Onepopularpassword-guessingtechnique,calledabrute-forceattack,usessoftwaretoguesseverypossiblepassworduntilonematchesauser’spassword.Essentially,abruteforce-attacktriesa,thenaa,thenaaa,andsoonuntilitrunsoutofcombinationsorgetsapasswordmatch.Increasingboththepoolofpossiblecharactersthatcanbeusedinthepasswordandthenumberofcharactersrequiredinthepasswordcanexponentiallyincreasethenumberof“guesses”abrute-forceprogramneedstoperformbeforeitrunsoutofpossibilities.Forexample,ifourpasswordpolicyrequiresathree-characterpasswordthatusesonlylowercaseletters,thereareonly17,576possiblepasswords(26possiblecharacters,3characterslongis263combinations).Requiringasix-characterpasswordincreasesthatnumberto308,915,776possiblepasswords(266).Aneight-characterpasswordwithupper-andlowercase,specialsymbol,andanumberincreasesthepossiblepasswordsto708orover576trillioncombinationsPrecomputedhashesinrainbowtablescanalsobeusedtobruteforcepastshorter

passwords.Asthelengthincreases,sodoesthesizeoftherainbowtable.

SingleSign-OnTouseasystem,usersmustbeabletoaccessit,whichtheyusuallydobysupplyingtheiruserIDs(orusernames)andcorrespondingpasswords.Asanysecurityadministratorknows,themoresystemsaparticularuserhasaccessto,themorepasswordsthatusermusthaveandremember.The

naturaltendencyforusersistoselectpasswordsthatareeasytoremember,oreventhesamepasswordforuseonthemultiplesystemstheyaccess.Wouldn’titbeeasierfortheusersimplytologinonceandhavetorememberonlyasingle,goodpassword?Thisismadepossiblewithatechnologycalledsinglesign-on.Singlesign-on(SSO)isaformofauthenticationthatinvolvesthe

transferringofcredentialsbetweensystems.Asmoreandmoresystemsarecombinedindailyuse,usersareforcedtohavemultiplesetsofcredentials.Ausermayhavetologintothree,four,five,orevenmoresystemseverydayjusttodoherjob.Singlesign-onallowsausertotransferhercredentials,sothatloggingintoonesystemactstologherintoallofthem.OncetheuserhasenteredauserIDandpassword,thesinglesign-onsystempassesthesecredentialstransparentlytoothersystemssothatrepeatedlogonsarenotrequired.Putsimply,yousupplytherightusernameandpasswordonceandyouhaveaccesstoalltheapplicationsanddatayouneed,withouthavingtologinmultipletimesandremembermanydifferentpasswords.Fromauserstandpoint,SSOmeansyouneedtorememberonlyoneusernameandonepassword.Fromanadministrationstandpoint,SSOcanbeeasiertomanageandmaintain.Fromasecuritystandpoint,SSOcanbeevenmoresecure,asuserswhoneedtorememberonlyonepasswordarelesslikelytochoosesomethingtoosimpleorsomethingsocomplextheyneedtowriteitdown.Figure11.5showsalogicaldepictionoftheSSOprocess:

•Figure11.5Singlesign-onprocess

1.Theusersignsinonce,providingausernameandpasswordtotheSSOserver.

2.TheSSOserverprovidesauthenticationinformationtoanyresourcetheuseraccessesduringthatsession.Theserverinterfaceswiththeotherapplicationsandsystems—theuserdoesnotneedtologintoeachsystemindividually.

ExamTip:TheCompTIASecurity+examwillverylikelycontainquestionsregardingsinglesign-onbecauseitissuchaprevalenttopicandaverycommonapproachtomultisystemauthentication.

Inreality,SSOisusuallyalittlemoredifficulttoimplementthanvendorswouldleadyoutobelieve.Tobeeffectiveanduseful,allyourapplicationsneedtobeabletoaccessandusetheauthenticationprovidedbytheSSOprocess.Themorediverseyournetwork,thelesslikelythisistobethecase.Ifyournetwork,likemost,containsdifferentoperatingsystems,customapplications,andadiverseuserbase,SSOmaynotevenbeaviableoption.

TimeofDayRestrictionsSomeorganizationsneedtotightlycontrolcertainusers,groups,orevenrolesandlimitaccesstocertainresourcestospecificdaysandtimes.Mostserver-classoperatingsystemsenableadministratorstoimplementtimeofdayrestrictionsthatlimitwhenausercanlogin,whencertainresourcescanbeaccessed,andsoon.Timeofdayrestrictionsareusuallyspecifiedforindividualaccounts,asshowninFigure11.6.

•Figure11.6LogonhoursforGuestaccount

Fromasecurityperspective,timeofdayrestrictionscanbeveryuseful.Ifausernormallyaccessescertainresourcesduringnormalbusinesshours,anattempttoaccesstheseresourcesoutsidethistimeperiod(eitheratnightorontheweekend)mightindicateanattackerhasgainedaccesstooristryingtogainaccesstothataccount.Specifyingtimeofdayrestrictionscanalsoserveasamechanismtoenforceinternalcontrolsofcriticalorsensitiveresources.Obviously,adrawbacktoenforcingtimeofdayrestrictionsisthatitmeansthatausercan’tgotoworkoutsideofnormal

hoursto“catchup”withworktasks.Aswithallsecuritypolicies,usabilityandsecuritymustbebalancedinthispolicydecision.

Becarefulimplementingtimeofdayrestrictions.Someoperatingsystemsgiveyoutheoptionofdisconnectingusersassoonastheir“allowedlogintime”expiresregardlessofwhattheuserisdoingatthetime.Themorecommonlyusedapproachistoallowcurrentlylogged-inuserstostayconnectedbutrejectanyloginattemptsthatoccuroutsideofallowedhours.

TokensWhiletheusername/passwordcombinationhasbeenandcontinuestobethecheapestandmostpopularmethodofcontrollingaccesstoresources,manyorganizationslookforamoresecureandtamper-resistantformofauthentication.Usernamesandpasswordsare“somethingyouknow”(whichcanbeusedbyanyoneelsewhoknowsordiscoverstheinformation).Amoresecuremethodofauthenticationistocombinethe“somethingyouknow”with“somethingyouhave.”Atokenisanauthenticationfactorthattypicallytakestheformofaphysicalorlogicalentitythattheusermustbeinpossessionoftoaccesstheiraccountorcertainresources.Mosttokensarephysicaltokensthatdisplayaseriesofnumbersthat

changesevery30to90seconds,suchasthetokenpicturedinFigure11.7fromBlizzardEntertainment.Thissequenceofnumbersmustbeenteredwhentheuserisattemptingtologinoraccesscertainresources.Theever-changingsequenceofnumbersissynchronizedtoaremoteserversuchthatwhentheuserentersthecorrectusername,password,andmatchingsequenceofnumbers,heisallowedtologin.Evenifanattackerobtainstheusernameandpassword,theattackercannotloginwithoutthematchingsequenceofnumbers.OtherphysicaltokensincludeCommonAccessCards(CACs),USBtokens,smartcards,andPCcards.

•Figure11.7TokenauthenticatorfromBlizzardEntertainment

Tokensmayalsobeimplementedinsoftware.Softwaretokensstillprovidetwo-factorauthenticationbutdon’trequiretheusertohaveaphysicaldeviceonhand.Sometokensrequiresoftwareclientsthatstoreasymmetrickey(sometimescalledaseedrecord)inasecuredlocationontheuser’sdevice(laptop,desktop,tablet,andsoon).Othersoftwaretokensusepublickeycryptography.Asymmetriccryptographysolutions,suchaspublickeycryptography,oftenassociateaPINwithaspecificuser’stoken.Tologinoraccesscriticalresources,theusermustsupplythecorrectPIN.ThePINisstoredonaremoteserverandisusedduringtheauthenticationprocesssothatifauserpresentstherighttoken,butnottherightPIN,theuser’saccesscanbedenied.Thishelpspreventanattackerfromgainingaccessifhegetsacopyoforgainsaccesstothesoftwaretoken.

CrossCheckSymmetricandAsymmetricCryptographyYoulearnedaboutsymmetricandasymmetriccryptographyinChapter5.Whatisthedifference

betweenthetwomethods?Whichoneusespublickeys?

TechTip

BestPractice:PasswordExpirationOneofthebestpracticesanorganizationcanimplementistoattachanexpirationdatetouserpasswords.Thishelpsensurethatifapasswordiscompromised,theperiodthattheaccountremainscompromisedislimited.Inmostenvironmentsandoperatingsystems,thisisexpressedintermsofthenumberofdaysbeforethepasswordexpiresandisnolongervalid.Forexample,amaximumpasswordageof90daysmeansthataparticularpasswordwillexpire90daysafterthatpasswordwasinitiallysettoitscurrentvalue.

AccountandPasswordExpirationAnothercommonrestrictionthatcanbeenforcedinmanyaccesscontrolmechanismsiseither(orboth)anaccountexpirationorpasswordexpirationfeature.Thisallowsadministratorstospecifyaperiodoftimeforwhichapasswordoranaccountwillbeactive.Forpasswordexpiration,whentheexpirationdateisreached,theusergenerallyisaskedtocreateanewpassword.Thismeansthatifthepassword(andthustheaccount)hasbeencompromisedwhentheexpirationdateisreachedandanewpasswordisset,theattackerwillagain(hopefully)belockedoutofthesystem.Theattackercan’tchangethepasswordhimself,sincetheuserwouldthenbelockedoutandwouldcontactanadministratortohavethepasswordreset,thusagainlockingouttheattacker.Anotherattackoptionwouldinvolvetheattackersettinganew

passwordonthecompromisedaccountandthenattemptingtoresettheaccountbacktotheoriginal,compromisedpassword.Iftheattackerissuccessful,anewexpirationtimewouldbesetfortheaccountbuttheoldpasswordwouldstillbeusedandtheuserwouldnotbelockedoutoftheiraccount;inmostcases,theuserwouldn’tnoticeanythinghadhappenedatallastheiroldpasswordwouldcontinuetowork.Thisisonereasonwhya

passwordhistorymechanismshouldbeused.Thehistoryisusedtokeeptrackofpreviouslyusedpasswordssothattheycannotbereused.

TechTip

HeartbleedIn2014avulnerabilitythatcouldcauseusercredentialstobeexposedwasdiscoveredinmillionsofsystems.CalledtheHeartbleedincident,thisresultedinnumeroususersbeingtoldtochangetheirpasswordsbecauseofpotentialcompromise.Userswerealsowarnedofthedangersofreusingpasswordsacrossdifferentaccounts.Althoughthismakespasswordseasiertoremember,italsoimprovesguessingchances.Whatmadethiswholeeffortofprotectingyourpasswordsparticularlychallengingisthatthebreachwaswidespread—virtuallyallLinuxsystems—andthepatchingratewasuneven,sopeoplecouldbesufferingmultipleexposuresovertime.Afteroneyear,anestimated40%ofallcompromisedsystemsremainedunpatched.Thishighlightstheimportanceofnotreusingpasswordsacrossmultipleaccounts.

SecurityControlsandPermissionsIfmultipleusersshareacomputersystem,thesystemadministratorlikelyneedstocontrolwhoisallowedtodowhatwhenitcomestoviewing,using,orchangingsystemresources.Whileoperatingsystemsvaryinhowtheyimplementthesetypesofcontrols,mostoperatingsystemsusetheconceptsofpermissionsandrightstocontrolandsafeguardaccesstoresources.Aswediscussedearlier,permissionscontrolwhatauserisallowedtodowithobjectsonasystemandrightsdefinetheactionsausercanperformonthesystemitself.Let’sexaminehowtheWindowsoperatingsystemsimplementthisconcept.TheWindowsoperatingsystemsusetheconceptsofpermissionsand

rightstocontrolaccesstofiles,folders,andinformationresources.WhenusingtheNTFSfilesystem,administratorscangrantusersandgroupspermissiontoperformcertaintasksastheyrelatetofiles,folders,andRegistrykeys.ThebasiccategoriesofNTFSpermissionsareasfollows:

ExamTip:Permissionscanbeappliedtospecificusersorgroupstocontrolthatuser’sorgroup’sabilitytoview,modify,access,use,ordeleteresourcessuchasfoldersandfiles.

FullControlAuser/groupcanchangepermissionsonthefolder/file,takeownershipifsomeoneelseownsthefolder/file,deletesubfoldersandfiles,andperformactionspermittedbyallotherNTFSfolderpermissions.

ModifyUsers/groupscanviewandmodifyfiles/foldersandtheirproperties,candeleteandaddfiles/folders,andcandeleteoraddpropertiestoafile/folder.

Read&ExecuteUsers/groupscanviewthefile/folderandcanexecutescriptsandexecutablesbutcannotmakeanychanges(files/foldersareread-only).

ListFolderContentsAuser/groupcanlistonlywhatisinsidethefolder(appliestofoldersonly).

ReadUsers/groupscanviewthecontentsofthefile/folderandthefile/folderproperties.

WriteUsers/groupscanwritetothefileorfolder.

Figure11.8showsthepermissionsonafoldercalledDatafromaWindowsServersystem.InthetophalfofthePermissionswindowaretheusersandgroupsthathavepermissionsforthisfolder.Inthebottomhalfofthewindowarethepermissionsassignedtothehighlighteduserorgroup.

•Figure11.8PermissionsfortheDatafolder

TheWindowsoperatingsystemalsousesuserrightsorprivilegestodeterminewhatactionsauserorgroupisallowedtoperformoraccess.Theseuserrightsaretypicallyassignedtogroups,asitiseasiertodealwithafewgroupsthantoassignrightstoindividualusers,andtheyareusuallydefinedineitheragrouporalocalsecuritypolicy.Thelistofuserrightsisquiteextensivebutafewexamplesofuserrightsare

LogonlocallyUsers/groupscanattempttologontothelocalsystemitself.

AccessthiscomputerfromthenetworkUsers/groupscanattempttoaccessthissystemthroughthenetworkconnection.

ManageauditingandsecuritylogUsers/groupscanview,modify,anddeleteauditingandsecurityloginformation.

Rightstendtobeactionsthatdealwithaccessingthesystemitself,processcontrol,logging,andsoon.Figure11.9showstheuserrightscontainedinthelocalsecuritypolicyonaWindowssystem.

•Figure11.9UserRightsAssignmentoptionsfromWindowsLocalSecurityPolicy

Foldersandfilesarenottheonlythingsthatcanbesafeguardedorcontrolledusingpermissions.Evenaccessanduseofperipherals,suchasprinters,canbecontrolledusingpermissions.Figure11.10showstheSecuritytabfromaprinterattachedtoaWindowssystem.Permissionscanbeassignedtocontrolwhocanprinttotheprinter,whocanmanagedocumentsandprintjobssenttotheprinter,andwhocanmanagetheprinteritself.Withthistypeofgranularcontrol,administratorshaveagreatdealofcontroloverhowsystemresourcesareusedandwhousesthem.

•Figure11.10SecuritytabshowingprinterpermissionsinWindows

ExamTip:Althoughitisveryimportanttogetsecuritysettings“rightthefirsttime,”itisjustasimportanttoperformroutineauditsofsecuritysettingssuchasuseraccounts,groupmemberships,filepermissions,andsoon.

Averyimportantconcepttoconsiderwhenassigningrightsandprivilegestousersistheconceptofleastprivilege.Leastprivilegerequiresthatusersbegiventheabsoluteminimumnumberofrightsandprivilegesrequiredtoperformtheirauthorizedduties.Forexample,ifauserdoesnotneedtheabilitytoinstallsoftwareontheirowndesktoptoperformtheirjob,thendon’tgivethemthatability.Thisreducesthelikelihoodtheuserwillloadmalware,insecuresoftware,orunauthorizedapplicationsontotheirsystem.

AccessControlListsThetermaccesscontrollist(ACL)isusedinmorethanonemannerinthefieldofcomputersecurity.Whendiscussingroutersandfirewalls,anACLisasetofrulesusedtocontroltrafficflowintooroutofaninterfaceornetwork.Whendiscussingsystemresources,suchasfilesandfolders,anACLlistspermissionsattachedtoanobject—whoisallowedtoview,modify,move,ordeletethatobject.Toillustratethisconcept,consideranexample.Figure11.11showsthe

accesscontrollist(permissions)fortheDatafolder.TheuseridentifiedasBillyWilliamshasRead&Execute,ListFolderContents,andReadpermissions,meaningthisusercanopenthefolder,seewhat’sinthefolder,andsoon.Figure11.12showsthepermissionsforauseridentifiedasLeahJones,whohasonlyReadpermissionsonthesamefolder.

•Figure11.11PermissionsforBillyWilliamsontheDatafolder

•Figure11.12PermissionsforLeahJonesontheDatafolder

Incomputersystemsandnetworks,thereareseveralwaysthataccesscontrolscanbeimplemented.Anaccesscontrolmatrixprovidesthesimplestframeworkforillustratingtheprocess.AnexampleofanaccesscontrolmatrixisprovidedinTable11.1.Inthismatrix,thesystemiskeepingtrackoftwoprocesses,twofiles,andonehardwaredevice.Process1canreadbothFile1andFile2butcanwriteonlytoFile1.Process1cannotaccessProcess2,butProcess2canexecuteProcess1.Bothprocesseshavetheabilitytowritetotheprinter.

Table11.1 AnAccessControlMatrix

Whilesimpletounderstand,theaccesscontrolmatrixisseldomusedincomputersystemsbecauseitisextremelycostlyintermsofstoragespaceandprocessing.Imaginethesizeofanaccesscontrolmatrixforalargenetworkwithhundredsofusersandthousandsoffiles.

MandatoryAccessControl(MAC)Mandatoryaccesscontrol(MAC)istheprocessofcontrollingaccesstoinformationbasedonthesensitivityofthatinformationandwhetherornottheuserisoperatingattheappropriatesensitivitylevelandhastheauthoritytoaccessthatinformation.UnderaMACsystem,eachpieceofinformationandeverysystemresource(files,devices,networks,andsoon)islabeledwithitssensitivitylevel(suchasPublic,Engineering

Private,JonesSecret).Usersareassignedaclearancelevelthatsetstheupperboundaryoftheinformationanddevicesthattheyareallowedtoaccess.

ExamTip:Mandatoryaccesscontrolrestrictsaccessbasedonthesensitivityoftheinformationandwhetherornottheuserhastheauthoritytoaccessthatinformation.

TheaccesscontrolandsensitivitylabelsarerequiredinaMACsystem.Labelsaredefinedandthenassignedtousersandresources.Usersmustthenoperatewithintheirassignedsensitivityandclearancelevels—theydon’thavetheoptiontomodifytheirownsensitivitylevelsorthelevelsoftheinformationresourcestheycreate.Duetothecomplexityinvolved,MACistypicallyrunonlyonsystemswheresecurityisatopprioritysuchasTrustedSolaris,OpenBSD,andSELinux.

TechTip

MACObjectiveMandatoryaccesscontrolsareoftenmentionedindiscussionsofmultilevelsecurity.Formultilevelsecuritytobeimplemented,amechanismmustbepresenttoidentifytheclassificationofallusersandfiles.AfileidentifiedasTopSecret(hasalabelindicatingthatitisTopSecret)maybeviewedonlybyindividualswithaTopSecretclearance.Forthiscontrolmechanismtoworkreliably,allfilesmustbemarkedwithappropriatecontrolsandalluseraccessmustbechecked.ThisistheprimarygoalofMAC.

Figure11.13illustratesMACinoperation.Theinformationresourceonthelefthasbeenlabeled“EngineeringSecret,”meaningonlyusersintheEngineeringgroupoperatingattheSecretsensitivitylevelorabovecanaccessthatresource.ThetopuserisoperatingattheSecretlevelbutisnotamemberofEngineeringandisdeniedaccesstotheresource.ThemiddleuserisamemberofEngineeringbutisoperatingataPublicsensitivity

levelandisthereforedeniedaccesstotheresource.ThebottomuserisamemberofEngineering,isoperatingataSecretsensitivitylevel,andisallowedtoaccesstheinformationresource.

•Figure11.13Logicalrepresentationofmandatoryaccesscontrol

DiscretionaryAccessControl(DAC)Discretionaryaccesscontrol(DAC)istheprocessofusingfilepermissionsandoptionalACLstorestrictaccesstoinformationbasedonauser’sidentityorgroupmembership.DACisthemostcommonaccesscontrolsystemandiscommonlyusedinbothUNIXandWindowsoperatingsystems.The“discretionary”partofDACmeansthatafileor

resourceownerhastheabilitytochangethepermissionsonthatfileorresource.

TechTip

MultilevelSecurityIntheU.S.government,thefollowingsecuritylabelsareusedtoclassifyinformationandinformationresourcesforMACsystems:

TopSecretThehighestsecuritylevelandisdefinedasinformationthatwouldcause“exceptionallygravedamage”tonationalsecurityifdisclosed.

SecretThesecondhighestlevelandisdefinedasinformationthatwouldcause“seriousdamage”tonationalsecurityifdisclosed.

ConfidentialThelowestlevelofclassifiedinformationandisdefinedasinformationthatwould“damage”nationalsecurityifdisclosed.

ForOfficialUseOnlyInformationthatisunclassifiedbutnotreleasabletopublicorunauthorizedparties.SometimescalledSensitiveButUnclassified(SBU)

UnclassifiedNotanofficialclassificationlevel.

Thelabelsworkinatop-downfashionsothatanindividualholdingaSecretclearancewouldhaveaccesstoinformationattheSecret,Confidential,andUnclassifiedlevels.AnindividualwithaSecretclearancewouldnothaveaccesstoTopSecretresources,asthatlabelisabovethehighestleveloftheindividual’sclearance.

UnderUNIXoperatingsystems,filepermissionsconsistofthreedistinctparts:

Ownerpermissions(read,write,andexecute)Theownerofthefile

Grouppermissions(read,write,andexecute)Thegrouptowhichtheownerofthefilebelongs

Worldpermissions(read,write,andexecute)Anyoneelsewhoisnottheowneranddoesnotbelongtothegrouptowhichtheownerofthefilebelongs

ExamTip:Discretionaryaccesscontrolrestrictsaccessbasedontheuser’sidentityorgroupmembership.

Forexample,supposeafilecalledsecretdatahasbeencreatedbytheownerofthefile,Luke,whoispartoftheEngineeringgroup.TheownerpermissionsonthefilewouldreflectLuke’saccesstothefile(astheowner).ThegrouppermissionswouldreflecttheaccessgrantedtoanyonewhoispartoftheEngineeringgroup.TheworldpermissionswouldrepresenttheaccessgrantedtoanyonewhoisnotLukeandisnotpartoftheEngineeringgroup.InUNIX,afile’spermissionsareusuallydisplayedasaseriesofnine

characters,withthefirstthreecharactersrepresentingtheowner’spermissions,thesecondthreecharactersrepresentingthegrouppermissions,andthelastthreecharactersrepresentingthepermissionsforeveryoneelse,orfortheworld.ThisconceptisillustratedinFigure11.14.

•Figure11.14DiscretionaryfilepermissionsintheUNIXenvironment

SupposethefilesecretdataisownedbyLukewithgrouppermissions

forEngineering(becauseLukeispartoftheEngineeringgroup),andthepermissionsonthatfilearerwx,rw-,and---,asshowninFigure11.14.Thiswouldmeanthat:

Lukecanread,write,andexecutethefile(rwx).

MembersoftheEngineeringgroupcanreadandwritethefilebutnotexecuteit(rw-).

Theworldhasnoaccesstothefileandcan’tread,write,orexecuteit(---).

RememberthatundertheDACmodel,thefile’sowner,Luke,canchangethefile’spermissionsanytimehewants.

Role-BasedAccessControl(RBAC)Accesscontrollistscanbecumbersomeandcantaketimetoadministerproperly.Role-basedaccesscontrol(RBAC)istheprocessofmanagingaccessandprivilegesbasedontheuser’sassignedroles.RBACistheaccesscontrolmodelthatmostcloselyresemblesanorganization’sstructure.Inthisscheme,insteadofeachuserbeingassignedspecificaccesspermissionsfortheobjectsassociatedwiththecomputersystemornetwork,thatuserisassignedasetofrolesthattheusermayperform.Therolesareinturnassignedtheaccesspermissionsnecessarytoperformthetasksassociatedwiththerole.Userswillthusbegrantedpermissionstoobjectsintermsofthespecificdutiestheymustperform—notjustbecauseofasecurityclassificationassociatedwithindividualobjects.

Asdefinedbythe“OrangeBook,”aDepartmentofDefensedocument(inthe“rainbowseries”)thatatonetimewasthestandardfordescribingwhatconstitutedatrustedcomputingsystem,adiscretionaryaccesscontrol(DAC)is“ameansofrestrictingaccesstoobjectsbasedontheidentityofsubjectsand/orgroupstowhichtheybelong.Thecontrolsarediscretionaryinthesensethatasubjectwithacertainaccesspermissioniscapableofpassingthatpermission

(perhapsindirectly)ontoanyothersubject(unlessrestrainedbymandatoryaccesscontrol).”

UnderRBAC,youmustfirstdeterminetheactivitiesthatmustbeperformedandtheresourcesthatmustbeaccessedbyspecificroles.Forexample,theroleof“securityadmin”inMicrosoftSQLServermustbeabletocreateandmanagelogins,readerrorlogs,andaudittheapplication.Oncealltherolesarecreatedandtherightsandprivilegesassociatedwiththoserolesaredetermined,userscanthenbeassignedoneormorerolesbasedontheirjobfunctions.Whenaroleisassignedtoaspecificuser,theusergetsalltherightsandprivilegesassignedtothatrole.

ExamTip:Role-basedandrule-basedaccesscontrolcanbothbeabbreviatedasRBAC.StandardconventionisforRBACtobeusedtodenoterole-basedaccesscontrol.Aseldom-seenacronymforrule-basedaccesscontrolisRB-RBAC.Role-basedfocusesontheuser’srole(administrator,backupoperator,andsoon).Rule-basedfocusesonpredefinedcriteriasuchastimeofday(userscanonlyloginbetween8A.M.and6P.M.)ortypeofnetworktraffic(webtrafficisallowedtoleavetheorganization).

Unfortunately,inreality,administratorsoftenfindthemselvesinapositionofworkinginanorganizationwheremorethanoneuserhasmultiplerolesorevenaccesstomultipleaccounts(asituationquitecommoninsmallerorganizations).Userswithmultipleaccountstendtoselectthesameorsimilarpasswordsforthoseaccounts,therebyincreasingthechanceonecompromisedaccountcanleadtothecompromiseofotheraccountsaccessedbythatuser.Wherepossible,administratorsshouldfirsteliminatesharedoradditionalaccountsforusersandthenexaminethepossibilityofcombiningrolesorprivilegestoreducethe“accountfootprint”ofindividualusers.

Rule-BasedAccessControlRule-basedaccesscontrolisyetanothermethodofmanagingaccessand

privileges(andunfortunatelysharesthesameacronymasrole-basedaccesscontrol).Inthismethod,accessiseitherallowedordeniedbasedonasetofpredefinedrules.EachobjecthasanassociatedACL(muchlikeDAC),andwhenaparticularuserorgroupattemptstoaccesstheobject,theappropriateruleisapplied.

ExamTip:TheCompTIASecurity+examwillverylikelyexpectyoutobeabletodifferentiatebetweenthefourmajorformsofaccesscontroldiscussedhere:mandatoryaccesscontrol,discretionaryaccesscontrol,role-basedaccesscontrol,andrule-basedaccesscontrol.

Agoodexampleforrule-basedaccesscontrolispermittedlogonhours.Manyoperatingsystemsgiveadministratorstheabilitytocontrolthehoursduringwhichuserscanlogin.Forexample,abankmayallowitsemployeestologinonlybetweenthehoursof8A.M.and6P.M.MondaythroughSaturday.Ifauserattemptstologinoutsideofthesehours,3A.M.onSundayforexample,thentherulewillrejecttheloginattemptwhetherornottheusersuppliesvalidlogincredentials.

Attribute-BasedAccessControl(ABAC)Attribute-basedaccesscontrol(ABAC)isanewaccesscontrolschemabasedontheuseofattributesassociatedwithanidentity.Thesecanuseanytypeofattributes(userattributes,resourceattributes,environmentattributes,andsoon),suchaslocation,time,activitybeingrequested,andusercredentials.Anexamplewouldbeadoctorgettingonesetofaccessforaspecificpatientversusadifferentpatient.ABACcanberepresentedviatheeXtensibleAccessControlMarkupLanguage(XACML),astandardthatimplementsattribute-andpolicy-basedaccesscontrolschemes.

AccountExpiration

Inadditiontoalltheothermethodsofcontrollingandrestrictingaccess,mostmodernoperatingsystemsallowadministratorstospecifythelengthoftimeanaccountisvalidandwhenit“expires”orisdisabled.Thisisagreatmethodforcontrollingtemporaryaccounts,oraccountsforcontractorsorcontractemployees.Fortheseaccounts,theadministratorcanspecifyanexpirationdate;whenthedateisreached,theaccountautomaticallybecomeslockedoutandcannotbeloggedintowithoutadministratorintervention.Arelatedactioncanbetakenwithaccountsthatneverexpire:theycanautomaticallybemarked“inactive”andlockedoutiftheyhavebeenunusedforaspecifiednumberofdays.Accountexpirationissimilartopasswordexpiration,inthatitlimitsthetimewindowofpotentialcompromise.Whenanaccounthasexpired,itcannotbeusedunlesstheexpirationdeadlineisextended.

TechTip

DisablingAccountsWhenanadministratorneedstoendauser’saccess,forinstanceupontermination,thereareseveraloptions.Thebestoptionistodisabletheaccountbutleaveitinthesystem.ThispreservesaccountpermissionchainsandpreventsreuseofauserID,leadingtopotentialconfusionlaterwhenexamininglogs.

Similarly,organizationsmustdefinewhetheraccountsaredeletedordisabledwhennolongerneeded.Deletinganaccountremovestheaccountfromthesystempermanently,whereasdisablinganaccountleavesitinplacebutmarksitasunusable.Manyorganizationsdisableaccountsforaperiodoftimeafteranemployeedeparts(30ormoredays)priortodeletingtheaccount.Thispreventsanyonefromusingtheaccountandallowsadministratorstoreassignfiles,forwardmail,and“cleanup”beforetakinganypermanentactionsontheaccount.

PreventingDataLossorTheft

Identitytheftandcommercialespionagehavebecomeverylargeandlucrativecriminalenterprisesoverthepastdecade.Hackersarenolongermerelycontenttocompromisesystemsanddefacewebsites.Inmanyattacksperformedtoday,hackersareafterintellectualproperty,businessplans,competitiveintelligence,personalinformation,creditcardnumbers,clientrecords,oranyotherinformationthatcanbesold,traded,ormanipulatedforprofit.Thishascreatedawholeindustryoftechnicalsolutionslabeleddatalossprevention(DLP)solutions.Itcanbeassumedthatahackerhasassumedtheidentityofan

authorizeduser,andDLPsolutionsexisttopreventtheexfiltrationofdataregardlessofaccesscontrolrestrictions.DLPsolutionscomeinmanyforms,andeachofthesesolutionshasstrengthsandweaknesses.Thebestsolutionisacombinationofsecurityelements,sometosecuredatainstorage(encryption)andsomeintheformofmonitoring(proxydevicestomonitordataegressforsensitivedata),andevenNetFlowanalyticstoidentifynewbulkdatatransferroutes.

TheRemoteAccessProcessTheprocessofconnectingbyremoteaccessinvolvestwoelements:atemporarynetworkconnectionandaseriesofprotocolstonegotiateprivilegesandcommands.Thetemporarynetworkconnectioncanoccurviaadial-upservice,theInternet,wirelessaccess,oranyothermethodofconnectingtoanetwork.Oncetheconnectionismade,theprimaryissueisauthenticatingtheidentityoftheuserandestablishingproperprivilegesforthatuser.Thisisaccomplishedusingacombinationofprotocolsandtheoperatingsystemonthehostmachine.Thethreestepsintheestablishmentofproperprivilegesare

authentication,authorization,andaccounting,commonlyreferredtosimplyasAAA.Authenticationisthematchingofuser-suppliedcredentialstopreviouslystoredcredentialsonahostmachine,anditusuallyinvolvesanaccountusernameandpassword.Oncetheuserisauthenticated,theauthorizationsteptakesplace.Authorizationisthe

grantingofspecificpermissionsbasedontheprivilegesheldbytheaccount.Doestheuserhavepermissiontousethenetworkatthistime,orisheruserestricted?Doestheuserhaveaccesstospecificapplications,suchasmailandFTP,oraresomeoftheserestricted?Thesechecksarecarriedoutaspartofauthorization,andinmanycasesthisisafunctionoftheoperatingsysteminconjunctionwithitsestablishedsecuritypolicies.Accountingisthecollectionofbillingandotherdetailrecords.Networkaccessisoftenabillablefunction,andalogofhowmuchtime,bandwidth,filetransferspace,orotherresourceswereusedneedstobemaintained.Otheraccountingfunctionsincludekeepingdetailedsecuritylogstomaintainanaudittrailoftasksbeingperformed.

TechTip

SecuringRemoteConnectionsByusingencryption,remoteaccessprotocolscansecurelyauthenticateandauthorizeauseraccordingtopreviouslyestablishedprivilegelevels.Theauthorizationphasecankeepunauthorizedusersout,butafterthat,encryptionofthecommunicationschannelbecomesveryimportantinpreventingnonauthorizedusersfrombreakinginonanauthorizedsessionandhijackinganauthorizeduser’scredentials.AsmoreandmorenetworksrelyontheInternetforconnectingremoteusers,theneedforandimportanceofsecureremoteaccessprotocolsandsecurecommunicationchannelswillcontinuetogrow.

WhenauserconnectstotheInternetthroughanISP,thisissimilarlyacaseofremoteaccess—theuserisestablishingaconnectiontoherISP’snetwork,andthesamesecurityissuesapply.Theissueofauthentication,thematchingofuser-suppliedcredentialstopreviouslystoredcredentialsonahostmachine,isusuallydoneviaauseraccountnameandpassword.Oncetheuserisauthenticated,theauthorizationsteptakesplace.Remoteauthenticationusuallytakesthecommonformofanendusersubmittinghiscredentialsviaanestablishedprotocoltoaremoteaccessserver(RAS),whichactsuponthosecredentials,eithergrantingordenyingaccess.

Accesscontrolsdefinewhatactionsausercanperformorwhatobjectsauserisallowedtoaccess.Accesscontrolsarebuiltuponthefoundationofelementsdesignedtofacilitatethematchingofausertoaprocess.Theseelementsareidentification,authentication,andauthorization.Thereareamyriadofdetailsandchoicesassociatedwithsettingupremoteaccesstoanetwork,andtoprovideforthemanagementoftheseoptions,itisimportantforanorganizationtohaveaseriesofremoteaccesspoliciesandproceduresspellingoutthedetailsofwhatispermittedandwhatisnotforagivennetwork.

IdentificationIdentificationistheprocessofascribingacomputerIDtoaspecificuser,computer,networkdevice,orcomputerprocess.Theidentificationprocessistypicallyperformedonlyonce,whenauserIDisissuedtoaparticularuser.Useridentificationenablesauthenticationandauthorizationtoformthebasisforaccountability.Foraccountabilitypurposes,userIDsshouldnotbeshared,andforsecuritypurposes,theyshouldnotbedescriptiveofjobfunction.Thispracticeenablesyoutotraceactivitiestoindividualusersorcomputerprocessessothattheycanbeheldresponsiblefortheiractions.IdentificationlinksthelogonIDoruserIDtocredentialsthathavebeensubmittedpreviouslytoeitherHRortheITstaff.ArequiredcharacteristicofuserIDsisthattheymustbeuniquesothattheymapbacktothecredentialspresentedwhentheaccountwasestablished.

TechTip

FederationFederatedidentitymanagementisanagreementbetweenmultipleenterprisesthatletspartiesusethesameidentificationdatatoobtainaccesstothenetworksofallenterprisesinthegroup.Thisfederationenablesaccesstobemanagedacrossmultiplesystemsincommontrustlevels.

AuthenticationAuthenticationistheprocessofbindingaspecificIDtoaspecificcomputerconnection.Twoitemsneedtobepresentedtocausethisbindingtooccur—theuserID,andsome“secret”toprovethattheuseristhevalidpossessorofthecredentials.Historically,threecategoriesofsecretsareusedtoauthenticatetheidentityofauser:whatusersknow,whatusershave,andwhatusersare.Todayanadditionalcategoryisused:whatusersdo.Thesemethodscanbeusedindividuallyorincombination.These

controlsassumethattheidentificationprocesshasbeencompletedandtheidentityoftheuserhasbeenverified.Itisthejobofauthenticationmechanismstoensurethatonlyvalidusersareadmitted.Describedanotherway,authenticationisusingsomemechanismtoprovethatyouarewhoyouclaimedtobewhentheidentificationprocesswascompleted.Themostcommonmethodofauthenticationistheuseofapassword.

Forgreatersecurity,youcanaddanelementfromaseparategroup,suchasasmartcardtoken—somethingauserhasinherpossession.Passwordsarecommonbecausetheyareoneofthesimplestformsanduseusermemoryasaprimecomponent.Becauseoftheirsimplicity,passwordshavebecomeubiquitousacrossawiderangeofauthenticationsystems.Anothermethodtoprovideauthenticationinvolvestheuseofsomething

thatonlyvalidusersshouldhaveintheirpossession.Aphysical-worldexampleofthiswouldbeasimplelockandkey.Onlythoseindividualswiththecorrectkeywillbeabletoopenthelockandthusgainadmittancetoahouse,car,office,orwhateverthelockwasprotecting.Asimilarmethodcanbeusedtoauthenticateusersforacomputersystemornetwork(thoughthekeymaybeelectronicandcouldresideonasmartcardorsimilardevice).Theproblemwiththistechnology,however,isthatpeopledolosetheirkeys(orcards),whichmeansnotonlythattheusercan’tlogintothesystembutthatsomebodyelsewhofindsthekeymaythenbeabletoaccessthesystem,eventhoughtheyarenotauthorized.Toaddressthisproblem,acombinationofthesomething-you-knowandsomething-you-

havemethodsisoftenusedsothattheindividualwiththekeyisalsorequiredtoprovideapasswordorpasscode.Thekeyisuselessunlesstheuserknowsthiscode.

TechTip

CategoriesofSharedSecretsforAuthenticationOriginallypublishedbytheU.S.governmentinoneofthe“rainbowseries”ofmanualsoncomputersecurity,thecategoriesofshared“secrets”are

Whatusersknow(suchasapassword)Whatusershave(suchastokens)

Whatusersare(staticbiometricssuchasfingerprintsoririspattern)Today,becauseoftechnologicaladvances,anewcategoryhasemerged,patternedaftersubconsciousbehavior:

Whatusersdo(dynamicbiometricssuchastypingpatternsorgait)

Thethirdgeneralmethodtoprovideauthenticationinvolvessomethingthatisuniqueaboutyou.Weareaccustomedtothisconceptinourphysicalworld,whereourfingerprintsorasampleofourDNAcanbeusedtoidentifyus.Thissameconceptcanbeusedtoprovideauthenticationinthecomputerworld.Thefieldofauthenticationthatusessomethingaboutyouorsomethingthatyouareisknownasbiometrics.Anumberofdifferentmechanismscanbeusedtoaccomplishthistypeofauthentication,suchasafingerprint,iris,retinal,orhandgeometryscan.Allofthesemethodsobviouslyrequiresomeadditionalhardwareinordertooperate.Theinclusionoffingerprintreadersonlaptopcomputersisbecomingcommonastheadditionalhardwareisbecomingcosteffective.Anewmethod,basedonhowusersperformanaction,suchastheirgait

whenwalking,ortypingpatternshasemergedasasourceofapersonal“signature”.Whilenotdirectlyembeddedintosystemsasyet,thisisanoptionthatwillbecominginthefuture.

Whilethethreemainapproachestoauthenticationappeartobeeasytounderstandandinmostcaseseasytoimplement,authenticationisnottobetakenlightly,sinceitissuchanimportantcomponentofsecurity.Potentialattackersareconstantlysearchingforwaystogetpastthesystem’sauthenticationmechanism,andtheyhaveemployedsomefairlyingeniousmethodstodoso.Consequently,securityprofessionalsareconstantlydevisingnewmethods,buildingonthesethreebasicapproaches,toprovideauthenticationmechanismsforcomputersystemsandnetworks.

BasicAuthenticationBasicauthenticationisthesimplesttechniqueusedtomanageaccesscontrolacrossHTTP.BasicauthenticationoperatesbypassinginformationencodedinBase64formusingstandardHTTPheaders.Thisisaplaintextmethodwithoutanypretenseofsecurity.Figure11.15illustratestheoperationofbasicauthentication.

•Figure11.15Howbasicauthenticationoperates

DigestAuthenticationDigestauthenticationisamethodusedtonegotiatecredentialsacrosstheWeb.Digestauthenticationuseshashfunctionsandanoncetoimprovesecurityoverbasicauthentication.Digestauthenticationworksasfollows,asillustratedinFigure11.16:

•Figure11.16Howdigestauthenticationoperates

1.Theclientrequestslogin.2.Theserverrespondswithachallengeandprovidesanonce.3.Theclienthashesthepasswordandnonce.4.Theclientreturnsthehashedpasswordtotheserver.

5.Theserverrequeststhepasswordfromapasswordstore.6.Theserverhashesthepasswordandnonce.7.Ifbothhashesmatch,loginisgranted.Digestauthentication,althoughitimprovessecurityoverbasic

authentication,doesnotprovideanysignificantlevelofsecurity.Passwordsarenotsentintheclear.Digestauthenticationissubjecttoman-in-the-middleattacksandpotentiallyreplayattacks.

ExamTip:Thebottomlineforbothbasicanddigestauthenticationisthattheseareinsecuremethodsandshouldnotberelieduponforanylevelofsecurity.

KerberosDevelopedaspartofMIT’sprojectAthena,Kerberosisanetworkauthenticationprotocoldesignedforaclient/serverenvironment.ThecurrentversionisKerberos5release1.13.2andissupportedbyallmajoroperatingsystems.KerberossecurelypassesasymmetrickeyoveraninsecurenetworkusingtheNeedham-Schroedersymmetrickeyprotocol.Kerberosisbuiltaroundtheideaofatrustedthirdparty,termedakeydistributioncenter(KDC),whichconsistsoftwologicallyseparateparts:anauthenticationserver(AS)andaticket-grantingserver(TGS).Kerberoscommunicatesvia“tickets”thatservetoprovetheidentityofusers.

ExamTip:TwoticketsareusedinKerberos.Thefirstisaticket-grantingticket(TGT)obtainedfromtheauthenticationserver(AS).TheTGTispresentedtoaticket-grantingserver(TGS)whenaccesstoaserverisrequestedandaclient-to-serverticketisissued,grantingaccesstotheserver.TypicallyboththeASandtheTGSarelogicallyseparatepartsofthekeydistributioncenter

(KDC).

Takingitsnamefromthethree-headeddogofGreekmythology,KerberosisdesignedtoworkacrosstheInternet,aninherentlyinsecureenvironment.Kerberosusesstrongencryptionsothataclientcanproveitsidentitytoaserverandtheservercaninturnauthenticateitselftotheclient.AcompleteKerberosenvironmentisreferredtoasaKerberosrealm.TheKerberosservercontainsuserIDsandhashedpasswordsforallusersthatwillhaveauthorizationstorealmservices.TheKerberosserveralsohassharedsecretkeyswitheveryservertowhichitwillgrantaccesstickets.ThebasisforauthenticationinaKerberosenvironmentistheticket.

Ticketsareusedinatwo-stepprocesswiththeclient.Thefirstticketisaticket-grantingticket(TGT)issuedbytheAStoarequestingclient.TheclientcanthenpresentthistickettotheKerberosserverwitharequestforatickettoaccessaspecificserver.Thisclient-to-serverticket(alsocalledaserviceticket)isusedtogainaccesstoaserver’sserviceintherealm.Sincetheentiresessioncanbeencrypted,thiseliminatestheinherentlyinsecuretransmissionofitemssuchasapasswordthatcanbeinterceptedonthenetwork.Ticketsaretime-stampedandhavealifetime,soattemptingtoreuseaticketwillnotbesuccessful.Figure11.17detailsKerberosoperations.

•Figure11.17Kerberosoperations

TechTip

KerberosAuthenticationKerberosisathird-partyauthenticationservicethatusesaseriesofticketsastokensforauthenticatingusers.Thesixstepsinvolvedareprotectedusingstrongcryptography:

Theuserpresentshiscredentialsandrequestsaticketfromthekeydistributioncenter(KDC).

TheKDCverifiescredentialsandissuesaticket-grantingticket(TGT).

TheuserpresentsaTGTandrequestforservicetotheKDC.TheKDCverifiesauthorizationandissuesaclient-to-serverticket(orserviceticket).

Theuserpresentsarequestandaclient-to-servertickettothedesiredservice.Iftheclient-to-serverticketisvalid,serviceisgrantedtotheclient.

ToillustratehowtheKerberosauthenticationserviceworks,thinkaboutthecommondriver’slicense.Youhavereceivedalicensethatyoucanpresenttootherentitiestoproveyouarewhoyouclaimtobe.Becauseotherentitiestrustthestateinwhichthelicensewasissued,theywillacceptyourlicenseasproofofyouridentity.ThestateinwhichthelicensewasissuedisanalogoustotheKerberosauthenticationservicerealm,andthelicenseactsasaclient-to-serverticket.Itisthetrustedentitybothsidesrelyontoprovidevalididentifications.Thisanalogyisnotperfect,becauseweallprobablyhaveheardofindividualswhoobtainedaphonydriver’slicense,butitservestoillustratethebasicideabehindKerberos.

CertificatesCertificatesareamethodofestablishingauthenticityofspecificobjectssuchasanindividual’spublickeyordownloadedsoftware.Adigitalcertificateisadigitalfilethatissentasanattachmenttoamessageandis

usedtoverifythatthemessagedidindeedcomefromtheentityitclaimstohavecomefrom.DigitalcertificatesarecoveredindetailinChapter6.

CrossCheckDigitalCertificatesandDigitalSignaturesKerberosusesticketstoconveymessages.Partoftheticketisacertificatethatcontainstherequisitekeys.UnderstandinghowcertificatesconveythisvitalinformationisanimportantpartofunderstandinghowKerberos-basedauthenticationworks.CertificatesandhowtheyareusedwascoveredinChapter6,withtheprotocolsassociatedwithPKIcoveredinChapter7.Referbacktothesechaptersasneeded.

TokensAtokenisahardwaredevicethatcanbeusedinachallenge/responseauthenticationprocess.Inthisway,itfunctionsasbothasomething-you-haveandsomething-you-knowauthenticationmechanism.Severalvariationsonthistypeofdeviceexist,buttheyallworkonthesamebasicprinciples.Tokensweredescribedearlierinthechapter,andarecommonlyemployedinremoteauthenticationschemesastheyprovideadditionalsuretyoftheidentityoftheuser,evenuserswhoaresomewhereelseandcannotbeobserved.

ExamTip:Theuseofatokenisacommonmethodofusing“somethingyouhave”forauthentication.Atokencanholdacryptographickeyoractasaone-timepassword(OTP)generator.Itcanalsobeasmartcardthatholdsacryptographickey(examplesincludetheU.S.militaryCommonAccessCardandtheFederalPersonalIdentityVerification[PIV]card).ThesedevicescanbesafeguardedusingaPINandlockoutmechanismtopreventuseifstolen.

MultifactorMultifactorauthenticationisatermthatdescribestheuseofmorethanoneauthenticationmechanismatthesametime.Anexampleofthisisthe

hardwaretoken,whichrequiresbothapersonalIDnumber(PIN)orpasswordandthedeviceitselftodeterminethecorrectresponseinordertoauthenticatetothesystem.Thismeansthatboththesomething-you-haveandsomething-you-knowmechanismsareusedasfactorsinverifyingauthenticityoftheuser.BiometricsarealsooftenusedinconjunctionwithaPINsothatthey,too,canbeusedaspartofamultifactorauthenticationscheme,inthiscasesomethingyouareaswellassomethingyouknow.Thepurposeofmultifactorauthenticationistoincreasethelevelofsecurity,sincemorethanonemechanismwouldhavetobespoofedinorderforanunauthorizedindividualtogainaccesstoacomputersystemornetwork.ThemostcommonexampleofmultifactorsecurityisthecommonATMcardmostofuscarryinourwallets.ThecardisassociatedwithaPINthatonlytheauthorizedcardholdershouldknow.KnowingthePINwithouthavingthecardisuseless,justashavingthecardwithoutknowingthePINwillalsonotprovideyouaccesstoyouraccount.

ExamTip:Therequireduseofmorethanoneauthenticationsystemisknownasmultifactorauthentication.Themostcommonexampleisthecombinationofapasswordwithahardwaretoken.Forhighsecurity,threefactorscanbeused:password,token,andbiometric.

Multifactorauthenticationissometimesreferredtoastwo-factorauthenticationorthree-factorauthentication,referringtothenumberofdifferentfactorsused.Itisimportanttonotethatthisimpliesseparatefactorsfortheauthenticationelement;auserIDandpasswordarenottwofactors,astheuserIDisnotasharedsecretelement.

MutualAuthenticationMutualauthenticationdescribesaprocessinwhicheachsideofanelectroniccommunicationverifiestheauthenticityoftheother.WeareaccustomedtotheideaofhavingtoauthenticateourselvestoourISPbeforeweaccesstheInternet,generallythroughtheuseofauser

ID/passwordpair,buthowdoweactuallyknowthatwearereallycommunicatingwithourISPandnotsomeothersystemthathassomehowinserteditselfintoourcommunication(aman-in-the-middleattack)?Mutualauthenticationprovidesamechanismforeachsideofaclient/serverrelationshiptoverifytheauthenticityoftheothertoaddressthisissue.Acommonmethodofperformingmutualauthenticationinvolvesusingasecureconnection,suchasTransportLayerSecurity(TLS),totheserverandaone-timepasswordgeneratorthatthenauthenticatestheclient.

MutualTLS–basedauthenticationprovidesthesamefunctionsasnormalTLS,withtheadditionofauthenticationandnonrepudiationoftheclient.Thissecondauthentication,theauthenticationoftheclient,isdoneinthesamemannerasthenormalserverauthenticationusingdigitalsignatures.Theclientauthenticationrepresentsthemanysidesofamany-to-onerelationship.MutualTLSauthenticationisnotcommonlyusedbecauseofthecomplexity,cost,andlogisticsassociatedwithmanagingthemultitudeofclientcertificates.Thisreducestheeffectiveness,andmostwebapplicationsarenotdesignedtorequireclient-sidecertificates.

AuthorizationAuthorizationistheprocessofpermittingordenyingaccesstoaspecificresource.Onceidentityisconfirmedviaauthentication,specificactionscanbeauthorizedordenied.Manytypesofauthorizationschemesareused,butthepurposeisthesame:determinewhetheragivenuserwhohasbeenidentifiedhaspermissionsforaparticularobjectorresourcebeingrequested.Thisfunctionalityisfrequentlypartoftheoperatingsystemandistransparenttousers.Theseparationoftasks,fromidentificationtoauthenticationto

authorization,hasseveraladvantages.Manymethodscanbeusedtoperformeachtask,andonmanysystemsseveralmethodsareconcurrentlypresentforeachtask.Separationofthesetasksintoindividualelementsallowscombinationsofimplementationstoworktogether.Anysystemor

resource,beithardware(routerorworkstation)orasoftwarecomponent(databasesystem),thatrequiresauthorizationcanuseitsownauthorizationmethodonceauthenticationhasoccurred.Thismakesforefficientandconsistentapplicationoftheseprinciples.

AccessControlThetermaccesscontrolhasbeenusedtodescribeavarietyofprotectionschemes.Itsometimesreferstoallsecurityfeaturesusedtopreventunauthorizedaccesstoacomputersystemornetwork—orevenanetworkresourcesuchasaprinter.Inthissense,itmaybeconfusedwithauthentication.Moreproperly,accessistheabilityofasubject(suchasanindividualoraprocessrunningonacomputersystem)tointeractwithanobject(suchasafileorhardwaredevice).Oncetheindividualhasverifiedtheiridentity,accesscontrolsregulatewhattheindividualcanactuallydoonthesystem.Justbecauseapersonisgrantedentrytothesystem,thatdoesnotmeanthattheyshouldhaveaccesstoalldatathesystemcontains.

TechTip

AccessControlvs.AuthenticationItmayseemthataccesscontrolandauthenticationaretwowaystodescribethesameprotectionmechanism.This,however,isnotthecase.Authenticationprovidesawaytoverifytothecomputerwhotheuseris.Oncetheuserhasbeenauthenticated,theaccesscontrolsdecidewhatoperationstheusercanperform.Thetwogohand-in-handbutarenotthesamething.

RemoteAccessMethodsWhenauserrequiresaccesstoaremotesystem,theprocessofremoteaccessisusedtodeterminetheappropriatecontrols.Thisisdonethroughaseriesofprotocolsandprocessesdescribedintheremainderofthis

chapter.

IEEE802.1XIEEE802.1Xisanauthenticationstandardthatsupportsport-basedauthenticationservicesbetweenauserandanauthorizationdevice,suchasanedgerouter.IEEE802.1Xisusedbyalltypesofnetworks,includingEthernet,TokenRing,andwireless.Thisstandarddescribesmethodsusedtoauthenticateauserpriortograntingaccesstoanetworkandtheauthenticationserver,suchasaRADIUSserver.802.1Xactsthroughanintermediatedevice,suchasanedgeswitch,enablingportstocarrynormaltrafficiftheconnectionisproperlyauthenticated.Thispreventsunauthorizedclientsfromaccessingthepubliclyavailableportsonaswitch,keepingunauthorizedusersoutofaLAN.Untilaclienthassuccessfullyauthenticateditselftothedevice,onlyExtensibleAuthenticationProtocoloverLAN(EAPOL)trafficispassedbytheswitch.

Onesecurityissueassociatedwith802.1Xisthattheauthenticationoccursonlyuponinitialconnection,andthatanotherusercaninsertthemselvesintotheconnectionbychangingpacketsorusingahub.Thesecuresolutionistopair802.1X,whichauthenticatestheinitialconnection,withaVPNorIPsec,whichprovidespersistentsecurity.

EAPOLisanencapsulatedmethodofpassingEAPmessagesover802.1frames.EAPisageneralprotocolthatcansupportmultiplemethodsofauthentication,includingone-timepasswords,Kerberos,publickeys,andsecuritydevicemethodssuchassmartcards.Onceaclientsuccessfullyauthenticatesitselftothe802.1Xdevice,theswitchopensportsfornormaltraffic.Atthispoint,theclientcancommunicatewiththesystem’sAAAmethod,suchasaRADIUSserver,andauthenticateitselftothenetwork.

WirelessProtocols802.1Xiscommonlyusedonwirelessaccesspointsasaport-basedauthenticationservicepriortoadmissiontothewirelessnetwork.802.1Xoverwirelessuseseither802.11iorEAP-basedprotocols,suchasEAP-TLSorPEAP-TLS.

CrossCheckWirelessRemoteAccessWirelessisacommonmethodofallowingremoteaccesstoanetwork,asitdoesnotrequirephysicalcablingandallowsmobileconnections.Wirelesssecurity,includingprotocolssuchas802.11iandEAP-basedsolutions,iscoveredinChapter12.

RADIUSRemoteAuthenticationDial-InUserService(RADIUS)isanAAAprotocol.ItwassubmittedtotheInternetEngineeringTaskForce(IETF)asaseriesofRFCs:RFC2058(RADIUSspecification),RFC2059(RADIUSaccountingstandard),andupdatedRFCs2865–2869,whicharenowstandardprotocols.RADIUSisdesignedasaconnectionlessprotocolthatusestheUser

DatagramProtocol(UDP)asitstransportlayerprotocol.Connectiontypeissues,suchastimeouts,arehandledbytheRADIUSapplicationinsteadofthetransportlayer.RADIUSutilizesUDPport1812forauthenticationandauthorizationandUDP1813foraccountingfunctions.RADIUSisaclient/serverprotocol.TheRADIUSclientistypicallya

networkaccessserver(NAS).Networkaccessserversactasintermediaries,authenticatingclientsbeforeallowingthemaccesstoanetwork.RADIUS,RRAS(Microsoft),RAS,andVPNserverscanallactasnetworkaccessservers.TheRADIUSserverisaprocessordaemonrunningonaUNIXorWindowsServermachine.CommunicationsbetweenaRADIUSclientandRADIUSserverareencryptedusinga

sharedsecretthatismanuallyconfiguredintoeachentityandnotsharedoveraconnection.Hence,communicationsbetweenaRADIUSclient(typicallyaNAS)andaRADIUSserveraresecure,butthecommunicationsbetweenauser(typicallyaPC)andtheRADIUSclientaresubjecttocompromise.Thisisimportanttonote,foriftheuser’smachine(thePC)isnottheRADIUSclient(theNAS),thencommunicationsbetweenthePCandtheNASaretypicallynotencryptedandarepassedintheclear.

RADIUSAuthenticationTheRADIUSprotocolisdesignedtoallowaRADIUSservertosupportawidevarietyofmethodstoauthenticateauser.Whentheserverisgivenausernameandpassword,itcansupportPoint-to-PointProtocol(PPP),PasswordAuthenticationProtocol(PAP),Challenge-HandshakeAuthenticationProtocol(CHAP),UNIXlogin,andothermechanisms,dependingonwhatwasestablishedwhentheserverwassetup.Auserloginauthenticationconsistsofaquery(Access-Request)fromtheRADIUSclientandacorrespondingresponse(Access-Accept,Access-Challenge,orAccess-Reject)fromtheRADIUSserver,asyoucanseeinFigure11.18.TheAccess-Challengeresponseistheinitiationofachallenge/responsehandshake.Iftheclientcannotsupportchallenge/response,thenittreatstheChallengemessageasanAccess-Reject.

•Figure11.18RADIUScommunicationsequence

TheAccess-Requestmessagecontainstheusername,encryptedpassword,NASIPaddress,andport.Themessagealsocontainsinformationconcerningthetypeofsessiontheuserwantstoinitiate.OncetheRADIUSserverreceivesthisinformation,itsearchesitsdatabaseforamatchontheusername.Ifamatchisnotfound,eitheradefaultprofileisloadedoranAccess-Rejectreplyissenttotheuser.Iftheentryisfoundorthedefaultprofileisused,thenextphaseinvolvesauthorization,forinRADIUS,thesestepsareperformedinsequence.Figure11.18showstheinteractionbetweenauserandtheRADIUSclientandRADIUSserverandthestepstakentomakeaconnection.

RADIUSAuthorizationIntheRADIUSprotocol,theauthenticationandauthorizationstepsareperformedtogetherinresponsetoasingleAccess-Requestmessage,althoughtheyaresequentialsteps(seeFigure11.18).Onceanidentityhasbeenestablished,eitherknownordefault,theauthorizationprocessdetermineswhatparametersarereturnedtotheclient.Typicalauthorizationparametersincludetheservicetypeallowed(shellorframed),theprotocolsallowed,theIPaddresstoassigntotheuser(staticordynamic),andtheaccesslisttoapplyorstaticroutetoplaceintheNASroutingtable.

TechTip

ShellAccountsShellaccountrequestsarethosethatdesirecommand-lineaccesstoaserver.Onceauthenticationissuccessfullyperformed,theclientisconnecteddirectlytotheserversocommand-lineaccesscanoccur.RatherthanbeinggivenadirectIPaddressonthenetwork,theNASactsasapass-throughdeviceconveyingaccess.

TheseparametersarealldefinedintheconfigurationinformationontheRADIUSclientandserverduringsetup.Usingthisinformation,theRADIUSserverreturnsanAccess-AcceptmessagewiththeseparameterstotheRADIUSclient.

RADIUSAccountingTheRADIUSaccountingfunctionisperformedindependentlyofRADIUSauthenticationandauthorization.TheaccountingfunctionusesaseparateUDPport,1813(seeTable11.2inthe“ConnectionSummary”sectionattheendofthechapter).TheprimaryfunctionalityofRADIUSaccountingwasestablishedtosupportISPsintheiruseraccounting,anditsupportstypicalaccountingfunctionsfortimebillingandsecuritylogging.TheRADIUSaccountingfunctionsaredesignedtoallowdatatobetransmittedatthebeginningandendofasession,andtheycanindicateresourceutilization,suchastime,bandwidth,andsoon.

Table11.2 CommonTCP/UDPRemoteAccessNetworkingPortAssignments

DiameterDiameteristhenameofanAAAprotocolsuite,designatedbytheIETFtoreplacetheagingRADIUSprotocol.DiameteroperatesinmuchthesamewayasRADIUSinaclient/serverconfiguration,butitimprovesuponRADIUS,resolvingdiscoveredweaknesses.DiameterisaTCP-based

serviceandhasmoreextensiveAAAcapabilities.Diameterisalsodesignedforalltypesofremoteaccess,notjustmodempools.Asmoreandmoreusersadoptbroadbandandotherconnectionmethods,thesenewerservicesrequiremoreoptionstodeterminepermissibleusageproperlyandtoaccountforandlogtheusage.Diameterisdesignedwiththeseneedsinmind.Diameteralsohasanimprovedmethodofencryptingmessage

exchangestoprohibitreplayandman-in-the-middleattacks.Takenalltogether,Diameter,withitsenhancedfunctionalityandsecurity,isanimprovementontheprovendesignoftheoldRADIUSstandard.

TACACS+TheTerminalAccessControllerAccessControlSystem+(TACACS+)protocolisthecurrentgenerationoftheTACACSfamily.OriginallyTACACSwasdevelopedbyBBNPlanetCorporationforMILNET,anearlymilitarynetwork,butithasbeenenhancedbyCisco,whichhasexpandeditsfunctionalitytwice.TheoriginalBBNTACACSsystemprovidedacombinationprocessofauthenticationandauthorization.CiscoextendedthistoExtendedTerminalAccessControllerAccessControlSystem(XTACACS),whichprovidedforseparateauthentication,authorization,andaccountingprocesses.Thecurrentgeneration,TACACS+,hasextendedattributecontrolandaccountingprocesses.Oneofthefundamentaldesignaspectsistheseparationof

authentication,authorization,andaccountinginthisprotocol.AlthoughthereisastraightforwardlineageoftheseprotocolsfromtheoriginalTACACS,TACACS+isamajorrevisionandisnotbackward-compatiblewithpreviousversionsoftheprotocolseries.TACACS+usesTCPasitstransportprotocol,typicallyoperatingover

TCPport49.ThisportisusedfortheloginprocessandisreservedinRFC3232,“AssignedNumbers,”manifestedinadatabasefromtheInternetAssignedNumbersAuthority(IANA).IntheIANAspecification,bothUDPport49andTCPport49arereservedfortheTACACS+loginhost

protocol(seeTable11.2inthe“ConnectionSummary”sectionattheendofthechapter).TACACS+isaclient/serverprotocol,withtheclienttypicallybeinga

NASandtheserverbeingadaemonprocessonaUNIX,Linux,orWindowsserver.Thisisimportanttonote,foriftheuser’smachine(usuallyaPC)isnottheclient(usuallyaNAS),thencommunicationsbetweenPCandNASaretypicallynotencryptedandarepassedintheclear.CommunicationsbetweenaTACACS+clientandTACACS+serverareencryptedusingasharedsecretthatismanuallyconfiguredintoeachentityandisnotsharedoveraconnection.Hence,communicationsbetweenaTACACS+client(typicallyaNAS)andaTACACS+serveraresecure,butthecommunicationsbetweenauser(typicallyaPC)andtheTACACS+clientaresubjecttocompromise.

TACACS+AuthenticationTACACS+allowsforarbitrarylengthandcontentintheauthenticationexchangesequence,enablingmanydifferentauthenticationmechanismstobeusedwithTACACS+clients.Authenticationisoptionalandisdeterminedasasite-configurableoption.Whenauthenticationisused,commonformsincludePPPPAP,PPPCHAP,PPPEAP,tokencards,andKerberos.Theauthenticationprocessisperformedusingthreedifferentpackettypes:START,CONTINUE,andREPLY.STARTandCONTINUEpacketsoriginatefromtheclientandaredirectedtotheTACACS+server.TheREPLYpacketisusedtocommunicatefromtheTACACS+servertotheclient.TheauthenticationprocessisillustratedinFigure11.19,anditbegins

withaSTARTmessagefromtheclienttotheserver.ThismessagemaybeinresponsetoaninitiationfromaPCconnectedtotheTACACS+client.TheSTARTmessagedescribesthetypeofauthenticationbeingrequested(simpleplaintextpassword,PAP,CHAP,andsoon).ThisSTARTmessagemayalsocontainadditionalauthenticationdata,suchasausernameandpassword.ASTARTmessageisalsosentasaresponsetoarestartrequestfromtheserverinaREPLYmessage.ASTARTmessage

alwayshasitssequencenumbersetto1.

•Figure11.19TACACS+communicationsequence

WhenaTACACS+serverreceivesaSTARTmessage,itsendsaREPLYmessage.ThisREPLYmessageindicateswhethertheauthenticationiscompleteorneedstobecontinued.Iftheprocessneedstobecontinued,theREPLYmessagealsospecifieswhatadditionalinformationisneeded.TheresponsefromaclienttoaREPLYmessagerequestingadditionaldataisaCONTINUEmessage.Thisprocesscontinuesuntiltheserverhasalltheinformationneeded,andtheauthenticationprocessconcludeswithasuccessorfailure.

TACACS+AuthorizationAuthorizationisdefinedasthegrantingofspecificpermissionsbasedontheprivilegesheldbytheaccount.Thisgenerallyoccursafterauthentication,asshowninFigure11.19,butthisisnotafirmrequirement.Adefaultstateof“unknownuser”existsbeforeauserisauthenticated,andpermissionscanbedeterminedforanunknownuser.Aswithauthentication,authorizationisanoptionalprocessandmayormaynotbepartofasite-specificoperation.Whenitisusedinconjunctionwithauthentication,theauthorizationprocessfollowstheauthenticationprocessandusestheconfirmeduseridentityasinputinthedecisionprocess.Theauthorizationprocessisperformedusingtwomessagetypes:

REQUESTandRESPONSE.TheauthorizationprocessisperformedusinganauthorizationsessionconsistingofasinglepairofREQUESTandRESPONSEmessages.TheclientissuesanauthorizationREQUESTmessagecontainingafixedsetoffieldsenumeratingtheauthenticityoftheuserorprocessrequestingpermissionandavariablesetoffieldsenumeratingtheservicesoroptionsforwhichauthorizationisbeingrequested.TheRESPONSEmessageinTACACS+isnotasimpleyesorno;itcan

alsoincludequalifyinginformation,suchasausertimelimitorIPrestrictions.Theselimitationshaveimportantuses,suchasenforcingtime

limitsonshellaccessorenforcingIPaccesslistrestrictionsforspecificuseraccounts.

TACACS+AccountingAswiththetwopreviousservices,accountingisalsoanoptionalfunctionofTACACS+.Whenutilized,ittypicallyfollowstheotherservices.AccountinginTACACS+isdefinedastheprocessofrecordingwhatauserorprocesshasdone.Accountingcanservetwoimportantpurposes:

Itcanbeusedtoaccountforservicesbeingutilized,possiblyforbillingpurposes.

Itcanbeusedforgeneratingsecurityaudittrails.

TACACS+accountingrecordscontainseveralpiecesofinformationtosupportthesetasks.Theaccountingprocesshastheinformationrevealedintheauthorizationandauthenticationprocesses,soitcanrecordspecificrequestsbyuserorprocess.Tosupportthisfunctionality,TACACS+hasthreetypesofaccountingrecords:START,STOP,andUPDATE.Notethatthesearerecordtypes,notmessagetypesasearlierdiscussed.

AuthenticationProtocolsNumerousauthenticationprotocolshavebeendeveloped,used,anddiscardedinthebriefhistoryofcomputing.Somehavecomeandgonebecausetheydidnotenjoymarketshare,othershavehadsecurityissues,andyetothershavebeenrevisedandimprovedinnewerversions.Althoughit’simpossibleandimpracticaltocoverthemall,someofthecommononesfollow.

L2TPandPPTPLayer2TunnelingProtocol(L2TP)andPoint-to-PointTunnelingProtocol(PPTP)arebothOSILayer2tunnelingprotocols.Tunnelingistheencapsulationofonepacketwithinanother,whichallowsyoutohidethe

originalpacketfromvieworchangethenatureofthenetworktransport.Thiscanbedoneforbothsecurityandpracticalreasons.Fromapracticalperspective,assumethatyouareusingTCP/IPto

communicatebetweentwomachines.Yourmessagemaypassovervariousnetworks,suchasanAsynchronousTransferMode(ATM)network,asitmovesfromsourcetodestination.AstheATMprotocolcanneitherreadnorunderstandTCP/IPpackets,somethingmustbedonetomakethempassableacrossthenetwork.Byencapsulatingapacketasthepayloadinaseparateprotocol,soitcanbecarriedacrossasectionofanetwork,amechanismcalledatunneliscreated.Ateachendofthetunnel,calledthetunnelendpoints,thepayloadpacketisreadandunderstood.Asitgoesintothetunnel,youcanenvisionyourpacketbeingplacedinanenvelopewiththeaddressoftheappropriatetunnelendpointontheenvelope.Whentheenvelopearrivesatthetunnelendpoint,theoriginalmessage(thetunnelpacket’spayload)isre-created,read,andsenttoitsappropriatenextstop.Theinformationbeingtunneledisunderstoodonlyatthetunnelendpoints;itisnotrelevanttointermediatetunnelpointsbecauseitisonlyapayload.

PPPPoint-to-PointProtocol(PPP)isanolder,stillwidelyusedprotocolforestablishingdial-inconnectionsoverseriallinesorIntegratedServicesDigitalNetwork(ISDN)services.PPPhasseveralauthenticationmechanisms,includingPAP,CHAP,andtheExtensibleAuthenticationProtocol(EAP).Theseprotocolsareusedtoauthenticatethepeerdevice,notauserofthesystem.PPPisastandardizedInternetencapsulationofIPtrafficoverpoint-to-pointlinks,suchasseriallines.Theauthenticationprocessisperformedonlywhenthelinkisestablished.

TechTip

PPPFunctionsandAuthentication

PPPsupportsthreefunctions:

Encapsulatedatagramsacrossseriallinks

Establish,configure,andtestlinksusingLCPEstablishandconfiguredifferentnetworkprotocolsusingNCP

PPPsupportstwoauthenticationprotocols:

PasswordAuthenticationProtocol(PAP)

Challenge-HandshakeAuthenticationProtocol(CHAP)

PPTPMicrosoftledaconsortiumofnetworkingcompaniestoextendPPPtoenablethecreationofvirtualprivatenetworks(VPNs).TheresultwasthePoint-to-PointTunneling(PPTP),anetworkprotocolthatenablesthesecuretransferofdatafromaremotePCtoaserverbycreatingaVPNacrossaTCP/IPnetwork.Thisremotenetworkconnectioncanalsospanapublicswitchedtelephonenetwork(PSTN)andisthusaneconomicalwayofconnectingremotedial-inuserstoacorporatedatanetwork.TheincorporationofPPTPintotheMicrosoftWindowsproductlineprovidesabuilt-insecuremethodofremoteconnectionusingtheoperatingsystem,andthishasgivenPPTPalargemarketplacefootprint.FormostPPTPimplementations,threecomputersareinvolved:the

PPTPclient,theNAS,andaPPTPserver,asshowninFigure11.20.Theconnectionbetweentheremoteclientandthenetworkisestablishedinstages,asillustratedinFigure11.21.FirsttheclientmakesaPPPconnectiontoaNAS,typicallyanISP.(Intoday’sworldofwidelyavailablebroadband,ifthereisalreadyanInternetconnection,thenthereisnoneedtoperformthePPPconnectiontotheISP.)OncethePPPconnectionisestablished,asecondconnectionismadeoverthePPPconnectiontothePPTPserver.ThissecondconnectioncreatestheVPNconnectionbetweentheremoteclientandthePPTPserver.AtypicalVPNconnectionisoneinwhichtheuserisinahotelwithawirelessInternetconnection,connectingtoacorporatenetwork.Thisconnectionactsasa

tunnelforfuturedatatransfers.Althoughthesediagramsillustrateatelephoneconnection,thisfirstlinkcanbevirtuallyanymethod.CommoninhotelstodayarewiredconnectionstotheInternet.ThesewiredconnectionstypicallyareprovidedbyalocalISPandofferthesameservicesasaphoneconnection,albeitatamuchhigherdatatransferrate.

•Figure11.20PPTPcommunicationdiagram

•Figure11.21PPTPmessageencapsulationduringtransmission

PPTPestablishesatunnelfromtheremotePPTPclienttothePPTPserverandenablesencryptionwithinthistunnel.Thisprovidesasecuremethodoftransport.Todothisandstillenablerouting,anintermediateaddressingscheme,GenericRoutingEncapsulation(GRE),isused.Toestablishtheconnection,PPTPusescommunicationsacrossTCP

port1723(seeTable11.2inthe“ConnectionSummary”sectionattheendofthechapter),sothisportmustremainopenacrossthenetworkfirewallsforPPTPtobeinitiated.AlthoughPPTPallowstheuseofanyPPP

authenticationscheme,CHAPisusedwhenencryptionisspecified,toprovideanappropriatelevelofsecurity.Fortheencryptionmethodology,MicrosoftchosetheRSARC4cipher,witheithera40-or128-bitsessionkeylength,andthisisOSdriven.MicrosoftPoint-to-PointEncryption(MPPE)isanextensiontoPPPthatenablesVPNstousePPTPasthetunnelingprotocol.

EAPExtensibleAuthenticationProtocol(EAP)isauniversalauthenticationframeworkdefinedbyRFC3748thatisfrequentlyusedinwirelessnetworksandpoint-to-pointconnections.AlthoughEAPisnotlimitedtowirelessandcanbeusedforwiredauthentication,itismostoftenusedinwirelessLANs.EAPisdiscussedindetailinChapter12.

CHAPChallenge-HandshakeAuthenticationProtocol(CHAP)isusedtoprovideauthenticationacrossapoint-to-pointlinkusingPPP.Inthisprotocol,authenticationafterthelinkhasbeenestablishedisnotmandatory.CHAPisdesignedtoprovideauthenticationperiodicallythroughtheuseofachallenge/responsesystemthatissometimesdescribedasathree-wayhandshake,asillustratedinFigure11.22.Theinitialchallenge(arandomlygeneratednumber)issenttotheclient.Theclientusesaone-wayhashingfunctiontocalculatewhattheresponseshouldbeandthensendsthisback.Theservercomparestheresponsetowhatitcalculatedtheresponseshouldbe.Iftheymatch,communicationcontinues.Ifthetwovaluesdon’tmatch,thentheconnectionisterminated.Thismechanismreliesonasharedsecretbetweenthetwoentitiessothatthecorrectvaluescanbecalculated.MicrosofthascreatedtwoversionsofCHAP,modifiedtoincreasetheusabilityofCHAPacrossMicrosoft’sproductline.MSCHAPv1,definedinRFC2433,hasbeendeprecatedandwasdroppedinWindowsVista.Thecurrentstandard,version2,definedinRFC2759,wasintroducedwithWindows2000.

•Figure11.22TheCHAPchallenge/responsesequence

NTLMNTLANManager(NTLM)isanauthenticationprotocoldesignedbyMicrosoft,forusewiththeServerMessageBlock(SMB)protocol.SMBisanapplication-levelnetworkprotocolprimarilyusedforsharingoffilesandprintersinWindows-basednetworks.NTLMwasdesignedasareplacementfortheLANMANprotocol.ThecurrentversionisNTLMv2,whichwasintroducedwithWindowsNT4.0SP4.AlthoughMicrosofthasadoptedtheKerberosprotocolforauthentication,NTLMv2isstillusedwhen

AuthenticatingtoaserverusinganIPaddress

AuthenticatingtoaserverthatbelongstoadifferentActiveDirectoryforest

Authenticatingtoaserverthatdoesn’tbelongtoadomain

NoActiveDirectorydomainexists(“workgroup”or“peer-to-peer”connection)

PAPPasswordAuthenticationProtocol(PAP)involvesatwo-wayhandshakein

whichtheusernameandpasswordaresentacrossthelinkincleartext.PAPauthenticationdoesnotprovideanyprotectionagainstplaybackandlinesniffing.PAPisnowadeprecatedstandard.

L2TPLayer2TunnelingProtocol(L2TP)isalsoanInternetstandardandcamefromtheLayer2Forwarding(L2F)protocol,aCiscoinitiativedesignedtoaddressissueswithPPTP.WhereasPPTPisdesignedaroundPPPandIPnetworks,L2F,andhenceL2TP,isdesignedforuseacrossallkindsofnetworks,includingATMandFrameRelay.Additionally,whereasPPTPisdesignedtobeimplementedinsoftwareattheclientdevice,L2TPwasconceivedasahardwareimplementationusingarouteroraspecial-purposeappliance.L2TPcanbeconfiguredinsoftwareandisinMicrosoft’sRRASservers,whichuseL2TPtocreateaVPN.L2TPworksinmuchthesamewayasPPTP,butitopensupseveral

itemsforexpansion.Forinstance,inL2TP,routerscanbeenabledtoconcentrateVPNtrafficoverhigher-bandwidthlines,creatinghierarchicalnetworksofVPNtrafficthatcanbemoreefficientlymanagedacrossanenterprise.L2TPalsohastheabilitytouseIPsecandDataEncryptionStandard(DES)asencryptionprotocols,providingahigherlevelofdatasecurity.L2TPisalsodesignedtoworkwithestablishedAAAservicessuchasRADIUSandTACACS+toaidinuserauthentication,authorization,andaccounting.L2TPisestablishedviaUDPport1701,sothisisanessentialportto

leaveopenacrossfirewallssupportingL2TPtraffic.MicrosoftsupportsL2TPinWindows2000andabove,butbecauseofthecomputingpowerrequired,mostimplementationswillusespecializedhardware(suchasaCiscorouter).

TelnetOneofthemethodstograntremoteaccesstoasystemisthroughTelnet.Telnetisthestandardterminal-emulationprotocolwithintheTCP/IP

protocolseries,anditisdefinedinRFC854.Telnetallowsuserstologinremotelyandaccessresourcesasiftheuserhadalocalterminalconnection.Telnetisanoldprotocolandofferslittlesecurity.Information,includingaccountnamesandpasswords,ispassedincleartextovertheTCP/IPconnection.

ExamTip:TelnetusesTCPport23.Besuretomemorizethecommonportsusedbycommonservicesfortheexam.

TelnetmakesitsconnectionusingTCPport23.AsTelnetisimplementedonmostproductsusingTCP/IP,itisimportanttocontrolaccesstoTelnetonmachinesandrouterswhensettingthemup.Failuretocontrolaccessbyusingfirewalls,accesslists,andothersecuritymethods,orevenbydisablingtheTelnetdaemon,isequivalenttoleavinganopendoorforunauthorizedusersonasystem.

SSHSecureShell(SSH)isaprotocolseriesdesignedtofacilitatesecurenetworkfunctionsacrossaninsecurenetwork.SSHprovidesdirectsupportforsecureremotelogin,securefiletransfer,andsecureforwardingofTCP/IPandXWindowSystemtraffic.AnSSHconnectionisanencryptedchannel,providingforconfidentialityandintegrityprotection.SSHhasitsoriginsasareplacementfortheinsecureTelnetapplication

fromtheUNIXoperatingsystem.AnoriginalcomponentofUNIX,Telnetalloweduserstoconnectbetweensystems.AlthoughTelnetisstillusedtoday,ithassomedrawbacks,asdiscussedintheprecedingsection.SomeenterprisingUniversityofCalifornia,Berkeley,studentssubsequentlydevelopedther-commands,suchasrlogin,topermitaccessbasedontheuserandsourcesystem,asopposedtopassingpasswords.Thiswasnotperfecteither,however,becausewhenaloginwasrequired,itwasstillpassedintheclear.ThisledtothedevelopmentoftheSSHprotocolseries,

designedtoeliminatealloftheinsecuritiesassociatedwithTelnet,r-commands,andothermeansofremoteaccess.

ExamTip:SSHusesTCPport22.SCP(securecopy)andSFTP(secureFTP)useSSH,soeachalsousesTCPport22.

SSHopensasecuretransportchannelbetweenmachinesbyusinganSSHdaemononeachend.ThesedaemonsinitiatecontactoverTCPport22andthencommunicateoverhigherportsinasecuremode.OneofthestrengthsofSSHisitssupportformanydifferentencryptionprotocols.SSH1.0startedwithRSAalgorithms,butatthetimetheywerestillunderpatent,andthisledtoSSH2.0withextendedsupportforTripleDES(3DES)andotherencryptionmethods.Today,SSHcanbeusedwithawiderangeofencryptionprotocols,includingRSA,3DES,Blowfish,InternationalDataEncryptionAlgorithm(IDEA),CAST128,AES256,andothers.TheSSHprotocolhasfacilitiestoencryptdataautomatically,provide

authentication,andcompressdataintransit.Itcansupportstrongencryption,cryptographichostauthentication,andintegrityprotection.Theauthenticationservicesarehost-basedandnotuser-based.Ifuserauthenticationisdesiredinasystem,itmustbesetupseparatelyatahigherlevelintheOSImodel.Theprotocolisdesignedtobeflexibleandsimple,anditisdesignedspecificallytominimizethenumberofround-tripsbetweensystems.Thekeyexchange,publickey,symmetrickey,messageauthentication,andhashalgorithmsareallnegotiatedatconnectiontime.Individualdata-packetintegrityisassuredthroughtheuseofamessageauthenticationcodethatiscomputedfromasharedsecret,thecontentsofthepacket,andthepacketsequencenumber.TheSSHprotocolconsistsofthreemajorcomponents:

TransportlayerprotocolProvidesserverauthentication,

confidentiality,integrity,andcompression

UserauthenticationprotocolAuthenticatestheclienttotheserverConnectionprotocolProvidesmultiplexingoftheencryptedtunnelintoseverallogicalchannels

SSHisverypopularintheUNIXenvironment,anditisactivelyusedasamethodofestablishingVPNsacrosspublicnetworks.BecauseallcommunicationsbetweenthetwomachinesareencryptedattheOSIapplicationlayerbythetwoSSHdaemons,thisleadstotheabilitytobuildverysecuresolutionsandevensolutionsthatdefytheabilityofoutsideservicestomonitor.AsSSHisastandardprotocolserieswithconnectionparametersestablishedviaTCPport22,differentvendorscanbuilddifferingsolutionsthatcanstillinteroperate.

TechTip

RDPRemoteDesktopProtocol(RDP)isaproprietaryMicrosoftprotocoldesignedtoprovideagraphicalconnectiontoanothercomputer.ThecomputerrequestingtheconnectionhasRDPclientsoftware(builtintoWindows),andthetargetusesanRDPserver.ThissoftwarehasbeenavailableformanyversionsofWindowsandwasformerlycalledTerminalServices.ClientandserverversionsalsoexistforLinuxplatforms.RDPusesTCPandUDPports3389,soifRDPisdesired,theseportsneedtobeopenonthefirewall.

AlthoughWindowsServerimplementationsofSSHexist,thishasnotbeenapopularprotocolintheWindowsenvironmentfromaserverperspective.ThedevelopmentofawidearrayofcommercialSSHclientsfortheWindowsplatformindicatesthemarketplacestrengthofinterconnectionfromdesktopPCstoUNIX-basedserversutilizingthisprotocol.

FTP/FTPS/SFTP

OneofthemethodsoftransferringfilesbetweenmachinesisthroughtheuseoftheFileTransferProtocol(FTP).FTPisaplaintextprotocolthatoperatesbycommunicatingoverTCPbetweenaclientandaserver.TheclientinitiatesatransferwithanFTPrequesttotheserver’sTCPport21.Thisisthecontrolconnection,andthisconnectionremainsopenoverthedurationofthefiletransfer.Theactualdatatransferoccursonanegotiateddatatransferport,typicallyahigh-orderportnumber.FTPwasnotdesignedtobeasecuremethodoftransferringfiles.Ifasecuremethodisdesired,thenusingFTPSorSFTPisbest.FTPSistheuseofFTPoveranSSL/TLSsecuredchannel.Thiscanbe

doneeitherinexplicitmode,whereanAUTHTLScommandisissued,orinimplicitmode,wherethetransferoccursoverTCPport990forthecontrolchannelandTCPport989forthedatachannel.SFTPisnotFTPperse,butratheracompletelyseparateSecureFileTransferProtocolasdefinedbyanIETFDraft,thelatestofwhich,version6,expiredinJuly2007,buthasbeenincorporatedintoproductsinthemarketplace.

ExamTip:FTPusesTCPport21asacontrolchannelandTCPport20asatypicalactivemodedataport,assomefirewallsaresettoblockportsabove1024.

ItisalsopossibletorunFTPoverSSH,aslaterversionsofSSHallowsecuringofchannelssuchastheFTPcontrolchannel;thishasalsobeenreferredtoasSecureFTP.Thisleavesthedatachannelunencrypted,aproblemthathasbeensolvedinversion3.0ofSSH,whichsupportsFTPcommands.ThechallengeofencryptingtheFTPdatacommunicationsisthatthemutualportagreementmustbeopenedonthefirewall,andforsecurityreasons,high-orderportsthatarenotexplicitlydefinedaretypicallysecured.Becauseofthischallenge,SecureCopy(SCP)isoftenamoredesirablealternativetoSFTPwhenusingSSH.

VPNsAvirtualprivatenetwork(VPN)isasecurevirtualnetworkbuiltontopofaphysicalnetwork.ThesecurityofaVPNliesintheencryptionofpacketcontentsbetweentheendpointsthatdefinetheVPN.ThephysicalnetworkuponwhichaVPNisbuiltistypicallyapublicnetwork,suchastheInternet.BecausethepacketcontentsbetweenVPNendpointsareencrypted,toanoutsideobserveronthepublicnetwork,thecommunicationissecure,anddependingonhowtheVPNissetup,securitycanevenextendtothetwocommunicatingparties’machines.Virtualprivatenetworkingisnotaprotocolperse,butratheramethod

ofusingprotocolstoachieveaspecificobjective—securecommunications—asshowninFigure11.23.Auserwhowantstohaveasecurecommunicationchannelwithaserveracrossapublicnetworkcansetuptwointermediarydevices,VPNendpoints,toaccomplishthistask.Theusercancommunicatewithhisendpoint,andtheservercancommunicatewithitsendpoint.Thetwoendpointsthencommunicateacrossthepublicnetwork.VPNendpointscanbesoftwaresolutions,routers,orspecificserverssetupforspecificfunctionality.ThisimpliesthatVPNservicesaresetupinadvanceandarenotsomethingnegotiatedon-the-fly.

•Figure11.23VPNserviceoveranInternetconnection

AtypicaluseofVPNservicesisauseraccessingacorporatedatanetworkfromahomePCacrosstheInternet.TheemployeeinstallsVPNsoftwarefromworkonahomePC.Thissoftwareisalreadyconfiguredtocommunicatewiththecorporatenetwork’sVPNendpoint;itknowsthelocation,theprotocolsthatwillbeused,andsoon.Whenthehomeuserwantstoconnecttothecorporatenetwork,sheconnectstotheInternetandthenstartstheVPNsoftware.Theusercanthenlogintothecorporatenetworkbyusinganappropriateauthenticationandauthorizationmethodology.ThesolepurposeoftheVPNconnectionistoprovideaprivateconnectionbetweenthemachines,whichencryptsanydatasentbetweenthehomeuser’sPCandthecorporatenetwork.Identification,authorization,andallotherstandardfunctionsareaccomplishedwiththestandardmechanismsfortheestablishedsystem.VPNscanusemanydifferentprotocolstoofferasecuremethodof

communicatingbetweenendpoints.Commonmethodsofencryptionon

VPNsincludePPTP,IPsec,SSH,andL2TP,allofwhicharediscussedinthischapter.Thekeyisthatbothendpointsknowtheprotocolandshareasecret.AllofthisnecessaryinformationisestablishedwhentheVPNissetup.Atthetimeofuse,theVPNonlyactsasaprivatetunnelbetweenthetwopointsanddoesnotconstituteacompletesecuritysolution.

IPsecInternetProtocolSecurity(IPsec)isasetofprotocolsdevelopedbytheIETFtosecurelyexchangepacketsatthenetworklayer(Layer3)oftheOSImodel(RFCs2401–2412).AlthoughtheseprotocolsworkonlyinconjunctionwithIPnetworks,onceanIPsecconnectionisestablished,itispossibletotunnelacrossothernetworksatlowerlevelsoftheOSImodel.ThesetofsecurityservicesprovidedbyIPsecoccursatthenetworklayeroftheOSImodel,sohigher-layerprotocols,suchasTCP,UDP,InternetControlMessageProtocol(ICMP),BorderGatewayProtocol(BGP),andthelike,arenotfunctionallyalteredbytheimplementationofIPsecservices.TheIPsecprotocolserieshasasweepingarrayofservicesitisdesigned

toprovide,includingbutnotlimitedtoaccesscontrol,connectionlessintegrity,traffic-flowconfidentiality,rejectionofreplayedpackets,datasecurity(encryption),anddata-originauthentication.IPsechastwodefinedmethods—transportandtunneling—thatprovidedifferentlevelsofsecurity.IPsecalsohasthreemodesofconnection:host-to-server,server-to-server,andhost-to-host.Thetransportmethodencryptsonlythedataportionofapacket,thus

enablinganoutsidertoseesourceanddestinationIPaddresses.Thetransportmethodprotectsthehigher-levelprotocolsassociatedwithapacketandprotectsthedatabeingtransmittedbutallowsknowledgeofthetransmissionitself.Protectionofthedataportionofapacketisreferredtoascontentprotection.

ExamTip:Intransportmode(end-to-end),securityofpackettrafficisprovidedbytheendpointcomputers.Intunnelmode(portal-to-portal),securityofpackettrafficisprovidedbetweenendpointnodemachinesineachnetworkandnotattheterminalhostmachines.

TunnelingprovidesencryptionofsourceanddestinationIPaddresses,aswellasofthedataitself.Thisprovidesthegreatestsecurity,butitcanbedoneonlybetweenIPsecservers(orrouters)becausethefinaldestinationneedstobeknownfordelivery.Protectionoftheheaderinformationisknownascontextprotection.Itispossibletousebothmethodsatthesametime,suchasusing

transportwithinone’sownnetworktoreachanIPsecserver,whichthentunnelstothetargetserver’snetwork,connectingtoanIPsecserverthere,andthenusingthetransportmethodfromthetargetnetwork’sIPsecservertothetargethost.

SecurityAssociationsAsecurityassociation(SA)isaformalmannerofdescribingthenecessaryandsufficientportionsoftheIPsecprotocolseriestoachieveaspecificlevelofprotection.Becausemanyoptionsexist,bothcommunicatingpartiesmustagreeontheuseoftheprotocolsthatareavailable,andthisagreementisreferredtoasasecurityassociation.SAsexistbothforintegrity-protectingsystemsandconfidentiality-protectingsystems.IneachIPsecimplementation,asecurityassociationdatabase(SAD)definesparametersassociatedwitheachSA.TheSAisaone-way(simplex)association,andiftwo-waycommunicationsecurityisdesired,twoSAsareused—oneforeachdirection.

ExamTip:Asecurityassociationisalogicalsetofsecurityparametersdesignedtofacilitatethe

sharingofinformationbetweenentities.

IPsecConfigurationsFourbasicconfigurationscanbeappliedtomachine-to-machineconnectionsusingIPsec.Thesimplestisahost-to-hostconnectionbetweentwomachines,asshowninFigure11.24.Inthiscase,theInternetisnotapartoftheSAbetweenthemachines.Ifbidirectionalsecurityisdesired,twoSAsareused.TheSAsareeffectivefromhosttohost.

•Figure11.24Ahost-to-hostconnectionbetweentwomachines

Thesecondcaseplacestwosecuritydevicesinthestream,relievingthehostsofthecalculationandencapsulationduties.ThesetwogatewayshaveanSAbetweenthem.Thenetworkisassumedtobesecurefromeach

machinetoitsgateway,andnoIPsecisperformedacrossthesehops.Figure11.25showsthetwosecuritygatewayswithatunnelacrosstheInternet,althougheithertunnelortransportmodecouldbeused.

•Figure11.25TwosecuritygatewayswithatunnelacrosstheInternet

Thethirdcasecombinesthefirsttwo.AseparateSAexistsbetweenthegatewaydevices,butanSAalsoexistsbetweenhosts.Thiscouldbeconsideredatunnelinsideatunnel,asshowninFigure11.26.

•Figure11.26Atunnelinsideatunnel

RemoteuserscommonlyconnectthroughtheInternettoanorganization’snetwork.Thenetworkhasasecuritygatewaythroughwhichitsecurestraffictoandfromitsserversandauthorizedusers.Inthelastcase,illustratedinFigure11.27,theuserestablishesanSAwiththesecuritygatewayandthenaseparateSAwiththedesiredserver,ifrequired.Thiscanbedoneusingsoftwareonaremotelaptopandhardwareattheorganization’snetwork.

•Figure11.27Tunnelfromhosttogateway

WindowscanactasanIPsecserver,ascanroutersandotherservers.TheprimaryissueisCPUusageandwherethecomputingpowershouldbeimplanted.ThisconsiderationhasledtotheriseofIPsecappliances,whicharehardwaredevicesthatperformtheIPsecfunctionspecificallyforaseriesofcommunications.Dependingonthenumberofconnections,networkbandwidth,andsoon,thesedevicescanbeinexpensiveforsmallofficeorhomeofficeuseorquiteexpensiveforlarge,enterprise-levelimplementations.

IPsecSecurity

IPsecusestwoprotocolstoprovidetrafficsecurity:

AuthenticationHeader(AH)Aheaderaddedtoapacketforthepurposesofintegritychecking

EncapsulatingSecurityPayload(ESP)Amethodofencryptingthedataportionofadatagramtoprovideconfidentiality

Forkeymanagementandexchange,threeprotocolsexist:

InternetSecurityAssociationandKeyManagementProtocol(ISAKMP)

OakleySecureKeyExchangeMechanismforInternet(SKEMI)

ThesekeymanagementprotocolscanbecollectivelyreferredtoasInternetKeyManagementProtocol(IKMP)orInternetKeyExchange(IKE).IPsecdoesnotdefinespecificsecurityalgorithms,nordoesitrequire

specificmethodsofimplementation.IPsecisanopenframeworkthatallowsvendorstoimplementexistingindustry-standardalgorithmssuitedforspecifictasks.ThisflexibilityiskeyinIPsec’sabilitytoofferawiderangeofsecurityfunctions.IPsecallowsseveralsecuritytechnologiestobecombinedintoacomprehensivesolutionfornetwork-basedconfidentiality,integrity,andauthentication.IPsecusesthefollowing:

ExamTip:IPsecAHprotectsintegrity,butitdoesnotprovideprivacy.IPsecESPprovidesconfidentiality,butitdoesnotprotectintegrityofthepacket.Tocoverbothprivacyandintegrity,bothheaderscanbeusedatthesametime.

Diffie-Hellmankeyexchangebetweenpeersonapublicnetwork

PublickeysigningofDiffie-Hellmankeyexchangestoguaranteeidentityandavoidman-in-the-middleattacks

Bulkencryptionalgorithms,suchasIDEAand3DES,forencryptingdata

Keyedhashalgorithms,suchasHMAC,andtraditionalhashalgorithms,suchasMD5andSHA-1,forpacket-levelauthentication

DigitalcertificatestoactasdigitalIDcardsbetweenparties

Toprovidetrafficsecurity,twoheaderextensionshavebeendefinedforIPdatagrams.TheAH,whenaddedtoanIPdatagram,ensurestheintegrityofthedataandalsotheauthenticityofthedata’sorigin.ByprotectingthenonchangingelementsintheIPheader,theAHprotectstheIPaddress,whichenablesdata-originauthentication.TheESPprovidessecurityservicesforthehigher-levelprotocolportionofthepacketonly,nottheIPheader.AHandESPcanbeusedseparatelyorincombination,dependingonthe

levelandtypesofsecuritydesired.BothalsoworkwiththetransportandtunnelmodesofIPsecprotocols.Intransportmode,thetwocommunicationendpointsprovidesecurityprimarilyfortheupper-layerprotocols.Thecryptographicendpoints,whereencryptionanddecryptionoccur,arelocatedatthesourceanddestinationofthecommunicationchannel.WhenAHisintransportmode,theoriginalIPheaderisexposed,butitscontentsareprotectedviatheAHblockinthepacket,asillustratedinFigure11.28.WhenAHisemployedintunnelmode,portionsoftheouterIPheaderaregiventhesameheaderprotectionthatoccursintransportmode,withtheentireinnerpacketreceivingprotection.ThisisillustratedinFigure11.29.Theuseoftunnelmodeallowseasiercrossingoffirewalls,forwithoutit,specificfirewallruleswouldbeneededtopassthemodifiedtransportpacketheader.

•Figure11.28IPsecuseofAHintransportmode

•Figure11.29IPsecuseofAHintunnelmode

Tunnelingisameansofencapsulatingpacketsinsideaprotocolthatisunderstoodonlyattheentryandexitpointsofthetunnel.Thisprovidessecurityduringtransportinthetunnel,becauseoutsideobserverscannot

decipherpacketcontentsoreventheidentitiesofthecommunicatingparties.IPsechasatunnelmodethatcanbeusedfromservertoserveracrossapublicnetwork.Althoughthetunnelendpointsarereferredtoasservers,thesedevicescanberouters,appliances,orservers.Intunnelmode,thetunnelendpointsmerelyencapsulatetheentirepacketwithnewIPheaderstoindicatetheendpoints,andtheyencryptthecontentsofthisnewpacket.ThetruesourceanddestinationinformationiscontainedintheinnerIPheader,whichisencryptedinthetunnel.TheouterIPheadercontainstheaddressesoftheendpointsofthetunnel.ESPprovidesameansofencryptingthepacket’scontents,asshownin

Figure11.30.Inthiscase,intransportmode,thedatagramcontentsareencryptedandauthenticatedviatheESPheaderandfooter/trailerthatareinsertedintothedatagram.Asmentioned,AHandESPcanbeemployedintunnelmode.ESPaffordsthesameencryptionprotectiontothecontentsofthetunneledpacket,whichistheentirepacketfromtheinitialsender,asillustratedinFigure11.31.Together,intunnelmode,AHandESPcanprovidecompleteprotectionacrossthepacket,asshowninFigure11.32.ThespecificcombinationofAHandESPisreferredtoasasecurityassociationinIPsec.

•Figure11.30IPsecuseofESPintransportmode

•Figure11.31IPsecuseofESPintunnelmode

•Figure11.32IPsecESPandAHpacketconstructionintunnelmode

InIPversion4(IPv4),IPsecisanadd-on,anditsacceptanceisvendordriven.ItisnotapartoftheoriginalIP—oneoftheshort-sighteddesignflawsoftheoriginalIP.InIPv6,IPsecisintegratedintoIPandisnativeonallpackets.Itsuseisstilloptional,butitsinclusionintheprotocolsuitewillguaranteeinteroperabilityacrossvendorsolutionswhentheyarecompliantwithIPv6standards.IPsecusescryptographickeysinitssecurityprocessandhasboth

manualandautomaticdistributionofkeysaspartoftheprotocolseries.Manualkeydistributionisincluded,butitispracticalonlyinsmall,staticenvironmentsanddoesnotscaletoenterprise-levelimplementations.Thedefaultmethodofkeymanagement,InternetKeyExchange(IKE),isautomated.IKEauthenticateseachpeerinvolvedinIPsecandnegotiatesthesecuritypolicy,includingtheexchangeofsessionkeys.IKEcreatesasecuretunnelbetweenpeersandthennegotiatesthesecurityassociation

forIPsecacrossthischannel.Thisisdoneintwophases:thefirstdevelopsthechannel,andtheseconddevelopsthesecurityassociation.Figure11.33illustratesthedifferentlevelsofprotectionofferedby

VPNsandIPsec.ThisshowstheadvantagesofIPsecanditsmorecomprehensivecoverage.

•Figure11.33Protectionfromdifferentlevelsofencryption

VulnerabilitiesofRemoteAccessMethods

Theprimaryvulnerabilityassociatedwithmanyofthesemethodsofremoteaccessisthepassingofcriticaldataincleartext.Plaintextpassingofpasswordsprovidesnosecurityifthepasswordissniffed,andsniffersareeasytouseonanetwork.EvenplaintextpassingofuserIDsgivesawayinformationthatcanbecorrelatedandpossiblyusedbyanattacker.PlaintextcredentialpassingisoneofthefundamentalflawswithTelnetandiswhySSHwasdeveloped.ThisisalsooneoftheflawswithRADIUSandTACACS+,astheyhaveasegmentunprotected.Therearemethodsforovercomingtheselimitations,althoughtheyrequiredisciplineandunderstandinginsettingupasystem.Thestrengthoftheencryptionalgorithmisalsoaconcern.Shoulda

specificalgorithmormethodprovetobevulnerable,servicesthatrelysolelyonitarealsovulnerable.Togetaroundthisdependency,manyoftheprotocolsallownumerousencryptionmethods,sothatshouldoneprovevulnerable,ashifttoanotherrestoressecurity.

TechTip

IPsecinaNutshellIPsechastwoprimarymodes,transportmodeandtunnelmode.Transportmodeissimplerandaddsfewerbytestoapacket,butcanhaveissuestransitingitemssuchasfirewalls.Tunnelingmoderesolvesthefirewallissuebytotalencapsulation.IPsechastwoprimarymechanisms,AHandESP.AHprovidesforauthenticationofdatagramcontents,butnoprotectionintheformofsecrecy.ESPencryptsthedatagram,providingsecrecy,andwhenusedwithEH,ESPprovidesauthenticationaswell.

Aswithanysoftwareimplementation,therealwaysexiststhepossibilitythatabugcouldopenthesystemtoattack.Bugshavebeencorrectedinmostsoftwarepackagestocloseholesthatmadesystemsvulnerable,andremoteaccessfunctionalityisnoexception.ThisisnotaMicrosoft-onlyphenomenon,asonemightbelievefromthepopularpress.Criticalflawshavebeenfoundinalmosteveryproduct,fromopensystemimplementationssuchasOpenSSHtoproprietarysystemssuchasCisco

IOS.Theimportantissueisnotthepresenceofsoftwarebugs,forassoftwarecontinuestobecomemorecomplex,thisisanunavoidableissue.Thetruekeyisvendorresponsivenesstofixingthebugsoncetheyarediscovered,andthemajorplayers,suchasCiscoandMicrosoft,havebeenveryresponsiveinthisarea.

ConnectionSummaryTherearemanyprotocolsusedforremoteaccessandauthenticationandrelatedpurposes.ThesemethodshavetheirownassignedportsandtheseassignmentsaresummarizedinTable11.2.

Chapter11Review

ForMoreInformationMicrosoft’sTechNetGroupPolicypagehttp://technet.microsoft.com/en-us/windowsserver/grouppolicy/default.aspx

SANSConsensusPolicyResourceCommunity–PasswordPolicyhttps://www.sans.org/security-resources/policies/general/pdf/password-protection-policy

LabManualExercisesThefollowinglabexercisesfromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providepracticalapplicationofmaterialcoveredinthischapter:

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutprivilegemanagement,authentication,andremoteaccessprotocols.

Identifythedifferencesamonguser,group,androlemanagement

Privilegemanagementistheprocessofrestrictingauser’sabilitytointeractwiththecomputersystem.

Privilegemanagementcanbebasedonanindividualuserbasis,onmembershipinaspecificgrouporgroups,oronafunction/role.

Keyconceptsinprivilegemanagementaretheabilitytorestrictandcontrolaccesstoinformationandinformationsystems.

Oneofthemethodsusedtosimplifyprivilegemanagementissinglesign-on,whichrequiresausertoauthenticatesuccessfullyonce.Thevalidatedcredentialsandassociatedrightsandprivilegesarethenautomaticallycarriedforwardwhentheuseraccessesothersystemsorapplications.

Implementpasswordanddomainpasswordpolicies

Passwordpoliciesaresetsofrulesthathelpusersselect,employ,andstorestrongpasswords.Tokenscombine“somethingyouhave”with“somethingyouknow,”suchasapasswordorPIN,andcanbehardwareorsoftwarebased.

Passwordsshouldhavealimitedspanandshouldexpireonascheduledbasis.

Describemethodsofaccountmanagement(SSO,timeofday,logicaltoken,accountexpiration)

Administratorshavemanydifferenttoolsattheirdisposaltocontrolaccesstocomputerresourcesincludingpasswordandaccountexpirationmethods.

Userauthenticationmethodscanincludeseveralfactorsincludingtokens.

Userscanbelimitedinthehoursduringwhichtheycanaccessresources.

Resourcessuchasfiles,folders,andprinterscanbecontrolledthroughpermissionsoraccesscontrollists.

Permissionscanbeassignedbasedonauser’sidentityortheirmembershipinoneormoregroups.

Describemethodsofaccessmanagement(MAC,DAC,andRBAC)

Mandatoryaccesscontrolisbasedonthesensitivityoftheinformationorprocessitself.

DiscretionaryaccesscontrolusesfilepermissionsandACLstorestrictaccessbasedonauser’sidentityorgroupmembership.

Role-basedaccesscontrolrestrictsaccessbasedontheuser’sassignedroleorroles.

Rule-basedaccesscontrolrestrictsaccessbasedonadefinedsetof

rulesestablishedbytheadministrator.

Discussthemethodsandprotocolsforremoteaccesstonetworks

Remoteaccessprotocolsprovideamechanismtoremotelyconnectclientstonetworks.

Awiderangeofremoteaccessprotocolshasevolvedtosupportvarioussecurityandauthenticationmechanisms.

Remoteaccessisgrantedviaremoteaccessservers,suchasRRASorRADIUS.

Identifyauthentication,authorization,andaccounting(AAA)protocols

Authenticationisacornerstoneelementofsecurity,connectingaccesstoapreviouslyapproveduserID.

Authorizationistheprocessofdeterminingwhetheranauthenticateduserhaspermission.

Accountingprotocolsmanageconnectiontimeandcostrecords.

Explainauthenticationmethodsandthesecurityimplicationsintheiruse

Password-basedauthenticationisstillthemostwidelyusedbecauseofcostandubiquity.

Ticket-basedsystems,suchasKerberos,formthebasisformostmodernauthenticationandcredentialingsystems.

Implementvirtualprivatenetworks(VPNs)andtheirsecurityaspects

VPNsuseprotocolstoestablishaprivatenetworkoverapublicnetwork,shieldingusercommunicationsfromoutsideobservation.

VPNscanbeinvokedviamanydifferentprotocolmechanismsand

involveeitherahardwareorsoftwareclientoneachendofthecommunicationchannel.

DescribeInternetProtocolSecurity(IPsec)anditsuseinsecuringcommunications

IPsecisthenativemethodofsecuringIPpackets;itisoptionalinIPv4andmandatoryinIPv6.

IPsecusesAuthenticationHeaders(AH)toauthenticatepackets.

IPsecusesEncapsulatingSecurityPayload(ESP)toprovideconfidentialityserviceatthedatagramlevel.

KeyTermsAAA(305)accesscontrol(311)accesscontrollist(ACL)(300)accounting(305)administrator(290)attribute-basedaccesscontrol(ABAC)(303)authentication(305)AuthenticationHeader(AH)(41)authenticationserver(AS)(308)authorization(305)contentprotection(324)contextprotection(325)discretionaryaccesscontrol(DAC)(302)domaincontroller(293)domainpasswordpolicy(293)EncapsulatingSecurityPayload(ESP)(41)eXtensibleAccessControlMarkupLanguage(XACML)(304)

group(291)grouppolicyobject(GPO)(293)identification(305)InternetKeyExchange(IKE)(329)InternetProtocolSecurity(IPsec)(324)InternetSecurityAssociationandKeyManagementProtocol

(ISAKMP)(41)Kerberos(308)keydistributioncenter(KDC)(308)Layer2TunnelingProtocol(L2TP)(320)mandatoryaccesscontrol(MAC)(301)Oakley(41)passwordpolicy(292)permissions(290)Point-to-PointTunnelingProtocol(PPTP)(317)privilegemanagement(288)privileges(288)remoteaccessserver(RAS)(305)rights(289)role(292)role-basedaccesscontrol(RBAC)(303)root(290)rule-basedaccesscontrol(303)SecureKeyExchangeMechanismforInternet(SKEMI)(41)securityassociation(SA)(325)singlesign-on(SSO)(294)superuser(290)ticket-grantingserver(TGS)(308)token(296)user(289)username(289)

virtualprivatenetwork(VPN)(323)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1._______________isanauthenticationmodeldesignedaroundtheconceptofusingticketsforaccessingobjects.

2._______________isdesignedaroundthetypeoftaskspeopleperform.

3.AformalmannerofdescribingthenecessaryandsufficientportionsoftheIPsecprotocolseriestoachieveaspecificlevelofprotectionisa(n)_______________.

4._______________describesasystemwhereeveryresourcehasaccessrulessetforitallofthetime.

5._______________isanauthenticationprocesswheretheusercanentertheiruserID(orusername)andpasswordandthenbeabletomovefromapplicationtoapplicationorresourcetoresourcewithouthavingtosupplyfurtherauthenticationinformation.

6.InIPsec,asecurityassociationisdefinedbyaspecificcombinationof_______________and_______________.

7.Theprotectionofthedataportionofapacketis_______________.8.Theprotectionoftheheaderportionofapacketis

_______________.

9._______________isakeymanagementandexchangeprotocolusedwithIPsec.

10.Theprocessofcomparingcredentialstothoseestablishedduringtheidentificationprocessisreferredtoas_______________.

Multiple-ChoiceQuiz1.Authenticationistypicallybaseduponwhat?

A.Somethingauserpossesses

B.Somethingauserknows

C.Somethingmeasuredonauser,suchasafingerprint

D.Alloftheabove

2.OnaVPN,trafficisencryptedanddecryptedat:A.Endpointsofthetunnelonly

B.Users’machines

C.Eachdeviceateachhop

D.Thedatalinklayerofaccessdevices

3.Aticket-grantingserverisanimportantelementinwhichofthefollowingauthenticationmodels?

A.L2TP

B.RADIUS

C.PPP

D.Kerberos

4.WhatprotocolisusedforRADIUS?A.UDP

B.NetBIOS

C.TCP

D.Proprietary

5.Underwhichaccesscontrolsystemiseachpieceofinformationandeverysystemresource(files,devices,networks,andsoon)labeledwithitssensitivitylevel?

A.Discretionaryaccesscontrol

B.Resourceaccesscontrol

C.Mandatoryaccesscontrol

D.Mediaaccesscontrol

6.IPsecprovideswhichoptionsassecurityservices?A.ESPandAH

B.ESPandAP

C.EAandAP

D.EAandAH

7.SecureShelluseswhichporttocommunicate?A.TCPport80

B.UDPport22

C.TCPport22

D.TCPport110

8.ElementsofKerberosincludewhichofthefollowing?A.Tickets,ticket-grantingserver,ticket-authorizingagent

B.Ticket-grantingticket,authenticationserver,ticket

C.Servicesserver,Kerberosrealm,ticketauthenticators

D.Client-to-serverticket,authenticationserverticket,ticket

9.ToestablishaPPTPconnectionacrossafirewall,youmustdo

whichofthefollowing?

A.Donothing;PPTPdoesnotneedtocrossfirewallsbydesign.

B.Donothing;PPTPtrafficisinvisibleandtunnelspastfirewalls.

C.OpenaUDPportofchoiceandassignittoPPTP.

D.OpenTCPport1723.

10.ToestablishanL2TPconnectionacrossafirewall,youmustdowhichofthefollowing?

A.Donothing;L2TPdoesnotcrossfirewallsbydesign.

B.Donothing;L2TPtunnelspastfirewalls.

C.OpenaUDPportofchoiceandassignittoL2TP.

D.OpenUDPport1701.

EssayQuiz1.Aco-workerwithastrongWindowsbackgroundishavingdifficulty

understandingUNIXfilepermissions.DescribeUNIXfilepermissionsforhim.CompareUNIXfilepermissionstoWindowsfilepermissions.

2.Howareauthenticationandauthorizationalikeandhowaretheydifferent.Whatistherelationship,ifany,betweenthetwo?

3.WhatisaVPNandwhattechnologiesareusedtocreateone?

LabProjects

•LabProject11.1

Usingtwoworkstationsandsomerouters,setupasimpleVPN.UsingWireshark(asharewarenetworkprotocolanalyzer,availableathttp://wireshark.com),observetrafficinsideandoutsidethetunneltodemonstrateprotection.

•LabProject11.2UsingfreeSSHdandfreeFTPd(bothsharewareprograms,availableatwww.freesshd.com)andWireshark,demonstratethesecurityfeaturesofSSHcomparedtoTelnetandFTP.

chapter12 WirelessSecurityandMobileDevices

Wemustplanforfreedom,andnotonlyforsecurity,iffornootherreasonthanthatonlyfreedomcanmakesecuritysecure.

W

—KARLPOPPER

Inthischapter,youwilllearnhowto

Describethedifferentwirelesssystemsinusetoday

DetailWAPanditssecurityimplications

Identify802.11’ssecurityissuesandpossiblesolutions

Examinetheelementsneededforenterprisewirelessdeployment

Examinethesecurityofmobilesystems

irelessisincreasinglythewaypeopleaccesstheInternet.Becausewirelessaccessisconsideredaconsumerbenefit,manybusinesseshaveaddedwirelessaccesspointstolurecustomersintotheirshops.

Withtherolloutoffourth-generation(4G)high-speedcellularnetworks,peoplearealsoincreasinglyaccessingtheInternetfromtheirmobilephones.Themassivegrowthinpopularityofnontraditionalcomputerssuchasnetbooks,e-readers,andtabletshasalsodriventhepopularityofwirelessaccess.Aswirelessuseincreases,thesecurityofthewirelessprotocolshas

becomeamoreimportantfactorinthesecurityoftheentirenetwork.Asasecurityprofessional,youneedtounderstandwirelessnetworkapplicationsbecauseoftherisksinherentinbroadcastinganetworksignalwhereanyonecaninterceptit.Sendingunsecuredinformationacrosspublicairwavesistantamounttopostingyourcompany’spasswordsbythefrontdoorofthebuilding.Thischapteropenswithlooksatseveralcurrentwirelessprotocolsandtheirsecurityfeatures.Thechapterfinisheswithanexaminationofmobilesystemsandtheirsecurityconcerns.

IntroductiontoWirelessNetworkingWirelessnetworkingisthetransmissionofpacketizeddatabymeansofaphysicaltopologythatdoesnotusedirectphysicallinks.Thisdefinition

canbenarrowedtoapplytonetworksthatuseradiowavestocarrythesignalsovereitherpublicorprivatebands,insteadofusingstandardnetworkcabling.Someproprietaryapplicationslikelong-distancemicrowavelinksusepoint-to-pointtechnologywithnarrowbandradiosandhighlydirectionalantennas.However,thistechnologyisnotcommonenoughtoproduceanysignificantresearchintoitsvulnerabilities,andanythingthatwasdevelopedwouldhavelimitedusefulness.Sothischapterfocusesonpoint-to-multipointsystems,thetwomostcommonofwhicharethefamilyofcellularprotocolsandIEEE802.11.IEEE802.11isafamilyofprotocolsinsteadofasinglespecification;thisisasummarytableofthe802.11family.

TheIEEE802.11protocolhasbeenstandardizedbytheIEEEforwirelesslocalareanetworks(LANs).Threeversionsarecurrentlyinproduction—802.11g,802.11a,and802.11n.Thelateststandardis802.11ac,butitprovidesbackwardcompatibilitywith802.11ghardware.CellularphonetechnologyhasmovedrapidlytoembracedatatransmissionandtheInternet.TheWirelessApplicationProtocol(WAP)wasoneofthepioneersofmobiledataapplications,butithasbeenovertakenbyavarietyofprotocolspushingustofourth-generation(4G)mobilenetworks.

TechTip

WirelessSystemsThereareseveraldifferentwirelessbandsincommonusetoday,themostcommonofwhichistheWi-Fiseries,referringtothe802.11WirelessLANstandardscertifiedbytheWi-FiAlliance.AnothersetofbandsisWiMAX,whichreferstothesetof802.16wirelessnetworkstandardsratifiedbytheWiMAXForum.Lastly,thereisZigBee,alow-power,personalareanetworkingtechnologydescribedbytheIEEE802.15.4series.

Bluetoothisashort-rangewirelessprotocoltypicallyusedonsmalldevicessuchasmobilephones.EarlyversionsofthesephonesalsohadBluetoothonanddiscoverableasadefault,makingthecompromiseofanearbyphoneeasy.Securityresearchhasfocusedonfindingproblemswiththesedevicessimplybecausethedevicesaresocommon.Thesecurityworldignoredwirelessforalongtime,andthenwithinthe

spaceofafewmonths,itseemedlikeeveryonewasattemptingtobreachthesecurityofwirelessnetworksandtransmissions.Onereasonwirelesssuddenlyfounditselftobesuchatargetisthatwirelessnetworksaresoabundantandsounsecured.Thedramaticproliferationoftheseinexpensiveproductshasmadethesecurityramificationsoftheprotocolastonishing.Nomatterwhatthesystem,wirelesssecurityisaveryimportanttopicas

moreandmoreapplicationsaredesignedtousewirelesstosenddata.Wirelessisparticularlyproblematicfromasecuritystandpoint,becausethereisnocontroloverthephysicallayerofthetraffic.InmostwiredLANs,theadministratorshavephysicalcontroloverthenetworkandcancontroltosomedegreewhocanactuallyconnecttothephysicalmedium.Thispreventslargeamountsofunauthorizedtrafficandmakessnoopingaroundandlisteningtothetrafficdifficult.Wirelessdoesawaywiththephysicallimitations.Ifanattackercangetcloseenoughtothesignal’ssourceasitisbeingbroadcast,hecanattheveryleastlistentotheaccesspointandclientstalkingtocaptureallthepacketsforexamination,asdepictedinFigure12.1.

•Figure12.1Wirelesstransmissionextendingbeyondthefacility’swalls

Attackerscanalsotrytomodifythetrafficbeingsentortrytosendtheirowntraffictodisruptthesystem.Inthischapter,youwilllearnaboutthedifferenttypesofattacksthatwirelessnetworksface.

MobilePhonesWhencellularphonesfirsthitthemarket,securitywasn’tanissue—ifyouwantedtokeepyourphonesafe,you’dsimplykeepitphysicallysecureandnotloanittopeopleyoudidn’twantmakingcalls.Itsonlyfunctionwasthatofatelephone.

•Earlycellphonesjustallowedyoutomakecalls.

Theadvanceofdigitalcircuitryhasaddedamazingpowerinsmallerandsmallerdevices,causingsecuritytobeanissueasthesoftwarebecomesmoreandmorecomplicated.Today’ssmallandinexpensiveproductshavemadethewirelessmarketgrowbyleapsandbounds,astraditionalwirelessdevicessuchascellularphonesandpagershavebeenreplacedbytabletsandsmartphones.

•Today’sphonesallowyoutocarrycomputersinyourpocket.

Today’ssmartphonessupportmultiplewirelessdataaccessmethods,

including802.11,Bluetooth,andcellular.ThesemobilephonesandtabletdeviceshavecausedconsumerstodemandaccesstotheInternetanytimeandanywhere.Thishasgeneratedademandforadditionaldataservices.TheWirelessApplicationProtocol(WAP)attemptedtosatisfytheneedsformoredataonmobiledevices,butitisfallingbythewaysideasthemobilenetworks’capabilitiesincrease.TheneedformoreandmorebandwidthhaspushedcarrierstoadoptamoreIP-centricroutingmethodologywithtechnologiessuchasHighSpeedPacketAccess(HSPA)andEvolutionDataOptimized(EVDO).Mobilephoneshaveruthlesslyadvancedwithnewtechnologiesandservices,causingphonesandthecarriernetworksthatsupportthemtobedescribedingenerations—1G,2G,3G,and4G.1Greferstotheoriginalanalogcellularstandard,AdvancedMobilePhoneSystem(AMPS).2Greferstothedigitalnetworkthatsupersededit.3Gisthesystemofmobilenetworksthatfollowed,withmanydifferentimplementationscarryingdataatupto400Kbps.4GrepresentsthecurrentstateofmobilephoneswithLTEbeingtheprimarymethod.4Gallowscarrierstoofferawiderarrayofservicestotheconsumer,includingbroadbanddataserviceupto14.4Mbpsandvideocalling.4GisalsoamovetoanentirelyIP-basednetworkforallservices,runningvoiceoverIP(VoIP)onyourmobilephoneandspeedsupto1Gbps.Allofthese“gee-whiz”featuresarenice,buthowsecureareyourbits

andbytesgoingtobewhenthey’retravelingacrossamobilecarrier’snetwork?Alltheprotocolsmentionedhavetheirownsecurityimplementations—WAPappliesitsownWirelessTransportLayerSecurity(WTLS)toattempttosecuredatatransmissions,butWAPstillhasissuessuchasthe“WAPgap”(asdiscussednext).3Gnetworkshaveattemptedtopushalargeamountofsecuritydownthestackandrelyontheencryptiondesignedintothewirelessprotocol.

TechTip

RelationshipofWAPandWTLSWirelessApplicationProtocolisalightweightprotocoldesignedformobiledevices.WirelessTransportLayerSecurityisalightweightsecurityprotocoldesignedforWAP.

WirelessApplicationProtocolWAPwasintroducedtocompensatefortherelativelylowamountofcomputingpoweronhandhelddevicesaswellasthegenerallypoornetworkthroughputofcellularnetworks.ItusestheWirelessTransportLayerSecurity(WTLS)encryptionscheme,whichencryptstheplaintextdataandthensendsitovertheairwavesasciphertext.Theoriginatorandtherecipientbothhavekeystodecryptthedataandreproducetheplaintext.Thismethodofensuringconfidentialityisverycommon,andiftheencryptioniswelldesignedandimplemented,itisdifficultforunauthorizeduserstotakecapturedciphertextandreproducetheplaintextthatcreatedit.AsdescribedinChapter5,confidentialityistheabilitytokeepprotecteddataasecret.WTLSusesamodifiedversionoftheTransportLayerSecurity(TLS)protocol,whichisthereplacementforSecureSocketsLayer(SSL).TheWTLSprotocolsupportsseveralpopularbulkencryptionalgorithms,includingDataEncryptionStandard(DES),TripleDES(3DES),RC5,andInternationalDataEncryptionAlgorithm(IDEA).

CrossCheckSymmetricEncryptionInChapter5youlearnedaboutsymmetricencryption,includingDES,3DES,RC5,andIDEA.Inthecontextofwirelesscommunication,whatalgorithmwouldprotectyourdatathebest?Whataresomepossibleproblemswiththesealgorithms?

WTLSimplementsintegritythroughtheuseofmessageauthenticationcodes(MACs).AMACalgorithmgeneratesaone-wayhashofthe

compressedWTLSdata.WTLSsupportstheMD5andSHAMACalgorithms.TheMACalgorithmisalsodecidedduringtheWTLShandshake.TheTLSprotocolthatWTLSisbasedonisdesignedaroundInternet-basedcomputers,machinesthathaverelativelyhighprocessingpower,largeamountsofmemory,andsufficientbandwidthavailableforInternetapplications.DevicesthatWTLSmustaccommodatearelimitedinalltheserespects.Thus,WTLShastobeabletocopewithsmallamountsofmemoryandlimitedprocessorcapacity,aswellaslonground-triptimesthatTLScouldnothandlewell.TheserequirementsaretheprimaryreasonsthatWTLShassecurityissues.Astheprotocolisdesignedaroundmorecapableserversthandevices,

theWTLSspecificationcanallowconnectionswithlittletonosecurity.ClientswithlowmemoryorCPUcapabilitiescannotsupportencryption,andchoosingnullorweakencryptiongreatlyreducesconfidentiality.Authenticationisalsooptionalintheprotocol,andomittingauthenticationreducessecuritybyleavingtheconnectionvulnerabletoaman-in-the-middle–typeattack.Inadditiontothegeneralflawsintheprotocol’simplementation,severalknownsecurityvulnerabilitiesexist,includingthosetothechosen-plaintextattack,thePKCS#1attack,andthealertmessagetruncationattack.Thechosen-plaintextattackworksontheprincipleofapredictable

initializationvector(IV).Bythenatureofthetransportmediumthatitisusing,WAP,WTLSneedstosupportunreliabletransport.ThisforcestheIVtobebasedondataalreadyknowntotheclient,andWTLSusesalinearIVcomputation.BecausetheIVisbasedonthesequencenumberofthepacket,andseveralpacketsaresentunencrypted,entropyisseverelydecreased.Thislackofentropyintheencrypteddatareducesconfidentiality.

TechTip

WeaknessinWAPAggregation

WAPisapoint-to-multipointprotocol,butitcanfacedisruptionsorattacksbecauseitaggregatesatwell-knownpoints:thecellularantennatowers.

NowconsiderthePKCS#1attack.PublicKeyCryptographyStandards(PKCS),usedinconjunctionwithRSAencryption,providestandardsforformattingthepaddingusedtogenerateacorrectlyformattedblocksize.Whentheclientreceivestheblock,itwillreplytothesenderastothevalidityoftheblock.Anattackertakesadvantageofthisbyattemptingtosendmultipleguessesatthepaddingtoforceapaddingerror.Invulnerableimplementations,whenRSAsignaturesandencryptionareperformedperPKCS#1,theRSAmessagescanbedecryptedwithapproximately220chosenciphertextqueries.AlertmessagesinWTLSaresometimessentinplaintextandarenotauthenticated.Thisfactcouldallowanattackertooverwriteanencryptedpacketfromtheactualsenderwithaplaintextalertmessage,leadingtopossibledisruptionoftheconnectionthrough,forinstance,atruncationattack.Someconcernovertheso-calledWAPgapinvolvesconfidentialityof

informationwherethetwodifferentnetworksmeet,theWAPgateway,asshowninFigure12.2.

•Figure12.2TheWAPgapshowsanunencryptedspacebetweentwoencipheredconnections.

WTLSactsasthesecurityprotocolfortheWAPnetwork,andTLSisthestandardfortheInternet,sotheWAPgatewayhastoperformtranslationfromoneencryptionstandardtotheother.ThistranslationforcesallmessagestobeseenbytheWAPgatewayinplaintext.Thisisaweakpointinthenetworkdesign,butfromanattacker’sperspective,it’samuchmoredifficulttargetthantheWTLSprotocolitself.ThreatstotheWAPgatewaycanbeminimizedthroughcarefulinfrastructuredesign,suchasselectingasecurephysicallocationandallowingonlyoutboundtrafficfromthegateway.Ariskofcompromisestillexists,however,andanattackerwouldfindaWAPgatewayanespeciallyappealingtarget,asplaintextmessagesareprocessedthroughitfromallwirelessdevices,notjustasingleuser.Thesolutionforthisistohaveend-to-endsecuritylayeredoveranythingunderlying,ineffectcreatingaVPNfromtheendpointtothemobiledevice,ortostandardizeonafullimplementation

ofTLSforend-to-endencryptionandstrongauthentication.Thelimitednatureofthedeviceshamperstheabilityofthesecurityprotocolstooperateasintended,compromisinganyrealsecuritytobeimplementedonWAPnetworks.

3GMobileNetworksOurcellphonesareoneofthemostvisibleindicatorsofadvancingtechnology.Withinrecentmemory,wewereforcedtoswitchfromoldanalogphonestodigitalmodels.Thenetworkshavebeenupgradedto3G,greatlyenhancingspeedandloweringlatency.Thishasreducedtheneedforlightweightprotocolstohandledatatransmission,andmorestandardprotocolssuchasIPcanbeused.Theincreasedpowerandmemoryofthehandhelddevicesalsoreducetheneedforlighter-weightencryptionprotocols.Thishascausedtheprotocolsusedfor3Gmobiledevicestobuildintheirownencryptionprotocols.Securitywillrelyontheselower-levelprotocolsorstandardapplication-levelsecurityprotocolsusedinnormalIPtraffic.Severalcompetingdatatransmissionstandardsexistfor3Gnetworks,

suchasHSPAandEVDO.However,allthestandardsincludetransportlayerencryptionprotocolstosecurethevoicetraffictravelingacrossthewirelesssignalaswellasthedatasentbythedevice.Thecryptographicstandardproposedfor3GisknownasKASUMI.ThismodifiedversionoftheMISTY1algorithmuses64-bitblocksand128-bitkeys.Multipleattackshavebeenlaunchedagainstthiscipher.Whiletheattackstendtobeimpractical,thisshowsthatapplicationlayersecurityisneededforsecuretransmissionofdataonmobiledevices.WAPandWTLScanbeusedoverthelower-levelprotocols,buttraditionalTLScanalsobeused.

3G,4G,LTE…What’stheDifference?Intoday’smobilemarketingcampaigns,wehearof3G,4G,andLTE.Whatdothesetermsmean?3Gisthe“old”networktoday,butitisstillverycapableforavarietyofpurposes.4Gphonesaresupposedtobeevenfaster,butthat’snotalwaysthecase.Alotdependsonwhatyouusethephonefor.Thereareseveraltechnologiescalled“4G,”eachwithmultipleimplementations.Thismakesthetermalmostmeaninglessfromatechnicalpointofview.The

InternationalTelecommunicationUnion(ITU),astandardsbody,issuedrequirementsthatanetworkneededtomeettobecalled“4G,”butthoserequirementswereignoredbycarriers.NowthemoveistoLTE,whichstandsforLongTermEvolutionoftheUniversalMobileTelecommunicationsSystem(UMTS).UMTSisthegroupofstandardsthatdefines3GforGSMnetworksacrosstheworld,andnowLTE.TherearenumeroustechnicalimplementationsofLTE,butoneofthekeyelementsistheuseoftwodifferenttypesofairinterfaces(radiolinks),onefordownlink(fromtowertodevice)andoneforuplink(fromdevicetotower).ThisisoneofthereasonsLTEismuchfasterwhenuploadinginformationfromthephonetotheInternet.LTEoffershighspeed(upto30Mbps)andlowlatency.ButnotallLTEisequal.Recenttestsindicateasmuchasanorderofmagnitudedifferenceinspeedsbetweencarriers.AsLTEexpands,newerversions,eachwithitsownsetofcharacteristicspickedfromthe

overall“standard,”aredeployedbycarriers.WhiletheLTE-Astandardhasbeenapproved,nocarrierscurrentlymeettheentirestandard.Eachcarrierhaspickedtheelementsofthestandardtheyfeelmeettheirneeds.Bottomline:4Ghasbecomeamarketingterm,andtheonlyguideonehasistouseactual

surveyresultsintheareaofyourservicetodeterminethebestsolutionforyouruserequirements.

4GMobileNetworksJustasthemobilenetworkcarrierswerefinishingtherolloutof3Gservices,4Gnetworksappearedonthehorizon.Thedesireforanywhere,anytimeInternetconnectivityatspeedsnearthatofawiredconnectiondrivesdeploymentofthesenext-generationservices.4Gcansupporthigh-qualityVoIPconnections,videocalls,andreal-timevideostreaming.Justas3Ghadsomeintermediariesthatwereconsidered2.9G,LTEandWiMAXnetworksaresometimesreferredtoas3.5G,3.75G,or3.9G.Thecarriersaremarketingthesenewnetworksas4G,althoughtheydonotadheretotheITUstandardsfor4Gspeeds.True4Gwouldrequireafirmtomeetallofthetechnicalstandards

issuedbytheITU,includingspecificationsthatapplytothetowersideofthesystem.Someofthe4Grequirementsare

Bebasedonanall-IPpacketswitchednetwork

Offerhighqualityofservicefornext-generationmultimediasupport

Smoothhandoversacrossheterogeneousnetworks

Peakdataratesofuptoapproximately100Mbpsforhighmobility(mobileaccess)

Peakdataratesofuptoapproximately1Gbpsforlowmobilitysuchasnomadic/localwirelessaccess

Dynamicallyshareandusethenetworkresourcestosupportmoresimultaneoususerspercell

Usescalablechannelbandwidthsof5–20MHz,optionallyupto40MHz

Peaklinkspectralefficiencyof15-bps/Hzinthedownlink,and6.75-bps/Hzintheuplink

Toachievetheseandothertechnicalelementsrequiresspecifictower-sideequipmentaswellashandsetspecifications.Differentcarriershavechosendifferentsetsofthesetoincludeintheirofferings,eachbuildingupontheirexistingnetworksandexistingtechnologies.Most4Gdeploymentsarecontinuationsoftechnologiesalready

deployed—justnewerevolutionsofstandards.ThisishowLTE,LTEAdvanced,WiMAX,andWiMAX2wereborn.LTEandWiMAXseriescomefromseparateroots,andarenotinterchangeable.Withinthefamilies,interoperabilityispossibleandisdependentuponcarrierimplementation.

BluetoothBluetoothwasoriginallydevelopedbyEricssonandknownasmulti-communicatorlink;in1998,Nokia,IBM,Intel,andToshibajoinedEricssonandadoptedtheBluetoothname.ThisconsortiumbecameknownastheBluetoothSpecialInterestGroup(SIG).TheSIGnowhasmorethan24,000membersanddrivesthedevelopmentofthetechnologyandcontrolsthespecificationtoensureinteroperability.

•Bluetoothicon

MostpeoplearefamiliarwithBluetoothasitispartofmanymobilephonesandheadsets,suchasthoseshowninFigure12.3.Thisshort-range,low-powerwirelessprotocoltransmitsinthe2.4GHzband,thesamebandusedfor802.11.Theconceptfortheshort-range(approx.32feet)wirelessprotocolistotransmitdatainpersonalareanetworks(PANs).

•Figure12.3HeadsetsandcellphonesaretwoofthemostpopulartypesofBluetooth-capabledevices.

Bluetoothtransmitsandreceivesdatafromavarietyofdevices,themostcommonbeingmobilephones,laptops,printers,andaudiodevices.ThemobilephonehasdrivenalotofBluetoothgrowthandhaseven

spreadBluetoothintonewcarsasamobilephonehands-freekit.Bluetoothhasgonethroughafewreleases.Version1.1wasthefirst

commerciallysuccessfulversion,withversion1.2releasedin2007andcorrectingsomeoftheproblemsfoundin1.1.Version1.2allowsspeedsupto721Kbpsandimprovesresistancetointerference.Version1.2isbackward-compatiblewithversion1.1.Withtherateofadvancementandthelifeofmosttechitems,Bluetooth1seriesisbasicallyextinct.Bluetooth2.0introducedenhanceddatarate(EDR),whichallowsthetransmissionofupto3.0Mbps.Bluetooth3.0hasthecapabilitytousean802.11channeltoachievespeedsupto24Mbps.ThecurrentversionistheBluetooth4.0standardwithsupportforthreemodes:classic,highspeed,andlowenergy.Bluetooth4introducesanewmethodtosupportcollectingdatafrom

devicesthatgeneratedataataverylowrate.Somedevices,suchasmedicaldevices,mayonlycollectandtransmitdataatlowrates.Thisfeature,calledLowEnergy(LE),wasdesignedtoaggregatedatafromvarioussensors,likeheartratemonitors,thermometers,andsoforth,andcarriesthecommercialnameBluetoothSmart.

TechTip

BluetoothSecurityBluetoothshouldalwayshavediscoverablemodeturnedoffunlessyou’redeliberatelypairingadevice.

AsBluetoothbecamepopular,peoplestartedtryingtofindholesinit.Bluetoothfeatureseasyconfigurationofdevicestoallowcommunication,withnoneedfornetworkaddressesorports.Bluetoothusespairingtoestablishatrustrelationshipbetweendevices.Toestablishthattrust,thedevicesadvertisecapabilitiesandrequireapasskey.Tohelpmaintainsecurity,mostdevicesrequirethepasskeytobeenteredintobothdevices;thispreventsadefaultpasskey–typeattack.TheBluetooth’sprotocol

advertisementofservicesandpairingpropertiesiswheresomeofthesecurityissuesstart.

TechTip

BluetoothDataRatesDifferentversionsofBluetoothhavedifferingmaximumdatatransferrates.

BluetoothAttacksAsawirelessmethodofcommunication,Bluetoothisopentoconnectionandattackfromoutsidetheintendedsenderandreceiver.SeveraldifferentattackmodeshavebeendiscoveredthatcanbeusedagainstBluetoothsystems.Bluejackingisatermusedforthesendingofunauthorizedmessagesto

anotherBluetoothdevice.Thisinvolvessettingamessageasaphonebookcontact:

ThentheattackersendsthemessagetothepossiblerecipientviaBluetooth.Originally,thisinvolvedsendingtextmessages,butmorerecentphonescansendimagesoraudioaswell.Apopularvariantofthisisthetransmissionof“shock”images,featuringdisturbingorcrudephotos.AsBluetoothisashort-rangeprotocol,theattackandvictimmustbewithinroughly10yardsofeachother.Thevictim’sphonemustalsohaveBluetoothenabledandmustbeindiscoverablemode.Onsomeearlyphones,thiswasthedefaultconfiguration,andwhileitmakesconnectingexternaldeviceseasier,italsoallowsattacksagainstthephone.IfBluetoothisturnedoff,orifthedeviceissettonondiscoverable,

bluejackingcanbeavoided.Bluesnarfingissimilartobluejackinginthatitusesthesamecontact

transmissionprotocol.Thedifferenceisthatinsteadofsendinganunsolicitedmessagetothevictim’sphone,theattackercopiesoffthevictim’sinformation,whichcanincludee-mails,contactlists,calendar,andanythingelsethatexistsonthatdevice.Morerecentphoneswithmediacapabilitiescanbesnarfedforprivatephotosandvideos.BluesnarfingusedtorequirealaptopwithaBluetoothadapter,makingitrelativelyeasytoidentifyapossibleattacker,butbluesnarfingapplicationsarenowavailableformobiledevices.Bloover,acombinationofBluetoothandHoover,isonesuchapplicationthatrunsasaJavaapplet.ThemajorityofBluetoothphonesneedtobediscoverableforthebluesnarfattacktowork,butitdoesnotnecessarilyneedtobepaired.Intheory,anattackercanalsobrute-forcethedevice’sunique48-bitname.AprogramcalledRedFangattemptstoperformthisbrute-forceattackbysendingallpossiblenamesandseeingwhatgetsaresponse.ThisapproachwasaddressedinBluetooth1.2withananonymitymode.Bluebuggingisafarmoreseriousattackthaneitherbluejackingor

bluesnarfing.Inbluebugging,theattackerusesBluetoothtoestablishaserialconnectiontothedevice.ThisallowsaccesstothefullATcommandset—GSMphonesuseATcommandssimilartoHayes-compatiblemodems.Thisconnectionallowsfullcontroloverthephone,includingthe

placingofcallstoanynumberwithoutthephoneowner’sknowledge.Fortunately,thisattackrequirespairingofthedevicestocomplete,andphonesinitiallyvulnerabletotheattackhaveupdatedfirmwaretocorrecttheproblem.Toaccomplishtheattacknow,thephoneownerwouldneedtosurrenderherphoneandallowanattackertophysicallyestablishtheconnection.BluetoothDOSistheuseofBluetoothtechnologytoperformadenial-

of-serviceattackagainstanotherdevice.Inthisattack,anattackerrepeatedlyrequestspairingwiththevictimdevice.Thistypeofattackdoesnotdivulgeinformationorpermitaccess,butisanuisance.And,more

importantly,ifdonerepeatedlyitcandrainadevice’sbattery,orpreventotheroperationsfromoccurringonthevictim’sdevice.AswithallBluetoothattacks,becauseoftheshortrangeinvolved,allonehastodoisleavetheareaandtheattackwouldcease.Bluetoothtechnologyislikelytogrowduetothepopularityofmobile

phones.Softwareandprotocolupdateshavehelpedtoimprovethesecurityoftheprotocol.AlmostallphonesnowkeepBluetoothturnedoffbydefault,andtheyallowyoutomakethephonediscoverableforonlyalimitedamountoftime.Usereducationaboutsecurityrisksisalsoalargefactorinavoidingsecuritybreaches.

NearFieldCommunicationNearfieldcommunication(NFC)isasetofwirelesstechnologiesthatenablessmartphonesandotherdevicestoestablishradiocommunicationoverashortproximity,typicallyadistanceof10cm(3.9in)orless.Thistechnologydidnotseemuchuseuntilrecentlywhenitstartedbeingemployedtomovedatabetweencellphonesandinmobilepaymentsystems.NFCislikelytobecomeahighusetechnologyintheyearstocomeasmultipleusesexistforthetechnology,andthenextgenerationofsmartphonesissurelytoseethisasastandardfunction.

IEEE802.11SeriesThe802.11bprotocolisanIEEEstandardratifiedin1999.Thestandardlaunchedarangeofproducts(suchaswirelessrouters,anexampleofwhichisshowninFigure12.4)thatwouldopenthewaytoawholenewgenreofpossibilitiesforattackersandanewseriesofheadachesforsecurityadministratorseverywhere.802.11wasanewstandardforsendingpacketizeddatatrafficoverradiowavesintheunlicensed2.4GHzband.

•Figure12.4Acommonwirelessrouter

ThisgroupofIEEEstandardsisalsocalledWi-Fi,whichisacertificationownedbyanindustrygroup,theWi-FiAlliance.AdevicemarkedasWi-FiCertifiedadherestothestandardsofthealliance.Astheproductsmaturedandbecameeasytouseandaffordable,securityexpertsbegantodeconstructthelimitedsecuritythathadbeenbuiltintothe

standard.The802.11bstandardwasthefirsttomarket,802.11afollowed,and

802.11gproductscurrentlyarethemostcommononesbeingsold.Thesechipsetshavealsocommonlybeencombinedintodevicesthatsupporta/b/gstandards.802.11nisthelateststandard.Thistableshowsthestandardswiththeirfrequencyranges.

802.11aisthewirelessnetworkingstandardthatsupportstrafficonthe5GHzband,allowingfasterspeedsovershorterranges.Featuresof802.11band802.11awerelaterjoinedtocreate802.11g,anupdatedstandardthatallowsthefasterspeedsofthe5GHzspecificationonthe2.4GHzband.Securityproblemswerediscoveredintheimplementationsoftheseearlywirelessstandards,principallyinvolvingtheWiredEquivalent

Privacy(WEP)protocol.Theseproblemsincludedanattacker’sabilitytobreakthecryptographyandmonitorotherusers’traffic.ThesecurityproblemsinWEPwereatopconcernuntiltheadoptionof802.11i-compliantproductsenhancedthesecuritywithWi-FiProtectedAccess(WPA),discussedlaterinthechapter.802.11acisthelateststandard;itfocusesonachievingmuchhigherspeedsforwirelessnetworks.Direct-sequencespreadspectrum(DSSS)isamodulationtypethatspreadsthetrafficsentovertheentirebandwidth.Itdoesthisbyinjectinganoise-likesignalintotheinformationstreamandtransmittingthenormallynarrowbandinformationoverthewiderbandavailable.Theprimaryreasonthatspread-spectrumtechnologyisusedin802.11protocolsistoavoidinterferenceonthepublic2.4GHzand5GHzbands.Orthogonalfrequencydivisionmultiplexing(OFDM)multiplexes,orseparates,thedatatobetransmittedintosmallerchunksandthentransmitsthechunksonseveralsubchannels.Thisuseofsubchannelsiswhatthe“frequencydivision”portionofthenamerefersto.Bothofthesetechniques,multiplexingandfrequencydivision,areusedtoavoidinterference.Orthogonalreferstothemannerinwhichthesubchannelsareassigned,principallytoavoidcrosstalk,orinterferencewithyourownchannels.

802.11:IndividualStandardsThe802.11bprotocolprovidesformultiple-rateEthernetover2.4GHzspread-spectrumwireless.Itprovidestransferratesof1Mbps,2Mbps,5.5Mbps,and11MbpsandusesDSSS.Themostcommonlayoutisapoint-to-multipointenvironment,withtheavailablebandwidthbeingsharedbyallusers.Typicalrangeisroughly100yardsindoorsand300yardsoutdoors,lineofsight.Whilethewirelesstransmissionsof802.11canpenetratesomewallsandotherobjects,thebestrangeisofferedwhenboththeaccesspointandnetworkclientdeviceshaveanunobstructedviewofeachother.802.11ausesahigherbandandhashigherbandwidth.Itoperatesinthe

5GHzspectrumusingOFDM.Supportingratesofupto54Mbps,itisthe

fasterbrotherof802.11b;however,thehigherfrequencyusedby802.11ashortenstheusablerangeofthedevicesandmakesitincompatiblewith802.11b.Thechipsetstendtobemoreexpensivefor802.11a,whichhasslowedadoptionofthestandard.The802.11gstandardusesportionsofbothoftheotherstandards:it

usesthe2.4GHzbandforgreaterrangebutusestheOFDMtransmissionmethodtoachievethefaster54Mbpsdatarates.Asitusesthe2.4GHzband,thisstandardinteroperateswiththeolder802.11bstandard.Thisallowsan802.11gaccesspoint(AP)togiveaccesstoboth“G”and“B”clients.The802.11nversionimprovesontheolderstandardsbygreatly

increasingspeed.Ithasafunctionaldatarateofupto600Mbps,gainedthroughtheuseofwiderbandsandmultiple-inputmultiple-output(MIMO)processing.MIMOusesmultipleantennasandcanbondseparatechannelstogethertoincreasedatathroughput.802.11acisthelatestinthe5GHzband,withfunctionaldataratesupto

atheoretical6+Gbpsusingmultipleantennas.The802.11acstandardwasratifiedin2014,andchipsetshavebeenavailablesincelate2011.Designedformultimediastreamingandotherhigh-bandwidthoperations,theindividualchannelsaretwicethewidthof802.11nchannels,andasmanyaseightantennascanbedeployedinaMu-MIMOform.802.11proposalsdon’tstopwith“ac”though.Thereareseveralideas

thatextendthe802.11standardfornewandinterestingapplications.Forexample,802.11sisaproposedstandardforwirelessmeshnetworkswhereallnodesonthenetworkareequalinsteadofusinganaccesspointandaclient.802.11pisanotherexample;itdefinesanapplicationwheremobilevehiclescancommunicatewithothervehiclesorroadsidestationsforsafetyinformationortollcollection.Alltheseprotocolsoperateinbandsthatare“unlicensed”bytheFCC.

ThismeansthatpeopleoperatingthisequipmentdonothavetobecertifiedbytheFCC,butitalsomeansthatthedevicescouldpossiblysharethebandwithotherdevices,suchascordlessphones,closed-circuitTV(CCTV)wirelesstransceivers,andothersimilarequipment.Thisother

equipmentcancauseinterferencewiththe802.11equipment,possiblycausingspeeddegradation.

The2.4GHzbandiscommonlyusedbymanyhouseholddevicesthatareconstantlyon,suchascordlessphones.Itisalsothefrequencyusedbymicrowaveovenstoheatfood.SoifyouarehavingintermittentinterferenceonyourWi-FiLAN,checktoseeifthemicrowaveison.

The802.11protocoldesignersexpectedsomesecurityconcernsandattemptedtobuildprovisionsintothe802.11protocolthatwouldensureadequatesecurity.The802.11standardincludesattemptsatrudimentaryauthenticationandconfidentialitycontrols.Authenticationishandledinitsmostbasicformbythe802.11AP,forcingtheclientstoperformahandshakewhenattemptingto“associate”totheAP.

SSIDscanbesettoanythingbythepersonsettingupanaccesspoint.So,while“FBISurveillanceVan#14”mayseemhumorous,whataboutSSIDswiththenameoftheairportyouarein,Starbucks,orthehotelyouarein?Canyoutrustthem?Sinceanyonecanuseanyname,theanswerisno.So,ifyouneedasecureconnection,youshouldusesomeformofsecurechannelsuchasaVPNforcommunicationsecurity.Forevenmoresecurity,youcancarryyourownaccesspointandcreateawirelesschannelthatyoucontrol.

AssociationistheprocessrequiredbeforetheAPwillallowtheclienttotalkacrosstheAPtothenetwork.Associationoccursonlyiftheclienthasallthecorrectparametersneededinthehandshake,amongthemtheservicesetidentifier(SSID).ThisSSIDsettingshouldlimitaccessonlytotheauthorizedusersofthewirelessnetwork.TheSSIDisaphrase-basedmechanismthathelpsensurethatyouareconnectingtothecorrectAP.ThisSSIDphraseistransmittedinalltheaccesspoint’sbeaconframes.Thebeaconframeisan802.11managementframeforthenetworkandcontainsseveraldifferentfields,suchasthetimestampandbeaconinterval,butmostimportantlytheSSID.Thisallowsattackersto

scanforthebeaconframeandretrievetheSSID.Thedesignersofthe802.11standardalsoattemptedtomaintain

confidentialitybyintroducingWiredEquivalentPrivacy(WEP),whichusestheRC4streamciphertoencryptthedataasitistransmittedthroughtheair.WEPhasbeenshowntohaveanimplementationproblemthatcanbeexploitedtobreaksecurity.Tounderstandallthe802.11securityproblems,youmustfirstlookat

someofthereasonsitbecamesuchaprominenttechnology.Wirelessnetworkscamealongin2000andbecameverypopular.Forthefirsttime,itwaspossibletohavealmostfull-speednetworkconnectionswithouthavingtobetieddowntoanEthernetcable.Thetechnologyquicklytookoff,allowingpricestodropintotheconsumerrange.Oncethemarketshiftedtofocusoncustomerswhowerenotnecessarilytechnologists,theproductsalsobecameveryeasytoinstallandoperate.Defaultsettingsweredesignedtogetthenoviceusersupandrunningwithouthavingtoalteranythingsubstantial,andproductsweredescribedasbeingabletojustpluginandwork.Thesedevelopmentsfurtherenlargedthemarketforthelow-cost,easy-to-usewirelessaccesspoints.ThenattackersrealizedthatinsteadofattackingmachinesovertheInternet,theycoulddrivearoundandseekouttheseAPs.Typically,accesstoactualEthernetsegmentsisprotectedbyphysical

securitymeasures.Thisstructureallowssecurityadministratorstoplanforonlyinternalthreatstothenetworkandgivesthemaclearideaofthetypesandnumberofmachinesconnectedtoit.Wirelessnetworkingtakesthekeystothekingdomandtossesthemoutthewindowandintotheparkinglot.Atypicalwirelessinstallationbroadcaststhenetworkrightthroughthephysicalcontrolsthatareinplace.AnattackercandriveupandhavethesameaccessasifhepluggedintoanEthernetjackinsidethebuilding—infact,betteraccess,because802.11isasharedmedium,allowingsnifferstoviewallpacketsbeingsenttoorfromtheAPandallclients.TheseAPsarealsotypicallybehindanysecuritymeasuresthecompanieshaveinplace,suchasfirewallsandintrusiondetectionsystems(IDSs).Thiskindofaccessintotheinternalnetworkhascausedalargestiramongcomputer

securityprofessionalsandeventuallythemedia.War-driving,war-flying,war-walking,war-chalking—allofthesetermshavebeenusedinsecurityarticleaftersecurityarticletodescribeattacksonwirelessnetworks.

CrossCheckIntrusionDetectionSystemsChapter13hasalotmoreinformationaboutintrusiondetectionsystems,whereasthischapterreferencesmethodsofgettingpasttheIDSs.WhenyoulearnmoreaboutthedifferentIDSs,howwouldyoudesignanIDSthatcancatchwirelessattackers?

Attacking802.11Wirelessisapopulartargetforseveralreasons:theaccessgainedfromwireless,thelackofdefaultsecurity,andthewideproliferationofdevices.However,otherreasonsalsomakeitattackable.Thefirstoftheseisanonymity:Anattackercanprobeyourbuildingforwirelessaccessfromthestreet.ThenhecanlogpacketstoandfromtheAPwithoutgivinganyindicationthatanattemptedintrusionistakingplace.TheattackerwillannouncehispresenceonlyifheattemptstoassociatetotheAP.Eventhen,anattemptedassociationisrecordedonlybytheMACaddressofthewirelesscardassociatingtoit,andmostAPsdonothavealertingfunctionalitytoindicatewhenusersassociatetoit.Thisfactgivesadministratorsaverylimitedviewofwhoisgainingaccesstothenetwork,iftheyareevenpayingattentionatall.Itgivesattackerstheabilitytoseekoutandcompromisewirelessnetworkswithrelativeimpunity.Thesecondreasonisthelowcostoftheequipmentneeded.Asingle

wirelessaccesscardcostinglessthan$100cangiveaccesstoanyunsecuredAPwithindrivingrange.Finally,attackingawirelessnetworkisrelativelyeasycomparedtoattackingothertargethosts.Windows-basedtoolsforlocatingandsniffingwireless-basednetworkshaveturnedanyonewhocandownloadfilesfromtheInternetandhasawirelesscardintoapotentialattacker.

Locatingwirelessnetworkswasoriginallytermedwar-driving,anadaptationofthetermwar-dialing.War-dialingcomesfromthe1983movieWarGames;itistheprocessofdialingalistofphonenumberslookingformodem-connectedcomputers.War-driversdrivearoundwithawirelesslocaterprogramrecordingthenumberofnetworksfoundandtheirlocations.Thistermhasevolvedalongwithwar-flyingandwar-walking,whichmeanexactlywhatyouexpect.War-chalkingstartedwithpeopleusingchalkonsidewalkstomarksomeofthewirelessnetworkstheyfound.

Anonymityalsoworksinanotherway;onceanattackerfindsanunsecuredAPwithwirelessaccess,theycanuseanessentiallyuntraceableIPaddresstoattemptattacksonotherInternethosts.

Themostcommontoolsforanattackertousearereception-basedprogramsthatlistentothebeaconframesoutputbyotherwirelessdevices,andprogramsthatpromiscuouslycapturealltraffic.ThemostwidelyusedoftheseprogramsiscalledNetStumbler,createdbyMariusMilnerandshowninFigure12.5.ThisprogramlistensforthebeaconframesofAPsthatarewithinrangeofthecardattachedtotheNetStumblercomputer.Whenitreceivestheframes,itlogsallavailableinformationabouttheAPforlateranalysis.Sinceitlistensonlytobeaconframes,NetStumblerdisplaysonlynetworksthathavetheSSIDbroadcastturnedon.IfthecomputerhasaGPSunitattachedtoit,theprogramalsologstheAP’scoordinates.ThisinformationcanbeusedtoreturntotheAPortoplotmapsofAPsinacity.

•Figure12.5NetStumbleronaWindowsPC

NetStumblerisaWindows-basedapplication,butprogramsforotheroperatingsystemssuchasOSX,BSD,Linux,andothersworkonthesameprinciple.

ExamTip:Becausewirelessantennascantransmitoutsideafacility,thepropertuningandplacementoftheseantennascanbecrucialforsecurity.Adjustingradiatedpowerthroughthesepower-levelcontrolswillassistinkeepingwirelesssignalsfrombeingbroadcastoutsideareas

underphysicalaccesscontrol.

Onceanattackerhaslocatedanetwork,andassumingthathecannotdirectlyconnectandstartactivescanningandpenetrationofthenetwork,hewillusethebestattacktoolthereis:anetworksniffer.Thenetworksniffer,whencombinedwithawirelessnetworkcarditcansupport,isapowerfulattacktool,asthesharedmediumofawirelessnetworkexposesallpacketstointerceptionandlogging.PopularwirelesssniffersareWireshark(formerlyEthereal)andKismet.RegularsniffersusedonwiredEthernethavealsobeenupdatedtoincludesupportforwireless.SniffersarealsoimportantbecausetheyallowyoutoretrievetheMACaddressesofthenodesofthenetwork.APscanbeconfiguredtoallowaccessonlytoprespecifiedMACaddresses,andanattackerspoofingtheMACcanbypassthisfeature.Therearespecializedsniffertoolsdesignedwithasingleobjective:to

crackWiredEquivalentPrivacy(WEP)keys.Asdescribedearlier,WEPisanencryptionprotocolthat802.11usestoattempttoensureconfidentialityofwirelesscommunications.Unfortunately,ithasturnedouttohaveseveralproblems.WEP’sweaknessesarespecificallytargetedforattackbythespecializedsnifferprograms.Theyworkbyexploitingweakinitializationvectorsintheencryptionalgorithm.Toexploitthisweakness,anattackerneedsacertainnumberofciphertextpackets;oncehehascapturedenoughpackets,however,theprogramcanveryquicklydeciphertheencryptionkeybeingused.WEPCrackwasthefirstavailableprogramtousethisflawtocrackWEPkeys;however,WEPCrackdependsonadumpofactualnetworkpacketsfromanothersnifferprogram.AirSnortisastandaloneprogramthatcapturesitsownpackets;onceithascapturedenoughciphertext,itprovidestheWEPkeyofthenetwork.

TechTip

IVAttackBecauseofthesmalllengthoftheinitializationvector(IV)inWEP,theprotectionissubject

toattackovertimebyexaminingpacketsanddeterminingwhentheIV+RC4keyrepeats,enablingthedefeatoftheprotection.

Localusersofthenetworkaresusceptibletohavingtheirentiretrafficdecodedandanalyzed.Apropersitesurveyisanimportantstepinsecuringawirelessnetworktoavoidsendingcriticaldatabeyondcompanywalls.Recurringsitesurveysareimportantbecausewirelesstechnologyischeapandtypicallycomesunsecuredinitsdefaultconfiguration.IfanyoneattachesawirelessAPtoyournetwork,youwanttoknowaboutitimmediately.

TechTip

AnotherMeaningofRogueAccessPointA“rogueaccesspoint”canalsorefertoanattacker’saccesspoint,setupasamaninthemiddletocapturelogininformationfromunsuspectingusers.

Ifunauthorizedwirelessissetup,itisknownasarogueaccesspoint.Rogueaccesspointscanbesetupbywell-meaningemployeesorhiddenbyanattackerwithphysicalaccess.Anattackermightsetuparogueaccesspointiftheyhavealimitedamountofphysicalaccesstoanorganization,perhapsbysneakingintothebuildingbriefly.TheattackercanthensetupanAPonthenetworkand,byplacingitbehindtheexternalfirewallornetworkIDS(NIDS)typeofsecuritymeasures,canattachtothewirelessatalaterdateattheirleisure.Thisapproachreducestheriskofgettingcaughtbyphysicalsecuritystaff,andiftheAPisfound,itdoesnotpointdirectlybacktoanykindoftraceableaddress.Anothertypeof802.11attackisknownastheeviltwinattack.Thisis

theuseofanaccesspointownedbyanattackerthatusuallyhasbeenenhancedwithhigher-powerandhigher-gainantennastolooklikeabetterconnectiontotheusersandcomputersattachingtoit.Bygettinguserstoconnectthroughtheevilaccesspoint,attackerscanmoreeasilyanalyze

trafficandperformman-in-the-middle−typeattacks.Forsimpledenialofservice,anattackercoulduseinterferencetojamthewirelesssignal,notallowinganycomputertoconnecttotheaccesspointsuccessfully.

CrossCheckIdentifyingRogueAccessPointsInChapter8youlearnedabouthowphysicalsecuritycanimpactinformationsecurity,andhowseveraldifferentdevicescanactasawirelessbridgeandbearogueaccesspoint.Canyouthinkofsomephysicalsecuritypoliciesthatcanhelpreducetheriskofrogueaccesspoints?Whataboutsomeinformationsecuritypolicies?

802.11networkshavetwofeaturesusedprimarilyforsecurity:oneisdesignedsolelyforauthentication,andtheotherisdesignedforauthenticationandconfidentiality.Partoftheauthenticationfunction,introducedearlier,isknownastheservicesetidentifier(SSID).Thisunique32-octetidentifierisattachedtotheheaderofthepacket.TheSSIDisbroadcastbydefaultasanetworkname,butbroadcastingofthisbeaconframecanbedisabled.UserscanauthenticatetoanetworkregardlessofwhethertheSSIDisbroadcastornot,buttheydoneedtoknowtheSSIDtoconnect.ManyAPsalsouseadefaultSSID;forCiscoAPs,thisdefaultis

tsunami,whichmayindicateanAPthathasnotbeenconfiguredforanysecurity.RenamingtheSSIDanddisablingSSIDbroadcastarebothgoodideas;however,becausetheSSIDispartofeveryframe,thesemeasuresshouldnotbeconsideredadequatetosecurethenetwork.AstheSSIDis,hopefully,auniqueidentifier,onlypeoplewhoknowtheidentifierwillbeabletocompleteassociationtotheAP.WhiletheSSIDisagoodideaintheory,itissentinplaintextinthepackets,soinpracticeSSIDofferslittlesecuritysignificance—anysniffercandeterminetheSSID.ThisweaknessismagnifiedbymostAPs’defaultsettingstotransmit

beaconframes.Thebeaconframe’spurposeistoannouncethewirelessnetwork’spresenceandcapabilitiessothatWLANcardscanattemptto

associatetoit.ThiscanbedisabledinsoftwareformanyAPs,especiallythemoresophisticatedones.Fromasecurityperspective,thebeaconframeisdamagingbecauseitcontainstheSSID,andthisbeaconframeistransmittedatasetinterval(tentimespersecondbydefault).SinceadefaultAPwithoutanyothertrafficissendingoutitsSSIDinplaintexttentimesasecond,youcanseewhytheSSIDdoesnotprovidetrueauthentication.ScanningprogramssuchasNetStumblerworkbycapturingthebeaconframesandtherebytheSSIDsofallAPs.

ExamTip:MACfilteringcanbeemployedonWAPsbutcanbebypassedbyattackersobservingallowedMACaddressesandspoofingtheallowedMACaddressforthewirelesscard.

MostAPsalsohavetheabilitytolockaccessinonlytoknownMACaddresses,providingalimitedauthenticationcapability.Givensniffers’capacitytograballactiveMACaddressesonthenetwork,thiscapabilityisnotveryeffective.AnattackersimplyconfigureshiswirelesscardstoaknowngoodMACaddress.WEPencryptsthedatatravelingacrossthenetworkwithanRC4stream

cipher,attemptingtoensureconfidentiality.Thissynchronousmethodofencryptionensuressomemethodofauthentication.ThesystemdependsontheclientandtheAPhavingasharedsecretkey,ensuringthatonlyauthorizedpeoplewiththeproperkeyhaveaccesstothewirelessnetwork.WEPsupportstwokeylengths,40and104bits,thoughthesearemoretypicallyreferredtoas64and128bits,because24bitsoftheoverallkeylengthareusedfortheinitializationvector(IV).In802.11aand802.11g,manufacturershaveextendedthisto152-bitWEPkeys,againwith24bitsbeingusedfortheIV.

TechTip

WEPIsn’tEquivalentWEPshouldnotbetrustedalonetoprovideconfidentiality.IfWEPistheonlyprotocolsupportedbyyourAP,placeitoutsidethecorporatefirewallandVPNtoaddmoreprotection.

TheIVistheprimaryreasonfortheweaknessesinWEP.TheIVissentintheplaintextpartofthemessage,andbecausethetotalkeyspaceisapproximately16millionkeys,thesamekeywillbereused.Oncethekeyhasbeenrepeated,anattackerhastwociphertextsencryptedwiththesamekeystream.Thisallowstheattackertoexaminetheciphertextandretrievethekey.ThisattackcanbeimprovedbyexaminingonlypacketsthathaveweakIVs,reducingthenumberofpacketsneededtocrackthekey.UsingonlyweakIVpackets,thenumberofrequiredcapturedpacketsisreducedtoaroundfourorfivemillion,whichcantakeonlyafewhourstocaptureonafairlybusyAP.Forapointofreference,thismeansthatequipmentwithanadvertisedWEPkeyof128bitscanbecrackedinlessthanaday,whereastocrackanormal128-bitkeywouldtakeroughly2,000,000,000,000,000,000yearsonacomputerabletoattemptonetrillionkeysasecond.Asmentioned,AirSnortisamodifiedsniffingprogramthattakesadvantageofthisweaknesstoretrievetheWEPkeys.ThebiggestweaknessofWEPisthattheIVproblemexistsregardless

ofkeylength,becausetheIValwaysremainsat24bits.Afterthelimitedsecurityfunctionsofawirelessnetworkarebroken,the

networkbehavesexactlylikearegularEthernetnetworkandissubjecttotheexactsamevulnerabilities.Thehostmachinesthatareonorattachedtothewirelessnetworkareasvulnerableasiftheyandtheattackerwerephysicallyconnected.Beingonthenetworkopensupallmachinestovulnerabilityscanners,Trojanhorseprograms,virusandwormprograms,andtrafficinterceptionviasnifferprograms.Anyunpatchedvulnerabilityonanymachineaccessiblefromthewirelesssegmentisnowopentocompromise.

CurrentSecurityMethods

WEPwasdesignedtoprovidesomemeasureofconfidentialityonan802.11networksimilartowhatisfoundonawirednetwork,butthathasnotbeenthecase.Accordingly,theWi-FiAlliancedevelopedWi-FiProtectedAccess(WPA)toimproveuponWEP.The802.11istandardistheIEEEstandardforsecurityinwirelessnetworks,alsoknownasWi-FiProtectedAccess2(WPA2).Ituses802.1Xtoprovideauthentication.WPA2canuseAdvancedEncryptionStandard(AES)astheencryptionprotocol.The802.11istandardspecifiestheuseoftheTemporalKeyIntegrityProtocol(TKIP)andusesAESwiththeCounterModewithCBC-MACProtocol(infull,theCounterModewithCipherBlockChaining–MessageAuthenticationCodesProtocol,orsimplyCCMP).Thesetwoprotocolshavedifferentfunctions,buttheybothservetoenhancesecurity.TKIPworksbyusingasharedsecretcombinedwiththecard’sMAC

addresstogenerateanewkey,whichismixedwiththeIVtomakeper-packetkeysthatencryptasinglepacketusingthesameRC4cipherusedbytraditionalWEP.ThisovercomestheWEPkeyweakness,asakeyisusedononlyonepacket.Theotheradvantagetothismethodisthatitcanberetrofittedtocurrenthardwarewithonlyasoftwarechange,unlikeAESand802.1X.CCMPisactuallythemodeinwhichtheAEScipherisusedtoprovidemessageintegrity.UnlikeTKIP,CCMPrequiresnewhardwaretoperformtheAESencryption.Theadvancesof802.11ihavecorrectedtheweaknessesofWEP.

WPAThefirststandardtobeusedinthemarkettoreplaceWEPwasWi-FiProtectedAccess(WPA).ThisstandardusestheflawedWEPalgorithmwiththeTemporalKeyIntegrityProtocol(TKIP).WhileWEPusesa40-bitor104-bitencryptionkeythatmustbe

manuallyenteredonwirelessaccesspointsanddevicesanddoesnotchange,TKIPemploysaper-packetkey,generatinganew128-bitkeyforeachpacket.Thiscangenerallybeaccomplishedwithonlyafirmwareupdate,enablingasimplesolutiontothetypesofattacksthatcompromise

WEP.

TKIPTemporalKeyIntegrityProtocol(TKIP)wascreatedasastopgapsecuritymeasuretoreplacetheWEPprotocolwithoutrequiringthereplacementoflegacyhardware.ThebreakingofWEPhadleftWi-Finetworkswithoutviablelink-layersecurity,andasolutionwasrequiredforalreadydeployedhardware.TKIPworksbymixingasecretrootkeywiththeIVbeforetheRC4encryption.WPA/TKIPusesthesameunderlyingmechanismasWEP,andconsequentlyisvulnerabletoanumberofsimilarattacks.TKIPisnolongerconsideredsecureandhasbeendeprecatedwiththereleaseofWPA2.

WPA2IEEE802.11iisthestandardforsecurityinwirelessnetworksandisalsoknownasWi-FiProtectedAccess2(WPA2).Ituses802.1xtoprovideauthenticationandusestheAdvancedEncryptionStandard(AES)astheencryptionprotocol.WPA2usestheAESblockcipher,asignificantimprovementoverWEP’sandWPA’suseoftheRC4streamcipher.The802.11istandardspecifiestheuseoftheCounterModewithCBC-MACProtocol(infull,theCounterModewithCipherBlockChaining–MessageAuthenticationCodesProtocol,orsimplyCCMP).

WPSWi-FiProtectedSetup(WPS)isanetworksecuritystandardthatwascreatedtoprovideuserswithaneasymethodofconfiguringwirelessnetworks.Designedforhomenetworksandsmallbusinessnetworks,thisstandardinvolvestheuseofaneight-digitPINtoconfigurewirelessdevices.WPSconsistsofaseriesofExtensibleAuthenticationProtocol(EAP)messagesandhasbeenshowntobesusceptibletoabrute-forceattack.AsuccessfulattackcanrevealthePINandsubsequentlytheWPA/WPA2passphraseandallowunauthorizedpartiestogainaccessto

thenetwork.Currently,theonlyeffectivemitigationistodisableWPS.

SettingUpWPA2IfWPSisnotsafeforuse,howdoesonesetupWPA2?TosetupWPA2,youneedtohaveseveralparameters.Figure12.6showsthescreensforaWPA2setupinWindows7.

•Figure12.6WPA2setupoptionsinWindows7

Thefirstelementistochooseasecurityframework.Whenconfiguringanadaptertoconnecttoanexistingnetwork,youneedtomatchthechoiceofthenetwork.Whensettingupyourownnetwork,youcanchoosewhicheveroptionyouprefer.Therearemanyselections,butforsecuritypurposes,youshouldchooseWPA2-PersonalorWPA2-Enterprise.Bothoftheserequirethechoiceofanencryptiontype,eitherTKIPorAES.TKIPhasbeendeprecated,sochooseAES.Thelastelementisthechoiceofthenetworksecuritykey—thesecretthatissharedbyallusers.WPA2-Enterprise,whichisdesignedtobeusedwithan802.1xauthenticationserverthatdistributesdifferentkeystoeachuser,istypicallyusedinbusinessenvironments.

EAPExtensibleAuthenticationProtocol(EAP)isdefinedinRFC2284(obsoletedby3748).EAP-TLSreliesonTransportLayerSecurity(TLS),anattempttostandardizetheSSLstructuretopasscredentials.EAP-TTLS(theacronymstandsforEAP–TunneledTLSprotocol)isavariantoftheEAP-TLSprotocol.EAP-TTLSworksmuchthesamewayasEAP-TLS,withtheserverauthenticatingtotheclientwithacertificate,buttheprotocoltunnelstheclientsideoftheauthentication,allowingtheuseoflegacyauthenticationprotocolssuchasPasswordAuthenticationProtocol(PAP),Challenge-HandshakeAuthenticationProtocol(CHAP),MS-CHAP,orMS-CHAP-V2.

LEAPCiscodesignedaproprietaryEAPknownasLightweightExtensibleAuthenticationProtocol(LEAP);however,thisisbeingphasedoutfornewerprotocolssuchasPEAPorEAP-TLS.Susceptibletoofflinepasswordguessing,andwithtoolsavailablethatactivelybreakLEAPsecurity,thisprotocolhasbeendeprecatedinfavorofstrongermethodsof

EAP.

PEAPPEAP,orProtectedEAP,wasdevelopedtoprotecttheEAPcommunicationbyencapsulatingitwithTLS.ThisisanopenstandarddevelopedjointlybyCisco,Microsoft,andRSA.EAPwasdesignedassumingasecurecommunicationchannel.PEAPprovidesthatprotectionaspartoftheprotocolviaaTLStunnel.PEAPiswidelysupportedbyvendorsforuseoverwirelessnetworks.

Implementing802.1XTheIEEE802.1XprotocolcansupportawidevarietyofauthenticationmethodsandalsofitswellintoexistingauthenticationsystemssuchasRADIUSandLDAP.Thisallows802.1XtointeroperatewellwithothersystemssuchasVPNsanddial-upRAS.Unlikeotherauthenticationmethods,suchasthePoint-to-PointProtocoloverEthernet(PPPoE),802.1Xdoesnotuseencapsulation,sothenetworkoverheadismuchlower.Unfortunately,theprotocolisjustaframeworkforprovidingimplementation,sonospecificsguaranteestrongauthenticationorkeymanagement.Implementationsoftheprotocolvaryfromvendortovendorinmethodofimplementationandstrengthofsecurity,especiallywhenitcomestothedifficulttestofwirelesssecurity.Threecommonmethodsareusedtoimplement802.1X:EAP-TLS,

EAP-TTLS,andEAP-MD5.EAP-TLSreliesonTLS,anattempttostandardizetheSSLstructuretopasscredentials.Thestandard,developedbyMicrosoft,usesX.509certificatesandoffersdynamicWEPkeygeneration.Thismeansthattheorganizationmusthavetheabilitytosupportthepublickeyinfrastructure(PKI)intheformofX.509digitalcertificates.Also,per-user,per-sessiondynamicallygeneratedWEPkeyshelppreventanyonefromcrackingtheWEPkeysinuse,aseachuserindividuallyhasherownWEPkey.EvenifauserwereloggedontotheAPandtransmittedenoughtraffictoallowcrackingoftheWEPkey,accesswouldbegainedonlytothatuser’straffic.Nootheruser’sdata

wouldbecompromised,andtheattackercouldnotusetheWEPkeytoconnecttotheAP.ThisstandardauthenticatestheclienttotheAP,butitalsoauthenticatestheAPtotheclient,helpingtoavoidman-in-the-middleattacks.ThemainproblemwiththeEAP-TLSprotocolisthatitisdesignedtoworkonlywithMicrosoft’sActiveDirectoryandCertificateServices;itwillnottakecertificatesfromothercertificateissuers.Thusamixedenvironmentwouldhaveimplementationproblems.Asdiscussedearlier,EAP-TTLSworksmuchthesamewayasEAP-

TLS,withtheserverauthenticatingtotheclientwithacertificate,buttheprotocoltunnelstheclientsideoftheauthentication,allowingtheuseoflegacyauthenticationprotocolssuchasPasswordAuthenticationProtocol(PAP),Challenge-HandshakeAuthenticationProtocol(CHAP),MS-CHAP,orMS-CHAP-V2.ThismakestheprotocolmoreversatilewhilestillsupportingtheenhancedsecurityfeaturessuchasdynamicWEPkeyassignment.EAP-MD5,whileitdoesimprovetheauthenticationoftheclienttothe

AP,doeslittleelsetoimprovethesecurityofyourAP.TheprotocolworksbyusingtheMD5encryptionprotocoltohashauser’susernameandpassword.Thisprotocol,unfortunately,providesnowayfortheAPtoauthenticatewiththeclient,anditdoesnotprovidefordynamicWEPkeyassignment.Inthewirelessenvironment,withoutstrongtwo-wayauthentication,itisveryeasyforanattackertoperformaman-in-the-middleattack.Normally,thesetypesofattacksaredifficulttoperform,requiringatrafficredirectofsomekind,butwirelesschangesallthoserules.BysettinguparogueAP,anattackercanattempttogetclientstoconnecttoitasifitwereauthorizedandthensimplyauthenticatetotherealAP,asimplewaytohaveaccesstothenetworkandtheclient’scredentials.TheproblemofnotdynamicallygeneratingWEPkeysisthatitsimplyopensupthenetworktothesamelackofconfidentialitytowhichanormalAPisvulnerable.AnattackerhastowaitonlyforenoughtraffictocracktheWEPkey,andhecanthenobservealltrafficpassingthroughthenetwork.BecausethesecurityofwirelessLANshasbeensoproblematic,many

usershavesimplyswitchedtoalayeredsecurityapproach—thatis,theyhavemovedtheirAPstountrustworthyportionsofthenetworkandhaveforcedallclientstoauthenticatethroughthefirewalltoathird-partyVPNsystem.TheadditionalsecuritycomesatapriceofputtingmoreloadonthefirewallandVPNinfrastructureandpossiblyaddingcumbersomesoftwaretotheusers’devices.Whilewirelesscanbesetupinaverysecuremannerinthisfashion,itcanalsobesetuppoorly.Somesystemslackstrongauthenticationofbothendpoints,leadingtopossibilitiesofaman-in-the-middleattack.Also,eventhoughthedataistunneledthrough,IPaddressesarestillsentintheclear,givinganattackerinformationaboutwhatandwhereyourVPNendpointis.Anotherphenomenonofwirelessisborneoutofitswideavailability

andlowprice.AllthesecuritymeasuresofthewiredandwirelessnetworkcanbedefeatedbytherogueAP.Thisisthethirdpossibletypeofrogueaccesspointdiscussedinthischapter;theyallsharethesamenameastheyallrepresentasecuritybreach.However,sincetheyareimplementedwithdifferentmotivesandaccordinglyposeslightlydifferentthreats,wediscussthemallseparately.Inthiscase,awell-intentionedemployeewhoistryingtomaketheworkenvironmentmoreconvenientpurchasesanAPatalocalretailerandinstallsit.Wheninstalled,itworksfine,butittypicallywillhavenosecurityinstalled.SincetheITdepartmentdoesn’tknowaboutit,itisanuncontrolledentrypointintothenetwork.NomatterwhatkindofrogueAPwearedealingwith,therogueAP

mustbedetectedandcontrolled.ThemostcommonwaytocontrolrogueAPsissomeformofwirelessscanningtoensureonlylegitimatewirelessisinplaceatanorganization.WhilecompletewirelessIDSswilldetectAPs,thiscanalsobedonewithalaptopandfreesoftware.

TryThis!ScanningforRogueWirelessOnceyouhavecompletedLabProject12.1andhaveNetStumblerorKismetinstalledonthecomputer,takeittoseverallocationsaroundyourworkplaceorschoolandattempttoscanfor

wirelessaccesspointsthatshouldnotbethere.

CCMPAspreviouslymentionedinthediscussionofWPA2,CCMPstandsforCounterModewithCipherBlockChaining–MessageAuthenticationCodesProtocol(orCounterModewithCBC-MACProtocol).CCMPisadataencapsulationencryptionmechanismdesignedforwirelessuse.CCMPisactuallythemodeinwhichtheAEScipherisusedtoprovidemessageintegrity.UnlikeWPA,CCMPrequiresnewhardwaretoperformtheAESencryption.

MACFilteringMACfilteringistheselectiveadmissionofpacketsbasedonalistofapprovedMediaAccessControl(MAC)addresses.Employedonswitches,thismethodisusedtoprovideameansofmachineauthentication.Inwirednetworks,thisenjoystheprotectionaffordedbythewires,makinginterceptionofsignalstodeterminetheirMACaddressesdifficult.Inwirelessnetworks,thissamemechanismsuffersfromthefactthatanattackercanseetheMACaddressesofalltraffictoandfromtheaccesspoint,andthencanspooftheMACaddressesthatarepermittedtocommunicateviatheaccesspoint.

ExamTip:MACfilteringcanbeemployedonwirelessaccesspoints,butcanbebypassedbyattackersobservingallowedMACaddressesandspoofingtheallowedMACaddressforthewirelesscard.

WirelessSystemsConfigurationWirelesssystemsaremorethanjustprotocols.Puttingupafunctional

wirelesssysteminahouseisaseasyasplugginginawirelessaccesspointandconnecting.Butinanenterprise,wheremultipleaccesspointswillbeneeded,theconfigurationtakessignificantlymorework.Sitesurveysareneededtodetermineproperaccesspointandantennaplacement,aswellaschannelsandpowerlevels.

AntennaTypesThestandardaccesspointisequippedwithanomnidirectionalantenna.Omnidirectionalantennasoperateinalldirections,makingtherelativeorientationbetweendeviceslessimportant.Omnidirectionalantennascoverthegreatestareaperantenna.Theweaknessoccursincornersandhard-to-reachareas,aswellasboundariesofafacilitywheredirectionalantennasareneededtocompletecoverage.Figure12.7showsasamplingofcommonWi-Fiantennas:(a)isacommonhomewirelessrouter,(b)isacommercialindoorwirelessaccesspoint,and(c)isanoutdoordirectionalantenna.Thesecanbevisibleasshown,orhiddenaboveceilingtiles.

•Figure12.7Wirelessaccesspointantennas

WirelessnetworkingproblemscausedbyweaksignalstrengthcansometimesbesolvedbyinstallingupgradedWi-Firadioantennasontheaccesspoints.Onbusinessnetworks,thecomplexityofmultipleaccesspointstypicallyrequiresacomprehensivesitesurveytomaptheWi-Fi

signalstrengthinandaroundofficebuildings.Additionalwirelessaccesspointscanthenbestrategicallyplacedwhereneededtoresolvedeadspotsincoverage.Forsmallbusinessesandhomes,whereasingleaccesspointmaybeallthatisneeded,anantennaupgrademaybeasimplerandmorecost-effectiveoptiontofixWi-Fisignalproblems.TwocommonformsofupgradedantennasaretheYagiantennaandthe

panelantenna.AnexampleofaYagiantennaisshowninFigure12.7(c).BothYagiandpanelantennasaredirectionalinnature,spreadingtheRFenergyinamorelimitedfield,increasingeffectiverangeinonedirectionwhilelimitingitinothers.Panelantennascanprovidesolidroomperformancewhilepreventingsignalbleedbehindtheantennas.Thisworkswellontheedgeofasite,limitingthestrayemissionsthatcouldbecapturedoffsite.Yagiantennasactmorelikearifle,funnelingtheenergyalongabeam.Thisallowsmuchlongercommunicationdistancesusingstandardpower.Thisalsoenableseavesdropperstocapturesignalsfrommuchgreaterdistancesbecauseofthegainprovidedbytheantennaitself.

AntennaPlacementWi-Fiisbynaturearadio-basedmethodofcommunication,andassuchusesantennastotransmitandreceivethesignals.Theactualdesignandplacementoftheantennascanhaveasignificanteffectontheusabilityoftheradiofrequency(RF)mediumforcarryingthetraffic.Antennascomeinavarietyoftypes,eachwithitsowntransmissionpatternandgainfactor.High-gainantennascandealwithweakersignals,butalsohavemore-limitedcoverage.Wide-coverage,omnidirectionalantennascancoverwiderareas,butatlowerlevelsofgain.Theobjectiveofantennaplacementistomaximizethecoverageoveraphysicalareaandreducelow-gainareas.Thiscanbeverycomplexinbuildingswithwalls,electricalinterference,andothersourcesofinterferenceandfrequentlyrequiresasitesurveytodetermineproperplacement.

ExamTip:Becausewirelessantennascantransmitoutsideafacility,tuningandplacementofantennascanbecrucialforsecurity.Adjustingradiatedpowerthroughthepowerlevelcontrolswillassistinkeepingwirelesssignalsfrombeingbroadcastoutsideareasunderphysicalaccesscontrol.

MIMOMIMOisasetofmultiple-inputandmultiple-outputantennatechnologieswheretheavailableantennasarespreadoveramultitudeofindependentaccesspointseachhavingoneormultipleantennas.Thiscanenhancetheusablebandwidthanddatatransmissioncapacitybetweentheaccesspointanduser.ThereareawidevarietyofMIMOmethods,andthistechnology,onceconsideredcuttingedgeoradvanced,isbecomingmainstream.

PowerLevelControlsWi-Fipowerlevelscanbecontrolledbythehardwareforavarietyofreasons.Thelowerthepowerused,thelesstheopportunityforinterference.Butifthepowerlevelsaretoolow,thensignalstrengthlimitsrange.Accesspointscanhavethepowerlevelseteithermanuallyorviaprogrammaticcontrol.Formostusers,powerlevelcontrolsarenotveryuseful,andleavingtheunitindefaultmodeisthebestoption.Incomplexenterprisesetups,withsitesurveysandplannedoverlappingzones,thisaspectofsignalcontrolcanbeusedtoincreasecapacityandcontrolonthenetwork.

SiteSurveysWhendevelopingacoveragemapforacomplexbuildingsite,youneedtotakeintoaccountawidevarietyoffactors,particularlywalls,interferingsources,andfloorplans.Asitesurveyinvolvesseveralsteps:mappingthe

floorplan,testingforRFinterference,testingforRFcoverage,andanalysisofmaterialviasoftware.Thesoftwarecansuggestplacementofaccesspoints.AfterdeployingtheAPs,thesiteissurveyedagain,mappingtheresultsversusthepredicted,watchingsignalstrengthandsignal-to-noiseratios.Figure12.8illustrateswhatasitesurveylookslike.Thedifferentshadesindicatesignalstrength,showingwherereceptionisstrongandwhereitisweak.Sitesurveyscanbeusedtoensureavailabilityofwireless,especiallywhenit’scriticalforuserstohaveconnections.

•Figure12.8Examplesitesurvey

ExamTip:Wirelessnetworksaredependentuponradiosignalstofunction.Itisimportantto

understandthatantennatype,placement,andsitesurveysareusedtoensurepropercoverageofasite,includingareasblockedbywalls,interferingsignals,andechoes.

CaptivePortalsCaptiveportalreferstoaspecifictechniqueofusinganHTTPclienttohandleauthenticationonawirelessnetwork.Frequentlyemployedinpublichotspots,acaptiveportalopensawebbrowsertoanauthenticationpage.Thisoccursbeforetheuserisgrantedadmissiontothenetwork.Theaccesspointusesthissimplemechanismbyinterceptingallpacketsandreturningthewebpageforlogin.Theactualwebserverthatservesuptheauthenticationpagecanbeinawalled-offsectionofthenetwork,blockingaccesstotheInternetuntiltheusersuccessfullyauthenticates.

SecuringPublicWi-FiPublicWi-Fiisacommonperkthatsomefirmsprovidefortheircustomersandvisitors.WhenprovidingaWi-Fihotspot,evenfreeopen-to-the-publicWi-Fi,securityshouldstillbeaconcern.Oneoftheissuesassociatedwithwirelesstransmissionsisthattheyaresubjecttointerceptionbyanyonewithinrangeofthehotspot.Thismakesitpossibleforotherstointerceptandreadtrafficofanyoneusingthehotspot,unlessencryptionisused.Forthisreason,ithasbecomecommonpracticetousewirelesssecurity,evenwhentheintentistoopenthechannelforeveryone.Havingadefaultpassword,evenonethateveryoneknows,willmakeitsothatpeoplecannotobserveothertraffic.Thereisanentireopenwirelessmovement,designedaroundasharing

conceptthatpromotessharingoftheInternettoall.Forinformation,checkouthttps://openwireless.org.

MobileDevicesThissectionwillreviewalargenumberoftopicsspecifictomobile

devices.You’lllikelyfindthatthesecurityprinciplesyou’vealreadylearnedapplyandjustneedtobeadaptedtomobiletechnologies.Thisisoneofthefastest-changingareasofcomputersecuritybecausemobiletechnologyislikelythefastest-changingtechnology.

Althoughthedatatransmissionsbetweenmanymobiledevicesaresecuredviacarriermethods(GSM)anddevicemethods(RIMBlackberry),voicetransmissionshavebeeninterceptedandlaterusedtoembarrasstheparties.Third-partyvoiceencryptionmethodsexistforsmartphones,butareconsideredexpensiveanddifficulttodeploybymostpeople.Theyalsosufferfromtheproblemthatbothendsofaconversationneedthedevicetohaveasecuredcommunication.Asmoreandmorebusinessesfindvalueinsecuredvoicecommunications,thissolutionmaybecomemainstreaminthefuture.

Manymobiledeviceshavesignificantstoragecapacity,allowingthemtotransferfilesanddata.Datamustbeprotected,devicesmustbeproperlyconfigured,andgooduserhabitsmustbeencouraged.Thismakesmobiledevicesnodifferentfromanyothermobilemediasource,capableofcarryinganddeliveringviruses,worms,andotherformsofmalware.Theyarealsocapableofremovingdatafromwithinanetwork,inthecaseofaninsiderattack.MobiledevicesarealsocommonlyBluetoothenabled,makingvariouswirelessattacksagainstthedevicearisk.Onereasontoattackthemobiledeviceistouseittorelaytheattackontotheinternalnetworkwhenthedeviceissyncedup.BluetoothattacksarecoveredinChapter12.

MobileDeviceSecuritySecurityprinciplessimilartothoseapplicabletolaptopcomputersmustbefollowedwhenusingmobiledevicessuchassmartphonesandtabletcomputingdevices.Datamustbeprotected,devicesmustbeproperlyconfigured,andgooduserhabitsmustbeencouraged.Thischapterwillreviewalargenumberoftopicsspecifictomobiledevices.You’lllikelyfindthatthesecurityprinciplesyou’vealreadylearnedapplyandjustneed

tobeadaptedtomobiletechnologies.Thisisoneofthefastest-changingareasofcomputersecuritybecausemobiletechnologyislikelythefastest-changingtechnology.

FullDeviceEncryptionJustaslaptopcomputersshouldbeprotectedwithwholediskencryptiontoprotectthelaptopincaseoflossortheft,youmayneedtoconsiderencryptionformobiledevicesusedbyyourcompany’semployees.Mobiledevicesaremuchmorelikelytobelostorstolen,soyoushouldconsiderencryptingdataonyourdevices.Moreandmore,mobiledevicesareusedwhenaccessingandstoringbusiness-criticaldataorothersensitiveinformation.Protectingtheinformationonmobiledevicesisbecomingabusinessimperative.Thisisanemergingtechnology,soyou’llneedtocompletesomerigorousmarketanalysistodeterminewhatcommercialproductmeetsyourneeds.

RemoteWipingToday’smobiledevicesarealmostinnumerableandareverysusceptibletolossandtheft.Further,itisunlikelythatalostorstolendevicewillberecovered,thusmakingevenencrypteddatastoredonadevicemorevulnerabletodecryption.Ifthethiefcanhaveyourdeviceforalongtime,hecantakeallthetimehewantstotrytodecryptyourdata.Therefore,manycompaniesprefertojustremotelywipealostorstolendevice.Remotewipingamobiledevicetypicallyremovesdatastoredonthedeviceandresetsthedevicetofactorysettings.ThereisadilemmaintheuseofBYOD(bringyourowndevice)devicesthatstorebothpersonalandenterprisedata.Wipingthedeviceusuallyremovesalldata,bothpersonalandenterprise.Therefore,ifcorporatepolicyrequireswipingalostdevicethatmaymeanthedevice’suserlosespersonalphotosanddata.Thesoftwarecontrolsforseparatedatacontainers,oneforbusinessandoneforpersonal,areoneofthereasonsforenterprisestoadoptmobiledevicemanagement(MDM)solutions.

LockoutAuserlikelywilldiscoverinarelativelyshorttimethatthey’velosttheirdevice,soaquickwaytoprotecttheirdeviceistoremotelylockthedeviceassoonastheyrecognizeithasbeenlostorstolen.Severalproductsareavailableonthemarkettodaytohelpenterprisesmanagetheirdevices.Remotelockoutisusuallythefirststeptakeninsecuringamobiledevice.

Screen-locksMostcorporatepoliciesregardingmobiledevicesrequiretheuseofthemobiledevice’sscreen-lockingcapability.ThisusuallyconsistsofenteringapasscodeorPINtounlockthedevice.Itishighlyrecommendedthatscreenlocksbeenforcedforallmobiledevices.Yourpolicyregardingthequalityofthepasscodeshouldbeconsistentwithyourcorporatepasswordpolicy.However,manycompaniesmerelyenforcetheuseofscreen-locking.Thus,userstendtouseconvenientoreasy-to-rememberpasscodes.Somedevicesallowcomplexpasscodes.AsshowninFigure12.9,thedevicescreenontheleftsupportsonlyasimpleiOSpasscode,limitedtofournumbers,whilethedevicescreenontherightsupportsapasscodeofindeterminatelengthandcancontainalphanumericcharacters.

•Figure12.9iOSlockscreens

Somemoreadvancedformsofscreen-locksworkinconjunctionwithdevicewiping.Ifthepasscodeisenteredincorrectlyaspecifiednumberoftimes,thedeviceisautomaticallywiped.ThisisoneofthesecurityfeaturesofBlackBerrythathastraditionallymadeitofinteresttosecurity-conscioususers.ApplehasmadethisanoptiononneweriOSdevices.Applealsoallowsremotelockingofadevicefromtheuser’siCloudaccount.

TechTip

MobileDeviceSecurityMobiledevicesrequirebasicsecuritymechanismsofscreen-locks,lockouts,devicewiping,andencryptiontoprotectsensitiveinformationcontainedonthem.

GPSMostmobiledevicesarenowcapableofusingtheGlobalPositioningSystem(GPS)fortrackingdevicelocation.ManyappsrelyheavilyonGPSlocation,suchasdevice-locatingservices,mappingapps,trafficmonitoringapps,andappsthatlocatenearbybusinessessuchasgasstationsandrestaurants.Suchtechnologycanbeexploitedtotrackmovementlocationofthemobiledevice.Thistrackingcanbeusedtoassistintherecoveryoflostdevices.

StorageSegmentationOnmobiledevices,itcanbeverydifficulttokeeppersonaldataseparatefromcorporatedata.Somecompanieshavedevelopedcapabilitiestocreateseparatevirtualcontainerstokeeppersonaldataseparatefromcorporatedataandapplications.Fordevicesthatareusedtohandlehighly

sensitivecorporatedata,thisformofprotectionishighlyrecommended.

AssetControlBecauseeachusercanhavemultipledevicesconnectingtothecorporatenetwork,itisimportanttoimplementaviableassettrackingandinventorycontrolmechanism.Forsecurityandliabilityreasons,thecompanyneedstoknowwhatdevicesareconnectingtoitssystemsandwhataccesshasbeengranted.JustasinITsystems,maintainingalistofapproveddevicesisacriticalcontrol.

MobileDeviceManagementMobiledevicemanagement(MDM)isoneofthehottesttopicsindevicesecuritytoday.MDMbeganasamarketingtermforacollectivesetofcommonlyemployedprotectionelementsassociatedwithmobiledevices.Whenviewedasacomprehensivesetofsecurityoptionsformobiledevices,everycorporationshouldhaveandenforceanMDMpolicy.Thepolicyshouldrequire

Devicelockingwithastrongpassword

Encryptionofdataonthedevice

Devicelockingautomaticallyafteracertainperiodofinactivity

Thecapabilitytoremotelylockthedeviceifitislostorstolen

Thecapabilitytowipethedeviceautomaticallyafteracertainnumberoffailedloginattempts

Thecapabilitytoremotelywipethedeviceifitislostorstolen

Passwordpoliciesshouldextendtomobiledevices,includinglockoutand,ifpossible,theautomaticwipingofdata.Corporatepolicyfordataencryptiononmobiledevicesshouldbeconsistentwiththepolicyfordataencryptiononlaptopcomputers.Inotherwords,ifyoudon’trequireencryptionofportablecomputers,thenshouldyourequireitformobile

devices?Thereisnotauniformanswertothisquestion;mobiledevicesaremuchmoremobileinpracticethanlaptops,andmorepronetoloss.Thisisultimatelyariskquestionthatmanagementmustaddress:Whatistheriskandwhatarethecostsoftheoptionsemployed?Thisalsoraisesabiggerquestion:Whichdevicesshouldhaveencryptionasabasicsecurityprotectionmechanism?Isitbydevicetype,orbyuserbasedonwhatdatawouldbeexposedtorisk?Fortunately,MDMsolutionsexisttomakethechoicesmanageable.

ExamTip:Mobiledevicemanagement(MDM)isamarketingtermforacollectivesetofcommonlyemployedprotectionelementsassociatedwithmobiledevices.

DeviceAccessControlTheprinciplesofaccesscontrolformobiledevicesneedtobemanagedjustlikeaccesscontrolfromwiredorwirelessdesktopsandlaptops.ThiswillbecomemorecriticalasstorageinthecloudandSoftwareasaService(SaaS)becomemoreprevalent.Emergingtablet/mobiledevicesharingintendstoprovidetheuserwithaseamlessdataaccessexperienceacrossmanydevices.Dataaccesscapabilitieswillcontinuetoevolvetomeetthisneed.Rigorousdataaccessprinciplesneedtobeapplied,andtheybecomeevenmoreimportantwiththeinclusionofmobiledevicesasfullyfunctionalcomputingdevices.Whenreviewingpossiblesolutions,itisimportanttoconsiderseekingproofofsecurityandproceduresratherthanrelyingonmarketingbrochures.

RemovableStorageBecauseremovabledevicescanmovedataoutsideofthecorporate-controlledenvironment,theirsecurityneedsmustbeaddressed.Removabledevicescanbringunprotectedorcorrupteddataintothecorporateenvironment.Allremovabledevicesshouldbescannedby

antivirussoftwareuponconnectiontothecorporateenvironment.Corporatepoliciesshouldaddressthecopyingofdatatoremovabledevices.ManymobiledevicescanbeconnectedviaUSBtoasystemandusedtostoredata—andinsomecasesvastquantitiesofdata.Thiscapabilitycanbeusedtoavoidsomeimplementationsofdatalosspreventionmechanisms.

DisablingUnusedFeaturesAswithallcomputingdevices,featuresthatarenotusedorthatpresentasecurityriskshouldbedisabled.Bluetoothaccessisparticularlyproblematic.ItisbesttomakeBluetoothconnectionsundiscoverable.But,userswillneedtoenableittopairwithanewheadsetorcarconnection,forexample.RequiringBluetoothconnectionstobeundiscoverableisveryhardtoenforcebutshouldbeencouragedasabestpractice.UsersshouldreceivetrainingastotherisksofBluetooth—notsotheyavoidBluetooth,butsotheyunderstandwhentheyshouldturnitoff.Havingamobiledevicewithaccesstosensitiveinformationcarrieswithitalevelofresponsibility.Helpingusersunderstandthisandactaccordinglycangoalongwaytowardsecuringmobiledevices.

BYODConcernsPermittingemployeesto“bringyourowndevice”(BYOD)hasmanyadvantagesinbusiness,andnotjustfromtheperspectiveofdevicecost.Userstendtopreferhavingasingledeviceratherthancarryingmultipledevices.Usershavelessofalearningcurveondevicestheyalreadyhaveaninterestinlearning.

DataOwnershipBYODblursthelinesofdataownershipbecauseitblursthelinesofdevicemanagement.Ifacompanyownsasmartphoneissuedtoanemployee,thecompanycanrepossessthephoneuponemployee

termination.Thispracticemayprotectcompanydatabykeepingthecompany-issueddevicesinthehandsofemployeesonly.However,acompanycannotrelyonasimplefactoryresetbeforereissuingadevice,becausefactoryresettingmaynotremoveallthedataonthedevice.Ifadeviceisreissued,itispossiblethatsomeofthepreviousowner’spersonalinformation,suchasprivatecontacts,stillremainsonthedevice.Ontheotherhand,iftheemployee’sdeviceisapersonaldevicethathasbeenusedforbusinesspurposes,uponterminationoftheemployee,itislikelythatsomecompanydataremainsonthephonedespitethecompany’sbesteffortstoremoveitsdatafromthedevice.Ifthatdeviceisresoldorrecycled,thecompany’sdatamayremainonthedeviceandbepassedontothesubsequentowner.Keepingbusinessdatainseparate,MDM-managedcontainersisonemethodofdealingwiththisissue.

TechTip

BYODConcernsThereisadilemmaintheuseofBYODdevicesthatstorebothpersonalandenterprisedata.Wipingthedeviceusuallyremovesalldata,bothpersonalandenterprise.Therefore,ifcorporatepolicyrequireswipingalostdevice,thatpolicymaymeanthedevice’suserlosespersonalphotosanddata.Thesoftwarecontrolsforseparatedatacontainers,oneforbusinessandoneforpersonal,havebeenproposedbutarenotamainstreamoptionyet.

StorageSegmentationOnmobiledevices,itcanbeverydifficulttokeeppersonaldataseparatefromcorporatedata.Somecompanieshavedevelopedcapabilitiestocreateseparatevirtualcontainerstokeeppersonaldataseparatefromcorporatedataandapplications.Fordevicesthatareusedtohandlehighlysensitivecorporatedata,thisformofprotectionishighlyrecommended.

SupportOwnershipSupportcostsformobiledevicesareanimportantconsiderationfor

corporations.Eachdevicehasitsownimplementationofvariousfunctions.Whilethosefunctionstypicallyareimplementedagainstaspecification,softwareimplementationsmaynotfullyorproperlyimplementthespecification.Thismayresultinincreasedsupportcallstoyourhelpdeskorsupportorganization.Itisverydifficultforacorporatehelpdesktobeknowledgeableonallaspectsofallpossibledevicesthataccessacorporatenetwork.Forexample,yoursupportorganizationmustbeabletotroubleshootiPhones,Androiddevices,tablets,andsoforth.Thesedevicesareupdatedfrequently,newdevicesarereleased,andnewcapabilitiesareaddedonaregularbasis.Yoursupportorganizationwillneedviableknowledgebasearticlesandjobaidsinordertoprovidesufficientsupportforthewidevarietyofever-changingdevices.

PatchManagementJustasyourcorporatepolicyshouldenforcethepromptupdateofdesktopandlaptopcomputerstohelpeliminatesecurityvulnerabilitiesonthoseplatforms,itshouldalsorequiremobiledevicestobekeptcurrentwithrespecttopatches.Havingthelatestapplications,operatingsystem,andsoonisanimportantbestdefenseagainstviruses,malware,andotherthreats.Itisimportanttorecognizethat“jailbreaking”or“rooting”yourdevicemayremovethemanufacturer’ssecuritymechanismsandprotectionagainstmalwareandotherthreats.ThesedevicesmayalsonolongerbeabletoupdatetheirapplicationsorOSagainstknownissues.Jailbreakingorrootingisalsoamethodusedtobypasssecuritymeasuresassociatedwiththedevicemanufacturercontrol,andinsomelocations,thiscanbeillegal.Mobiledevicesthatarejailbrokenorrootedshouldnotbetrustedonyourenterprisenetworkorallowedtoaccesssensitivedata.

AntivirusManagementJustlikedesktopandlaptopcomputers,smartphones,tablets,andothermobiledevicesneedprotectionagainstvirusesandmalware.Itisimportantthatcorporatepolicyandpersonalusagekeepoperatingsystemsandapplicationscurrent.Antivirusandmalwareprotectionshouldbe

employedaswidelyaspossibleandkeptup-to-dateagainstcurrentthreats.

ForensicsMobiledeviceforensicsisarapidlyevolvingandfast-changingfield.Becausedevicesareevolvingsoquicklyandchangingsofast,itisdifficulttostaycurrentinthisfield.Solidforensicsprinciplesshouldalwaysbefollowed.DevicesshouldbeproperlyhandledbyusingRF-shieldedbagsorcontainers.Becauseoftherapidchangesinthisarea,it’sbesttoengagethehelpoftrainedforensicspecialiststoensuredataisn’tcontaminatedandthedevicestateandmemoryareunaltered.Ifforensicsareneededonadevicethathasbothpersonalandbusinessdata,thenpoliciesneedtobeinplacetocovertheappropriateprivacyprotectionsonthepersonalsideofthedevice.

PrivacyWhenanemployeeuseshispersonaldevicetoperformhisworkforthecompany,hemayhavestrongexpectationsthatprivacywillbeprotectedbythecompany.Thecompanypolicyneedstoconsiderthisandaddressitexplicitly.Oncompany-owneddevices,it’squiteacceptableforthecompanytoreservetherighttoaccessandwipeanycompanydataonthedevice.Thecompanycanthusstatethattheusercanhavenoexpectationofprivacywhenusingacompanydevice.Butwhenthedeviceisapersonaldevice,theusermayfeelstrongerownership.Expectationsofprivacyanddataaccessonpersonaldevicesshouldbeincludedinyourcompanypolicy.

On-boardCamera/VideoManymobiledevicesincludeon-boardcameras,andthephotos/videostheytakecandivulgeinformation.Thisinformationcanbeassociatedwithanythingthecameracanimage—whiteboards,documents,eventhelocationofthedevicewhenthephoto/videowastakenviageo-tagging.Anotherchallengepresentedbymobiledevicesisthepossibilitythatthey

willbeusedforillegalpurposes.Thiscancreateliabilityforthecompanyifitisacompany-owneddevice.Despiteallthepotentiallegalconcerns,possiblythegreatestconcernofmobiledeviceusersisthattheirpersonalphotoswillbelostduringadevicewipeoriginatedbythecompany.

On-boarding/Off-boardingMostcompaniesandindividualsfinditrelativelyeasytoconnectmobiledevicestothecorporatenetwork.OftentherearenotcontrolsaroundconnectingadeviceotherthanhavingaMicrosoftExchangeaccount.Whennewemployeesjoinacompany,theon-boardingprocessesneedtoincludeprovisionsformobiledeviceresponsibilities.Itiseasyfornewemployeestobypasssecuritymeasuresiftheyarenotpartofthebusinessprocessofon-boarding.Employeeterminationneedstobemodifiedtoincludeterminationof

accountsonmobiledevices.It’snotuncommontofindterminatedemployeeswithaccountsorevencompanydevicesstillconnectingtothecorporatenetworkmonthsafterbeingterminated.E-mailaccountsshouldberemovedpromptlyaspartoftheemployeeterminationpolicyandprocess.Mobiledevicessuppliedbythecompanyshouldbecollectedupontermination.BYODequipmentshouldhaveitsaccesstocorporateresourcesterminatedaspartoftheoff-boardingprocess.Regularauditsforoldorunterminatedaccountsshouldbeperformedtoensurepromptdeletionofaccountsforterminatedemployees.

AdherencetoCorporatePoliciesYourcorporatepoliciesregardingBYODdevicesshouldbeconsistentwithyourexistingcomputersecuritypolicies.Yourtrainingprogramsshouldincludeinstructiononmobiledevicesecurity.Disciplinaryactionsshouldbeconsistent.Yourmonitoringprogramsshouldbeenhancedtoincludemonitoringandcontrolofmobiledevices.

UserAcceptance

BYODinherentlycreatesaconflictbetweenpersonalandcorporateinterests.Anemployeewhousesherowndevicetoconductcorporatebusinessinherentlyfeelsstrongownershipoverthedeviceandmayresentcorporatedemandstocontrolcorporateinformationdownloadedtothedevice.Ontheotherhand,thecorporationexpectsthatcorporatedatabeproperlycontrolledandprotectedandthusdesirestoimposeremotewipingorlockoutrequirementsinordertoprotectcorporatedata.Anindividualwholosesherpersonalphotosfromaspecialeventwilllikelyharborillfeelingstowardthecorporationifitwipesherdevice,includingthoseirreplaceablephotos.YourcorporateBYODpolicyneedstobewelldefined,approvedbythecorporatelegaldepartment,andclearlycommunicatedtoallemployeesthroughtraining.

Architecture/InfrastructureConsiderationsMobiledevicesconsumeconnectionstoyourcorporateITinfrastructure.Itisnotunusualnowforasingleindividualtobeconnectedtothecorporateinfrastructurewithoneormoresmartphones,tablets,andlaptopordesktopcomputers.Someinfrastructureimplementationsinthepasthavenotbeenefficientintheirdesign,sometimesconsumingmultipleconnectionsforasingledevice.Thiscanreducethenumberofavailableconnectionsforotherendusers.Itisrecommendedthatloadtestingbeperformedtoensurethatyourdesignorexistinginfrastructurecansupportthepotentiallylargenumberofconnectionsfrommultipledevices.Multipleconnectionscanalsocreatesecurityissueswhenthesystem

tracksuseraccountsagainstmultipleconnections.Userswillneedtobeawareofthis,sothattheydon’tinadvertentlycreateincidentresponsesituationsorfindthemselveslockedoutbytheirownactions.Thiscanbeatrickyissuerequiringabitmoreintelligentdesignthanthetraditionalphilosophyofoneuseridequalsonecurrentconnection.

LegalConcernsItshouldbeapparentfromthevarioustopicsdiscussedinthischapterthattherearemanysecuritychallengespresentedbymobiledevicesusedfor

corporatebusiness.Becausethetechnologyisrapidlychanging,it’sbesttomakesureyouhavesolidlegalreviewofpolicies.Therearebothlegalandpublicrelationconcernswhenitcomestomobiledevices.Employeeswhousebothcompany-ownedandpersonaldeviceshaveresponsibilitieswhencompanydataisinvolved.Policiesandproceduresshouldbereviewedonaregularbasistostaycurrentwithtechnology.Anotherchallengepresentedbymobiledevicesisthepossibilitythat

theywillbeusedforillegalpurposes.Thiscancreateliabilityforthecompanyifitisacompany-owneddevice.

AcceptableUsePolicySimilartoyouracceptableusepoliciesforlaptopsanddesktops,yourmobiledevicepoliciesshouldaddressacceptableuseofmobileorBYODdevices.Authorizedusageofcorporatedevicesforpersonalpurposesshouldbeaddressed.Disciplinaryactionsforviolationofmobiledevicepoliciesshouldbedefined.BYODoffersboththecompanyandtheuseradvantages;ramificationsshouldbespecificallyspelledout,alongwiththespecificuserresponsibilities.

ExamTip:Mobiledevicesoffermanyusabilityadvantagesacrosstheenterprise,andtheycanbemanagedsecurelywiththehelpofsecurity-conscioususers.Securitypoliciescangoalongwaytowardassistingusersinunderstandingtheirresponsibilitiesassociatedwithmobiledevicesandsensitivedata.

LocationServicesMobiledevicesbytheirspecificnaturecanmove,andhencelocationofthedevicecanhavesignificantramificationswithrespecttoitsuse.MobiledevicescanconnecttomultiplepublicWi-Filocations,andtheycanprovideuserswithnavigationandotherlocationcontext-sensitiveinformation,suchasalocalsale.Toenablethisfunctionality,location

servicesareasetoffunctionstoenable,yetcontrol,thelocationinformationpossessedbythedevice.

Geo-TaggingGeo-taggingisthepostingoflocationinformationintoadatastreamsignifyingwherethedevicewaswhenthestreamwascreated.Asmanymobiledevicesincludeon-boardcameras,andthephotos/videostheytakecandivulgeinformation,geo-taggingcanmakelocationpartofanypictureorvideo.Thisinformationcanbeassociatedwithanythingthecameracanimage—whiteboards,documents,eventhelocationofthedevicewhenthephoto/videowastakenviageo-tagging.Postingphotoswithgeo-tagsembeddedinthemhasitsuse,butitcan

alsounexpectedlypublishinformationthatusersmaynotwanttoshare.Forexample,ifyouuseyoursmartphonetotakeaphotoofyourcarinthedrivewayandthenpostthephotoontheInternetinanattempttosellyourcar,ifgeo-taggingwasenabledonthesmartphone,thelocationofwherethephotowastakenisembeddedasmetadatainthedigitalphoto.Suchapostingcouldinadvertentlyexposewhereyourhomeislocated.Somesocialmediaapplicationsstripoutthemetadataonaphotobeforeposting,butthentheypostwhereyouposteditfrominthepostingitself.Therehasbeenmuchpublicdiscussiononthistopic,andgeo-taggingcanbedisabledonmostmobiledevices.Itisrecommendedthatitbedisabledunlessyouhaveaspecificreasonforhavingthelocationinformationembeddedinthephoto.

MobileApplicationSecurityDevicesarenottheonlyconcerninthemobileworld.Applicationsthatrunonthedevicesalsorepresentsecuritythreatstotheinformationthatisstoredonandprocessedbythedevice.Applicationsarethesoftwareelementsthatcanbeusedtoviolatesecurity,evenwhentheuserisnotaware.Manygamesandutilitiesoffervaluetotheuser,butatthesametimetheyscrapeinformationstoresonthedeviceforinformation.

ApplicationControlMostmobiledevicevendorsprovidesomekindofappstoreforfindingandpurchasingappsfortheirmobiledevices.Thevendorsdoareasonablejobofmakingsurethatofferedappsareapprovedanddon’tcreateanovertsecurityrisk.Yetmanyappsrequestaccesstovariousinformationstoresonthemobiledeviceaspartoftheirbusinessmodel.Understandingwhataccessisrequestedandapproveduponinstallationofappsisanimportantsecurityprecaution.Yourcompanymayhavetorestrictthetypesofappsthatcanbedownloadedandusedonmobiledevices.Ifyouneedverystrongprotection,yourcompanycanbeveryproactiveandprovideanenterpriseappstorewhereonlycompany-approvedappsareavailable,withacorrespondingpolicythatappscannotbeobtainedfromanyothersource.

KeyandCredentialManagementTheMDMmarketplaceismaturingquickly.KeyandcredentialmanagementservicesarebeingintegratedintomostMDMservicestoensurethatexistingstrongpoliciesandprocedurescanbeextendedtomobileplatformssecurely.TheseservicesincludeprotectionofkeysfordigitalsignaturesandS/MIMEencryptionanddecryption.Keysandcredentialsareamongthehighest-valueitemsthatcanbefoundonmobiledevices,soensuringprotectionforthemisakeyelementinmobiledevicesecurity.Thekeysandcredentialsstoredonthedevicecanbeusedbymultipleapplications.Providingprotectionofthesekeyswhilestillmaintainingusabilityofthemisanessentialelementofmodernmobileapplicationsecurity.

AuthenticationWhenmobiledevicesareusedtoaccessbusinessnetworks,authenticationbecomesanissue.Thereareseverallevelsofauthenticationthatcanbeanissue.Isthedeviceallowedtoaccessthenetwork?Istheuserofthedeviceanetworkuser?Ifso,howdoyouauthenticatetheuser?Mobiledevices

havesomeadvantagesinthattheycanstorecertificates,whichbytheirverynaturearemoresecurethanpasswords.Thismovestheauthenticationproblemtotheendpoint,whereitreliesonpasscodes,screen-locks,andothermobiledeviceprotections.Thesecanberelativelyweakunlessstructuredtogether,includingwipingafteralimitednumberoffailures.Theriskinmobileauthenticationisthatstrongcredentialsstoredinthedeviceareprotectedbythelessrigorouspasscodeandtheenduser.Enduserscansharetheirmobiledevices,andbyproxyunwittinglysharetheirstrongcorporateauthenticationcodes.

ApplicationWhitelistingAsdiscussedinthe“ApplicationControl”sectionearlierinthechapter,controllingwhatapplicationsadevicecanaccessmaybeanimportantelementofyourcompany’smobiledevicepolicy.Applicationwhitelistingandblacklistingenablesyoutocontrolandblockapplicationsavailableonthemobiledevice.ThisisusuallyadministeredthroughsometypeofMDMcapability.Applicationwhitelistingcanimprovesecuritybypreventingunapprovedapplicationsfrombeinginstalledandrunonthedevice.

EncryptionJustasthedeviceshouldbeencrypted,therebyprotectingallinformationonthedevice,applicationsshouldbeencryptedaswell.Justemployingencryptionforthedatastoreisnotsufficient.Ifthedeviceisfullyencrypted,thenallappswouldhavetohaveaccesstothedata,inessencebypassingtheencryptionfromanapppointofview.Appswithsensitiveinformationshouldcontrolaccessviatheirownsetofprotections.Theonlywaytosegregatedatawithinthedeviceisforappstomanagetheirowndatastoresthroughapp-specificencryption.Thiswillallowsensitivedatatobeprotectedfromrogueapplicationsthatwouldleakdataifuniformaccesswasallowed.

TransitiveTrust/AuthenticationSecurityacrossmultipledomains/platformsisprovidedthroughtrustrelationships.Whentrustrelationshipsbetweendomainsorplatformsexist,authenticationforeachdomaintruststheauthenticationforallothertrusteddomains.Thuswhenanapplicationisauthenticated,itsauthenticationisacceptedbyallotherdomains/platformsthattrusttheauthenticatingdomainorplatform.Trustrelationshipscanbeverycomplexinmobiledevices,andoftensecurityaspectsaren’tproperlyimplemented.Mobiledevicestendtobeusedacrossnumeroussystems,includingbusiness,personal,public,andprivate.Thisgreatlyexpandstheriskprofileandopportunityfortransitivetrust–basedattacks.Aswithallotherapplications,mobileapplicationsshouldbecarefullyreviewedtoensurethattrustrelationshipsaresecure.

Chapter12Review

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutwirelesssecurityandmobiledevices.

Describethedifferentwirelesssystemsinusetoday

WirelessApplicationProtocol(WAP)isusedonsmall,handhelddeviceslikecellphonesforout-of-the-officeconnectivity.

802.11istheIEEEstandardforwirelesslocalareanetworks.Thestandardincludesseveraldifferentspecificationsof802.11networks,suchas802.11b,802.11a,802.11g,and802.11n.

DetailWAPanditssecurityimplications

WAPisthedataprotocolusedbymanycellularphonestodelivere-mailandlightweightwebservices.

DesignerscreatedWTLSasamethodtoensureprivacyofdatabeingbroadcastoverWAP.

WTLShasanumberofinherentsecurityproblems,suchasweakencryptionnecessitatedbythelowcomputingpowerofthedevicesandthenetworktransitionthatmustoccuratthecellularprovider’snetwork,ortheWAPgap.

Identify802.11’ssecurityissuesandpossiblesolutions

802.11doesnotallowphysicalcontrolofthetransportmechanism.

Transmissionofallnetworkdatawirelesslytransmitsframestoallwirelessmachines,notjustasingleclient,similartoEthernethubdevices.

PoorauthenticationiscausedbytheSSIDbeingbroadcasttoanyonelistening.

FlawedimplementationoftheRC4encryptionalgorithmmakesevenencryptedtrafficsubjecttointerceptionanddecryption.

Examinetheelementsneededforenterprisewirelessdeployment

Wirelesscoveragecanbeafunctionofantennatype,placement,andpowerlevels.

Captiveportalscanbeusedtocontrolaccesstowirelesssystems.

Examinethesecurityofmobilesystems

Mobiledeviceshavespecificsecurityconcernsandspecificcontrolstoassistinsecuringthem.

BYODhasitsownconcernsandpoliciesandprocedurestomanagemobiledevicesintheenterprise.

Mobileapplicationsrequiresecurity,andtheissuesassociatedwithmobile,apps,andsecurityneedtobeaddressed.

KeyTerms2.4GHzband(344)5GHzband(348)beaconframes(349)bluebugging(346)bluejacking(345)bluesnarfing(346)BluetoothDOS(346)captiveportal(362)confidentiality(340)direct-sequencespreadspectrum(DSSS)(348)eviltwin(352)geo-tagging(370)IEEE802.1X(357)IEEE802.11(337)initializationvector(IV)(340)jailbreaking(367)MACfiltering(359)MIMO(361)mobiledevicemanagement(MDM)(365)nearfieldcommunication(NFC)(347)orthogonalfrequencydivisionmultiplexing(OFDM)(348)RC4streamcipher(350)remotewiping(363)rogueaccesspoint(352)screenlocking(363)servicesetidentifier(SSID)(349)

sitesurvey(361)TemporalKeyIntegrityProtocol(TKIP)(355)WAPgap(341)Wi-FiProtectedAccess2(WPA2)(355)WiMax(337)WiredEquivalentPrivacy(WEP)(350)WirelessApplicationProtocol(WAP)(339)WirelessTransportLayerSecurity(WTLS)(340)ZigBee(337)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.AnAPuses_______________toadvertiseitsexistencetopotentialwirelessclients.

2.The_______________isthepartoftheRC4cipherthathasaweakimplementationinWEP.

3.Twocommonmobiledevicesecuritymeasuresare_______________and_______________.

4.WAPusesthe_______________protocoltoattempttoensureconfidentialityofdata.

5.The32-characteridentifierattachedtotheheaderofapacketusedforauthenticationtoan802.11accesspointisthe_______________.

6._______________isafeaturethatcandiscloseauser’spositionwhensharingphotos.

7.802.11iupdatestheflawedsecuritydeployedin_______________.8.Thestandardforwirelesslocalareanetworksiscalled

_______________.

9.Thetypeofapplicationusedtocontrolsecurityacrossmultiplemobiledevicesinanenterpriseiscalled_______________.

10.802.11ausesfrequenciesinthe_______________.

Multiple-ChoiceQuiz1.Bluebuggingcangiveanattackerwhat?

A.Allofyourcontacts

B.Theabilitytosend“shock”photos

C.Totalcontroloveramobilephone

D.Avirus

2.Howdoes802.11nimprovenetworkspeed?A.Widerbandwidth

B.Higherfrequency

C.Multiple-inputmultiple-output(MIMO)

D.BothAandC

3.WTLSensuresintegritythroughwhatdevice?A.Publickeyencryption

B.Messageauthenticationcodes

C.SourceIP

D.Digitalsignatures

4.WEPhasusedanimplementationofwhichofthefollowingencryptionalgorithms?

A.SHA

B.ElGamal

C.RC4

D.Triple-DES

5.WhatelementdoesnotbelonginamobiledevicesecuritypolicyinanenterpriseemployingBYOD?

A.Separationofpersonalandbusiness-relatedinformation

B.Remotewiping

C.Passwordsandscreen-locking

D.Mobiledevicecarrierselection

6.Whatisbluejacking?A.Stealingaperson’smobilephone

B.SendinganunsolicitedmessageviaBluetooth

C.BreakingaWEPkey

D.LeavingyourBluetoothindiscoverablemode

7.WhiletheSSIDprovidessomemeasureofauthentication,whyisitnotveryeffective?

A.Itisdictatedbythemanufactureroftheaccesspoint.

B.Itisencrypted.

C.Itisbroadcastineverybeaconframe.

D.SSIDisnotanauthenticationfunction.

8.The802.1XprotocolisaprotocolforEthernet:A.Authentication

B.Speed

C.Wireless

D.Cabling

9.WhatisthebestwaytoavoidproblemswithBluetooth?A.Keeppersonalinfooffyourphone

B.KeepBluetoothdiscoverabilityoff

C.Buyanewphoneoften

D.Encryption

10.Whyisattackingwirelessnetworkssopopular?A.Therearemorewirelessnetworksthanwired.

B.TheyallrunWindows.

C.It’seasy.

D.It’smoredifficultandmoreprestigiousthanothernetworkattacks.

EssayQuiz1.Produceareportonwhysensitiveinformationshouldnotbesent

overtheWirelessApplicationProtocol.

2.Whenyouwanttostartscanningforroguewirelessnetworks,yoursupervisorasksyoutowriteamemodetailingthethreatsofroguewirelessaccesspoints.Whatinformationwouldyouincludeinthememo?

3.Writeasecuritypolicyforcompany-ownedcellphonesthatusetheBluetoothprotocol.

4.Writeamemorecommendingupgradingyourorganization’sold

802.11binfrastructuretoan802.11i-compliantnetwork,anddetailthesecurityenhancements.

LabProjects

•LabProject12.1SetupNetStumblerorKismetonacomputer,andthenuseittofindwirelessaccesspoints.Youwillneedthefollowing:

AlaptopwithWindowsorLinuxinstalled

Acompatiblewireless802.11networkadapterThendothefollowing:1.DownloadNetStumblerfromwww.netstumbler.comorKismetfrom

www.kismetwireless.net.2.ForNetStumbler,runtheWindowsInstaller.ForKismet,untarthesourcefileandthen

execute,inorder,./configure,make,andmakeinstall.

3.Starttheprogramandmakesurethatitseesyourwirelessadapter.4.Takethelaptoponyournormalcommute(ordrivearoundyourneighborhood)with

NetStumbler/Kismetrunning.

5.Loganyaccesspointsyoudetect.

•LabProject12.2AttempttoscantheareaforBluetoothdevices.YouwillneedacellphonewithBluetoothinstalledoracomputerwithaBluetoothadapter.Thendothefollowing:

1.Ifyou’reusingaPC,downloadBlueScannerfromSourceForgeathttp://sourceforge.net/projects/bluescanner/.

2.Takeyourphoneorcomputertoaplacewithmanypeople,suchasacafé.

3.StarttheprogramandmakesurethatitseesyourBluetoothadapter.4.AttempttoscanforvulnerableBluetoothdevices.

5.Ifyou’reusingyourphone,tellittoscanforBluetoothdevices.Anydevicesthatyoufindarerunningin“discoverable”modeandarepotentiallyexploitable.

chapter13 IntrusionDetectionSystemsandNetwork

Security

Oneperson’s“paranoia”isanotherperson’s“engineeringredundancy.”

—MARCUSJ.RANUM

A

Inthischapter,youwilllearnhowto

Applytheappropriatenetworktoolstofacilitatenetworksecurity

Determinetheappropriateuseoftoolstofacilitatenetworksecurity

Applyhost-basedsecurityapplications

nintrusiondetectionsystem(IDS)isasecuritysystemthatdetectsinappropriateormaliciousactivityonacomputerornetwork.Mostorganizationsusetheirownapproachestonetworksecurity,choosing

thelayersthatmakesenseforthemaftertheyweighrisks,potentialsforloss,costs,andmanpowerrequirements.Thefoundationforalayerednetworksecurityapproachusuallystarts

withawell-securedsystem,regardlessofthesystem’sfunction(whetherit’sauserPCoracorporatee-mailserver).Awell-securedsystemusesup-to-dateapplicationandoperatingsystempatches,requireswell-chosenpasswords,runstheminimumnumberofservicesnecessary,andrestrictsaccesstoavailableservices.Ontopofthatfoundation,youcanaddlayersofprotectivemeasuressuchasantivirusproducts,firewalls,sniffers,andIDSs.Someofthemorecomplicatedandinterestingtypesofnetwork/data

securitydevicesareIDSs,whicharetothenetworkworldwhatburglaralarmsaretothephysicalworld.ThemainpurposeofanIDSistoidentifysuspiciousormaliciousactivity,noteactivitythatdeviatesfromnormalbehavior,catalogandclassifytheactivity,and,ifpossible,respondtotheactivity.

HistoryofIntrusionDetectionSystemsLikemuchofthenetworktechnologyweseetoday,IDSsgrewfromaneedtosolvespecificproblems.LiketheInternetitself,theIDSconceptcamefromU.S.DepartmentofDefense–sponsoredresearch.Intheearly

1970s,theU.S.governmentandmilitarybecameincreasinglyawareoftheneedtoprotecttheelectronicnetworksthatwerebecomingcriticaltodailyoperations.

EarlyHistoryofIDSIn1972,JamesAndersonpublishedapaperfortheU.S.AirForceoutliningthegrowingnumberofcomputersecurityproblemsandtheimmediateneedtosecureAirForcesystems(JamesP.Anderson,“ComputerSecurityTechnologyPlanningStudyVolume2,”October1972,http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf).Andersoncontinuedhisresearchandin1980publishedafollow-uppaperoutliningmethodstoimprovesecurityauditingandsurveillancemethods(“ComputerSecurityThreatMonitoringandSurveillance,”April15,1980,http://csrc.nist.gov/publications/history/ande80.pdf).Inthispaper,Andersonpioneeredtheconceptofusingsystemauditfilestodetectunauthorizedaccessandmisuse.Healsosuggestedtheuseofautomateddetectionsystems,whichpavedthewayformisusedetectiononmainframesystemsinuseatthetime.WhileAnderson’sworkgottheeffortsstarted,theconceptofareal-time,rule-basedIDS

didn’treallyexistuntilDorothyDenningandPeterNeumanndevelopedthefirstreal-timeIDSmodel,called“TheIntrusionDetectionExpertSystem(IDES),”fromtheirresearchbetween1984and1986.In1987,Denningpublished“AnIntrusion-DetectionModel,”apaperthatlaidoutthemodelonwhichmostmodernIDSsarebased(andwhichappearsinIEEETransactionsonSoftwareEngineering,Vol.SE-13,No.2[February1987]:222—232).

TheU.S.governmentcontinuedtofundresearchthatledtoprojectssuchasDiscovery,Haystack,MulticsIntrusionDetectionandAlertingSystem(MIDAS),andNetworkAuditDirectorandIntrusionReporter(NADIR).Finally,in1989,HaystackLabsreleasedStalker,thefirstcommercialIDS.Stalkerwashost-basedandworkedbycomparingauditdatatoknownpatternsofsuspiciousactivity.Whilethemilitaryandgovernmentembracedtheconcept,thecommercialworldwasveryslowtoadoptIDSproducts,anditwasseveralyearsbeforeothercommercialproductsbegantoemerge.Intheearlytomid-1990s,ascomputersystemscontinuedtogrow,

companiesstartedtorealizetheimportanceofIDSs;however,thesolutionsavailablewerehost-basedandrequiredagreatdealoftimeandmoneytomanageandoperateeffectively.Focusbegantoshiftawayfromhost-basedsystems,andnetwork-basedIDSsbegantoemerge.In1995,WheelGroupwasformedinSanAntonio,Texas,todevelopthefirst

commercialnetwork-basedIDSproduct,calledNetRanger.NetRangerwasdesignedtomonitornetworklinksandthetrafficmovingacrossthelinkstoidentifymisuseaswellassuspiciousandmaliciousactivity.NetRanger’sreleasewasquicklyfollowedbyInternetSecuritySystems’RealSecurein1996.SeveralotherplayersfollowedsuitandreleasedtheirownIDSproducts,butitwasn’tuntilthenetworkinggiantCiscoSystemsacquiredWheelGroupinFebruary1998thatIDSswererecognizedasavitalpartofanynetworksecurityinfrastructure.Figure13.1offersatimelineforthesedevelopments.

•Figure13.1HistoryoftheInternetandIDS

IDSOverviewAsmentioned,anIDSissomewhatlikeaburglaralarm.Itwatchestheactivitygoingonarounditandtriestoidentifyundesirableactivity.IDSsaretypicallydividedintotwomaincategories,dependingonhowtheymonitoractivity:

ExamTip:Knowthedifferencesbetweenhost-basedandnetwork-basedIDSs.Ahost-basedIDSrunsonaspecificsystem(serverorworkstation)andlooksatalltheactivityonthathost.Anetwork-basedIDSsniffstrafficfromthenetworkandseesonlyactivitythatoccursonthenetwork.

Host-basedIDS(HIDS)Examinesactivityonanindividualsystem,suchasamailserver,webserver,orindividualPC.Itisconcernedonlywithanindividualsystemandusuallyhasnovisibilityintotheactivityonthenetworkorsystemsaroundit.

Network-basedIDS(NIDS)Examinesactivityonthenetworkitself.Ithasvisibilityonlyintothetrafficcrossingthenetworklinkitismonitoringandtypicallyhasnoideaofwhatishappeningonindividualsystems.

Whetheritisnetwork-orhost-based,anIDStypicallyconsistsofseveralspecializedcomponentsworkingtogether,asillustratedinFigure13.2.Thesecomponentsareoftenlogicalandsoftware-basedratherthanphysicalandwillvaryslightlyfromvendortovendorandproducttoproduct.Typically,anIDShasthefollowinglogicalcomponents:

•Figure13.2LogicaldepictionofIDScomponents

Trafficcollector(orsensor)Collectsactivity/eventsfortheIDStoexamine.OnaHIDS,thiscouldbelogfiles,auditlogs,ortrafficcomingtoorleavingaspecificsystem.OnaNIDS,thisistypicallyamechanismforcopyingtrafficoffthenetworklink—basicallyfunctioningasasniffer.Thiscomponentisoftenreferredtoasasensor.

AnalysisengineExaminesthecollectednetworktrafficandcomparesittoknownpatternsofsuspiciousormaliciousactivitystoredinthesignaturedatabase.Theanalysisengineisthe“brains”oftheIDS.

SignaturedatabaseAcollectionofpatternsanddefinitionsofknownsuspiciousormaliciousactivity.

UserinterfaceandreportingInterfaceswiththehumanelement,

providingalertswhenappropriateandgivingtheuserameanstointeractwithandoperatetheIDS.

TechTip

IDSSignaturesAnIDSreliesheavilyonitssignaturedatabasejustlikeantivirusproductsrelyontheirvirusdefinitions.Ifanattackissomethingcompletelynew,anIDSmaynotrecognizethetrafficasmalicious.

Let’slookatanexampletoseehowallthesecomponentsworktogether.Imagineanetworkintruderisscanningyourorganizationforsystemsrunningawebserver.TheintruderlaunchesaseriesofnetworkprobesagainsteveryIPaddressinyourorganization.Thetrafficfromtheintrudercomesintoyournetworkandpassesthroughthetrafficcollector(sensor).Thetrafficcollectorforwardsthetraffictotheanalysisengine.Theanalysisengineexaminesandcategorizesthetraffic—itidentifiesalargenumberofprobescomingfromthesameoutsideIPaddress(theintruder).Theanalysisenginecomparestheobservedbehavioragainstthesignaturedatabaseandgetsamatch.Theintruder’sactivitymatchesaTCPportscan.Theintruderissendingprobestomanydifferentsystemsinashortperiodoftime.Theanalysisenginegeneratesanalarmthatispassedofftotheuserinterfaceandreportingmechanisms.Theuserinterfacegeneratesanotificationtotheadministrator(icon,logentry,andsoon).Theadministratorseesthealertandcannowdecidewhattodoaboutthepotentiallymalicioustraffic.AlarmstorageissimplyarepositoryofalarmstheIDShasrecorded—mostIDSproductsallowadministratorstoruncustomizedreportsthatsiftthroughthecollectedalarmsforitemstheadministratorissearchingfor,suchasallthealarmsgeneratedbyaspecificIPaddress.

MostIDSscanbetunedtofitaparticularenvironment.Certainsignaturescanbeturnedoff,tellingtheIDSnottolookforcertaintypesoftraffic.Forexample,ifyouareoperatinginapureUNIXenvironment,youmaynotwishtoseeWindows-basedalarms,astheywillnotaffectyoursystems.Additionally,theseverityofthealarmlevelscanbeadjusteddependingonhowconcernedyouareovercertaintypesoftraffic.SomeIDSsalsoallowtheusertoexcludecertainpatternsofactivityfromspecifichosts.Inotherwords,youcantelltheIDStoignorethefactthatsomesystemsgeneratetrafficthatlookslikemaliciousactivity,becauseitreallyisn’t.

Inadditiontothenetworkversushostdistinction,someIDSvendorswillfurthercategorizeanIDSbasedonhowitperformsthedetectionofsuspiciousormalicioustraffic.Thedifferentmodelsusedarecoveredinthenextsection.

IDSModelsInadditiontobeingdividedalongthehostandnetworklines,IDSsareoftenclassifiedaccordingtothedetectionmodeltheyuse:anomalyormisuse.ForanIDS,amodelisamethodforexaminingbehaviorsothattheIDScandeterminewhetherthatbehavioris“notnormal”orinviolationofestablishedpolicies.Ananomalydetectionmodelisthemorecomplicatedofthetwo.In

thismodel,theIDSmustknowwhat“normal”behavioronthehostornetworkbeingprotectedreallyis.Oncethe“normal”behaviorbaselineisestablished,theIDScanthengotoworkidentifyingdeviationsfromthenorm,whicharefurtherscrutinizedtodeterminewhetherornotthatactivityismalicious.BuildingtheprofileofnormalactivityisusuallydonebytheIDS,withsomeinputfromsecurityadministrators,andcantakedaystomonths.TheIDSmustbeflexibleandcapableenoughtoaccountforthingssuchasnewsystems,newusers,movementofinformationresources,andotherfactors,butbesensitiveenoughtodetectasingleuserillegallyswitchingfromoneaccounttoanotherat3A.M.onaSaturday.

ExamTip:Anomalydetectionlooksforthingsthatareoutoftheordinary,suchasauserlogginginwhenhe’snotsupposedtoorunusuallyhighnetworktrafficintoandoutofaworkstation.

Anomalydetectionwasdevelopedtomakethesystemcapableofdealingwithvariationsintrafficandbetterabletodeterminewhichactivitypatternsweremalicious.Aperfectlyfunctioninganomaly-basedsystemwouldbeabletoignorepatternsfromlegitimatehostsandusersbutstillidentifythosepatternsassuspiciousshouldtheycomefromapotentialattacker.Unfortunately,mostanomaly-basedsystemssufferfromextremelyhighfalsepositives,especiallyduringthe“break-in”periodwhiletheIDSislearningthenetwork.Ontheotherhand,ananomaly-basedsystemisnotrestrictedtoaspecificsignaturesetandisfarmorelikelytoidentifyanewexploitorattacktoolthatwouldgounnoticedbyatraditionalIDS.

ExamTip:Misusedetectionlooksforthingsthatviolatepolicy,suchasadenial-of-serviceattacklaunchedatyourwebserveroranattackerattemptingtobrute-forceanSSHsession.

Amisusedetectionmodelisalittlesimplertoimplement,andthereforeit’sthemorepopularofthetwomodels.Inamisusedetectionmodel,theIDSlooksforsuspiciousactivityoractivitythatviolatesspecificpoliciesandthenreactsasithasbeenprogrammedtodo.Thisreactioncanbeanalarm,e-mail,routerreconfiguration,orTCPresetmessage.Technically,misusedetectionisthemoreefficientmodel,asittakesfewerresourcestooperate,doesnotneedtolearnwhat“normal”behavioris,andwillgenerateanalarmwheneverapatternissuccessfullymatched.However,themisusemodel’sgreatestweaknessisitsrelianceonapredefinedsignaturebase—anyactivity,maliciousorotherwise,thatthe

misuse-basedIDSdoesnothaveasignatureforwillgoundetected.Despitethatdrawbackandbecauseitiseasierandcheapertoimplement,mostcommercialIDSproductsarebasedonthemisusedetectionmodel.SomeanalystsbreakIDSmodelsdownevenfurtherintofourcategories

dependingonhowtheIDSoperatesanddetectsmalicioustraffic(thesamemodelscanalsobeappliedtointrusionpreventionsystemsaswell—bothNIPSandHIPS):

Behavior-basedThismodelreliesonacollectedsetof“normalbehavior”:whatshouldhappenonthenetworkandisconsidered“normal”or“acceptable”traffic.Behaviorthatdoesnotfitintothe“normal”activitycategoriesorpatternsisconsideredsuspiciousormalicious.Thismodelcanpotentiallydetectzero-dayorunpublishedattacksbutcarriesahighfalsepositiverateasanynewtrafficpatterncanbelabeledas“suspect.”

Signature-basedThismodelreliesonapredefinedsetofpatterns(calledsignatures).TheIDShastoknowwhatbehaviorisconsidered“bad”aheadoftimebeforeitcanidentifyandactuponsuspiciousormalicioustraffic.

Anomaly-basedThismodelisessentiallythesameasbehavior-based.TheIDSisfirsttaughtwhat“normal”trafficlookslikeandthenlooksfordeviationstothose“normal”patterns.

HeuristicThismodelusesartificialintelligencetodetectintrusionsandmalicioustraffic.AheuristicmodelistypicallyimplementedthroughalgorithmsthathelpanIDSdecideifatrafficpatternismaliciousornot.Forexample,aURLcontaining10ormoreofthesamerepeatingcharactermaybeconsidered“bad”trafficasasinglesignature.Withaheuristicmodel,theIDSunderstandsthatif10repeatingcharactersarebad,11arestillbad,and20areevenworse.Thisimplementationoffuzzylogicallowsthismodeltofallsomewherebetweensignature-basedandbehavior-basedmodels.

SignaturesAsyouhaveprobablydeducedfromthediscussionsofar,oneofthecriticalelementsofanygoodIDSisthesignaturedatabase—thesetofpatternstheIDSusestodeterminewhetherornotactivityispotentiallyhostile.Signaturescanbeverysimpleorremarkablycomplicated,dependingontheactivitytheyaretryingtohighlight.Ingeneral,signaturescanbedividedintotwomaingroups,dependingonwhatthesignatureislookingfor:content-basedandcontext-based.Content-basedsignaturesaregenerallythesimplest.Theyare

designedtoexaminethecontentofsuchthingsasnetworkpacketsorlogentries.Content-basedsignaturesaretypicallyeasytobuildandlookforsimplethings,suchasacertainstringofcharactersoracertainflagsetinaTCPpacket.Herearesomeexamplecontent-basedsignatures:

Matchingthecharacters/etc/passwdinaTelnetsession.OnaUNIXsystem,thenamesofvaliduseraccounts(andsometimesthepasswordsforthoseuseraccounts)arestoredinafilecalledpasswdlocatedintheetcdirectory.

Matchingthecharacters“to:decode”intheheaderofane-mailmessage.Oncertainolderversionsofsendmail,sendingane-mailmessageto“decode”wouldcausethesystemtoexecutethecontentsofthee-mail.

Context-basedsignaturesaregenerallymorecomplicated,astheyaredesignedtomatchlargepatternsofactivityandexaminehowcertaintypesofactivityfitintotheotheractivitiesgoingonaroundthem.Contextsignaturesgenerallyaddressthequestion:Howdoesthiseventcomparetoothereventsthathavealreadyhappenedormighthappeninthenearfuture?Context-basedsignaturesaremoredifficulttoanalyzeandtakemoreresourcestomatch,astheIDSmustbeableto“remember”pasteventstomatchcertaincontextsignatures.Herearesomeexamplecontext-basedsignatures:

Matchapotentialintruderscanningforopenwebserversonaspecificnetwork.Apotentialintrudermayuseaportscannertolookforanysystemsacceptingconnectionsonport80.Tomatchthissignature,theIDSmustanalyzeallattemptedconnectionstoport80andthenbeabletodeterminewhichconnectionattemptsarecomingfromthesamesourcebutaregoingtomultiple,differentdestinations.

IdentifyaNessusscan.Nessusisanopen-sourcevulnerabilityscannerthatallowssecurityadministrators(andpotentialattackers)toquicklyexaminesystemsforvulnerabilities.Dependingonthetestschosen,Nessustypicallyperformsthetestsinacertainorder,oneaftertheother.TobeabletodeterminethepresenceofaNessusscan,theIDSmustknowwhichtestsNessusrunsaswellasthetypicalorderinwhichthetestsarerun.

Identifyapingfloodattack.AsingleICMPpacketonitsownisgenerallyregardedasharmless,certainlynotworthyofanIDSsignature.YetthousandsofICMPpacketscomingtoasinglesysteminashortperiodoftimecanhaveadevastatingeffectonthereceivingsystem.ByfloodingasystemwiththousandsofvalidICMPpackets,anattackercankeepatargetsystemsobusyitdoesn’thavetimetodoanythingelse—averyeffectivedenial-of-serviceattack.Toidentifyapingflood,theIDSmustrecognizeeachICMPpacketandkeeptrackofhowmanyICMPpacketsdifferentsystemshavereceivedintherecentpast.

ExamTip:Knowthedifferencesbetweencontent-basedandcontext-basedsignatures.Content-basedsignaturesmatchspecificcontent,suchasacertainstringorseriesofcharacters(matchingthestring/etc/passwdinanFTPsession).Context-basedsignaturesmatchapatternofactivitybasedontheotheractivityaroundit,suchasaportscan.

Tofunction,theIDSmusthaveadecentsignaturebasewithexamplesofknown,undesirableactivitythatitcanusewhenanalyzingtrafficor

events.AnytimeanIDSmatchescurrenteventsagainstasignature,theIDScouldbeconsideredsuccessful,asithascorrectlymatchedthecurrenteventagainstaknownsignatureandreactedaccordingly(usuallywithanalarmoralertofsometype).

FalsePositivesandFalseNegativesViewedinitssimplestform,anIDSisreallyjustlookingatactivity(beithost-basedornetwork-based)andmatchingitagainstapredefinedsetofpatterns.Whenitmatchesactivitytoaspecificpattern,theIDScannotknowthetrueintentbehindthatactivity—whetheritisbenignorhostile—andthereforeitcanreactonlyasithasbeenprogrammedtodo.Inmostcases,thismeansgeneratinganalertthatmustthenbeanalyzedbyahumanwhotriestodeterminetheintentofthetrafficfromwhateverinformationisavailable.WhenanIDSmatchesapatternandgeneratesanalarmforbenigntraffic,meaningthetrafficwasnothostileandnotathreat,thisiscalledafalsepositive.Inotherwords,theIDSmatchedapatternandraisedanalarmwhenitdidn’treallyneedtodoso.KeepinmindthattheIDScanonlymatchpatternsandhasnoabilitytodetermineintentbehindtheactivity,soinsomewaysthisisanunfairlabel.Technically,theIDSisfunctioningcorrectlybymatchingthepattern,butfromahumanstandpointthisisnotinformationtheanalystneededtosee,asitdoesnotconstituteathreatanddoesnotrequireintervention.

Toreducethegenerationoffalsepositives,mostadministratorstunetheIDS.“Tuning”anIDSistheprocessofconfiguringtheIDSsothatitworksinyourspecificenvironment—generatingalarmsformalicioustrafficandnotgeneratingalarmsfortrafficthatis“normal”foryournetwork.EffectivelytuninganIDScanresultinsignificantreductionsinfalse-positivetraffic.

AnIDSisalsolimitedbyitssignatureset—itcanmatchonlyactivityforwhichithasstoredpatterns.HostileactivitythatdoesnotmatchanIDSsignatureandthereforegoesundetectediscalledafalsenegative.Inthis

case,theIDSisnotgeneratinganyalarms,eventhoughitshouldbe,givingafalsesenseofsecurity.

Network-BasedIDSsNetwork-basedIDSs(NIDSs)actuallycamealongafewyearsafterhost-basedsystems.Afterrunninghost-basedsystemsforawhile,manyorganizationsgrewtiredofthetime,energy,andexpenseinvolvedwithmanagingthefirstgenerationofthesesystems—thehost-basedsystemswerenotcentrallymanaged,therewasnoeasywaytocorrelatealertsbetweensystems,andfalse-positiverateswerehigh.Thedesirefora“betterway”grewalongwiththeamountofinterconnectivitybetweensystemsand,consequently,theamountofmaliciousactivitycomingacrossthenetworksthemselves.ThisfueleddevelopmentofanewbreedofIDSdesignedtofocusonthesourceforagreatdealofthemalicioustraffic—thenetworkitself.

TechTip

NetworkVisibilityAnetworkIDShastobeabletoseetraffictofindthemalicioustraffic.EncryptedtrafficsuchasSSHorHTTPSsessionsmustbedecryptedbeforeanetworkIDScanexaminethem.

TheNIDSintegratedverywellintotheconceptofperimetersecurity.Moreandmorecompaniesbegantooperatetheircomputersecuritylikeacastleormilitarybase(seeFigure13.3),withattentionandeffortfocusedonsecuringandcontrollingthewaysinandout—theideabeingthatifyoucouldrestrictandcontrolaccessattheperimeter,youdidn’thavetoworryasmuchaboutactivityinsidetheorganization.Eventhoughtheideaofasecurityperimeterissomewhatflawed(manysecurityincidentsoriginateinsidetheperimeter),itcaughtonveryquickly,asitwaseasytounderstandanddevicessuchasfirewalls,bastionhosts,androuterswere

availabletodefineandsecurethatperimeter.Thebestwaytosecuretheperimeterfromoutsideattackistorejectalltrafficfromexternalentities,butthisisimpossibleandimpracticaltodo,sosecuritypersonnelneededawaytolettrafficinbutstillbeabletodeterminewhetherornotthetrafficwasmalicious.ThisistheproblemthatNIDSdevelopersweretryingtosolve.

•Figure13.3Networkperimetersarealittlelikecastles—firewallsandNIDSsformthegatesandguardstokeepmalicioustrafficout.

Asitsnamesuggests,aNIDSfocusesonnetworktraffic—thebitsandbytestravelingalongthecablesandwiresthatinterconnectthesystems.ANIDSmustexaminethenetworktrafficasitpassesbyandbeabletoanalyzetrafficaccordingtoprotocol,type,amount,source,destination,content,trafficalreadyseen,andotherfactors.Thisanalysismusthappenquickly,andtheNIDSmustbeabletohandletrafficatwhateverspeedthenetworkoperatestobeeffective.NIDSsaretypicallydeployedsothattheycanmonitortrafficinandout

ofanorganization’smajorlinks:connectionstotheInternet,remoteoffices,partners,andsoon.Likehost-basedsystems,NIDSslookforcertainactivitiesthattypifyhostileactionsormisuse,suchasthefollowing:

Denial-of-serviceattacks

Portscansorsweeps

Maliciouscontentinthedatapayloadofapacketorpackets

Vulnerabilityscanning

Trojans,viruses,orworms

Tunneling

Brute-forceattacks

Ingeneral,mostNIDSsoperateinafairlysimilarfashion.Figure13.4showsthelogicallayoutofaNIDS.Byconsideringthefunctionandactivityofeachcomponent,youcangainsomeinsightintohowaNIDSoperates.

•Figure13.4NetworkIDScomponents

Inthesimplestform,aNIDShasthesamemajorcomponents:trafficcollector,analysisengine,reports,andauserinterface.InaNIDS,thetrafficcollectorisspecificallydesignedtopulltraffic

fromthenetwork.Thiscomponentusuallybehavesinmuchthesamewayasanetworktrafficsniffer—itsimplypullseverypacketitcanseeoffthenetworktowhichitisconnected.InaNIDS,thetrafficcollectorwilllogicallyattachitselftoanetworkinterfacecard(NIC)andinstructtheNICtoaccepteverypacketitcan.ANICthatacceptsandprocesseseverypacketregardlessofthepacket’soriginanddestinationissaidtobeinpromiscuousmode.

TechTip

AnotherWaytoLookatNIDSsInitssimplestform,aNIDSisalotlikeamotiondetectorandavideosurveillancesystemrolledintoone.TheNIDSnotestheundesirableactivity,generatesanalarm,andrecordswhathappens.

TheanalysisengineinaNIDSservesthesamefunctionasitshost-basedcounterpart,withsomesubstantialdifferences.Thenetworkanalysisenginemustbeabletocollectpacketsandexaminethemindividuallyor,ifnecessary,reassemblethemintoanentiretrafficsession.Thepatternsandsignaturesbeingmatchedarefarmorecomplicatedthanhost-basedsignatures,sotheanalysisenginemustbeabletorememberwhattrafficprecededthetrafficcurrentlybeinganalyzedsothatitcandeterminewhetherornotthattrafficfitsintoalargerpatternofmaliciousactivity.Additionally,thenetwork-basedanalysisenginemustbeabletokeepupwiththeflowoftrafficonthenetwork,rebuildingnetworksessionsandmatchingpatternsinrealtime.

CrossCheck

NIDSandEncryptedTrafficYoulearnedaboutencryptedtrafficinChapter5,socheckyourmemorywiththesequestions.WhatisSSH?Whatisaone-timepad?Canyounameatleastthreedifferentalgorithms?

TheNIDSsignaturedatabaseisusuallymuchlargerthanthatofahost-basedsystem.Whenexaminingnetworkpatterns,theNIDSmustbeabletorecognizetraffictargetedatmanydifferentapplicationsandoperatingsystemsaswellastrafficfromawidevarietyofthreats(worms,assessmenttools,attacktools,andsoon).Someofthesignaturesthemselvescanbequitelarge,astheNIDSmustlookatnetworktraffic

occurringinaspecificorderoveraperiodoftimetomatchaparticularmaliciouspattern.Usingthelessonslearnedfromearlyhost-basedsystems,NIDS

developersmodifiedthelogicalcomponentdesignsomewhattodistributetheuserinterfaceandreportingfunctions.Asmanycompanieshadmorethanonenetworklink,theywouldneedanIDScapableofhandlingmultiplelinksinmanydifferentlocations.TheearlyIDSvendorssolvedthisdilemmabydividingthecomponentsandassigningthemtoseparateentities.Thetrafficcollector,analysisengine,andsignaturedatabasewerebundledintoasingleentity,usuallycalledasensororappliance.Thesensorswouldreporttoandbecontrolledbyacentralsystemormasterconsole.Thiscentralsystem,showninFigure13.5,consolidatedalarmsandprovidedtheuserinterfaceandreportingfunctionsthatallowedusersinonelocationtomanage,maintain,andmonitorsensorsdeployedinavarietyofremotelocations.

•Figure13.5DistributednetworkIDScomponents

Bycreatingseparatecomponentsdesignedtoworktogether,theNIDSdeveloperswereabletobuildamorecapableandflexiblesystem.Withencryptedcommunications,networksensorscouldbeplacedaroundbothlocalandremoteperimetersandstillbemonitoredandmanagedsecurelyfromacentrallocation.Placementofthesensorsveryquicklybecameanissueformostsecuritypersonnel,asthesensorsobviouslyhadtohavevisibilityofthenetworktrafficinordertoanalyzeit.BecausemostorganizationswithNIDSsalsohadfirewalls,locationoftheNIDSrelativetothefirewallhadtobeconsideredaswell.Placedbeforethefirewall,asshowninFigure13.6,theNIDSwillseealltrafficcominginfromthe

Internet,includingattacksagainstthefirewallitself.Thisincludestrafficthatthefirewallstopsanddoesnotpermitintothecorporatenetwork.Withthistypeofdeployment,theNIDSsensorwillgeneratealargenumberofalarms(includingalarmsfortrafficthatthefirewallwouldstop).Thistendstooverwhelmthehumanoperatorsmanagingthesystem.

•Figure13.6NIDSsensorplacedinfrontoffirewall

Placedafterthefirewall,asshowninFigure13.7,theNIDSsensorseesandanalyzesthetrafficthatisbeingpassedthroughthefirewallandintothecorporatenetwork.WhilethisdoesnotallowtheNIDStoseeattacksagainstthefirewall,itgenerallyresultsinfarfeweralarmsandisthemostpopularplacementforNIDSsensors.

•Figure13.7NIDSsensorplacedbehindfirewall

Asyoualreadyknow,NIDSsexaminethenetworktrafficforsuspiciousormaliciousactivity.HerearetwoexamplesofsuspicioustraffictoillustratetheoperationofaNIDS:

PortscanAportscanisareconnaissanceactivityapotentialattackerusestofindoutinformationaboutthesystemshewantstoattack.Usinganyofanumberoftools,theattackerattemptstoconnecttovariousservices(web,FTP,SMTP,andsoon)toseeiftheyexistontheintendedtarget.Innormalnetworktraffic,asingleusermightconnecttotheFTPserviceprovidedonasinglesystem.Duringaportscan,anattackermayattempttoconnecttotheFTPserviceoneverysystem.Astheattacker’strafficpassesbytheIDS,theIDSwillnoticethispatternofattemptingtoconnecttodifferentservicesondifferentsystemsinarelativelyshortperiodoftime.WhentheIDScompares

theactivitytoitssignaturedatabase,itwillverylikelymatchthistrafficagainsttheportscanningsignatureandgenerateanalarm.

PingofdeathTowardtheendof1996,itwasdiscoveredthatcertainoperatingsystems,suchasWindows,couldbecrashedbysendingaverylargeInternetControlMessageProtocol(ICMP)echorequestpackettothatsystem.ThisisafairlysimpletrafficpatternforaNIDStoidentify,asitsimplyhastolookforICMPpacketsoveracertainsize.

PortscanningactivityisrampantontheInternet.MostorganizationswithNIDSseehundredsorthousandsofportscanalarmseverydayfromsourcesaroundtheworld.Someadministratorsreducethealarmlevelofportscanalarmsorignoreportscanningtrafficbecausethereissimplytoomuchtraffictotrackdownandrespondtoeachalarm.

AdvantagesofaNIDSANIDShascertainadvantagesthatmakeitagoodchoiceforcertainsituations:

ProvidingIDScoveragerequiresfewersystems.Withafewwell-placedNIDSsensors,youcanmonitorallthenetworktrafficgoinginandoutofyourorganization.Fewersensorsusuallyequatestolessoverheadandmaintenance,meaningyoucanprotectthesamenumberofsystemsatalowercost.

Deployment,maintenance,andupgradecostsareusuallylower.ThefewersystemsthathavetobemanagedandmaintainedtoprovideIDScoverage,thelowerthecosttooperatetheIDS.Upgradingandmaintainingafewsensorsisusuallymuchcheaperthanupgradingandmaintaininghundredsofhost-basedprocesses.

ANIDShasvisibilityintoallnetworktrafficandcancorrelateattacks

amongmultiplesystems.Well-placedNIDSsensorscanseethe“bigpicture”whenitcomestonetwork-basedattacks.Thenetworksensorscantellyouwhetherattacksarewidespreadandunorganizedorfocusedandconcentratedonspecificsystems.

DisadvantagesofaNIDSANIDShascertaindisadvantages:

Itisineffectivewhentrafficisencrypted.Whennetworktrafficisencryptedfromapplicationtoapplicationorsystemtosystem,aNIDSsensorwillnotbeabletoexaminethattraffic.Withtheincreasingpopularityofencryptedtraffic,thisisbecomingabiggerproblemforeffectiveIDSoperations.

Itcan’tseetrafficthatdoesnotcrossit.TheIDSsensorcanexamineonlytrafficcrossingthenetworklinkitismonitoring.WithmostIDSsensorsbeingplacedonperimeterlinks,traffictraversingtheinternalnetworkisneverseen.

Itmustbeabletohandlehighvolumesoftraffic.Asnetworkspeedscontinuetoincrease,thenetworksensorsmustbeabletokeeppaceandexaminethetrafficasquicklyasitcanpassthenetwork.WhenNIDSswereintroduced,10-Mbpsnetworkswerethenorm.Now100-Mbpsandeven1-Gbpsnetworksarecommonplace.ThisincreaseintrafficspeedsmeansIDSsensorsmustbefasterandmorepowerfulthaneverbefore.

Itdoesn’tknowaboutactivityonthehoststhemselves.NIDSsfocusonnetworktraffic.ActivitythatoccursonthehoststhemselveswillnotbeseenbyaNIDS.

TechTip

TCPResetThemostcommondefensiveabilityforanactiveNIDSistosendaTCPresetmessage.WithinTCP,theresetmessage(RST)essentiallytellsbothsidesoftheconnectiontodropthesessionandstopcommunicatingimmediately.Whilethismechanismwasoriginallydevelopedtocoversituationssuchassystemsaccidentallyreceivingcommunicationsintendedforothersystems,theresetmessageworksfairlywellforNIDSs—withoneseriousdrawback:aresetmessageaffectsonlythecurrentsession.Nothingpreventstheattackerfromcomingbackandtryingagainandagain.Despitethe“temporariness”ofthissolution,sendingaresetmessageisusuallytheonlydefensivemeasureimplementedonNIDSdeployments,asthefearofblockinglegitimatetrafficanddisruptingbusinessprocesses,evenforafewmoments,oftenoutweighstheperceivedbenefitofdiscouragingpotentialintruders.

Activevs.PassiveNIDSsMostNIDSscanbedistinguishedbyhowtheyexaminethetrafficandwhetherornottheyinteractwiththattraffic.Onapassivesystem,theNIDSsimplywatchesthetraffic,analyzesit,andgeneratesalarms.Itdoesnotinteractwiththetrafficitselfinanyway,anditdoesnotmodifythedefensivepostureofthesystemtoreacttothetraffic.ApassiveNIDSisverysimilartoasimplemotionsensor—itgeneratesanalarmwhenitmatchesapattern,muchasthemotionsensorgeneratesanalarmwhenitseesmovement.AnactiveNIDScontainsallthesamecomponentsandcapabilitiesofthepassiveNIDSwithonecriticaladdition—theactiveNIDScanreacttothetrafficitisanalyzing.Thesereactionscanrangefromsomethingsimple,suchassendingaTCPresetmessagetointerruptapotentialattackanddisconnectasession,tosomethingcomplex,suchasdynamicallymodifyingfirewallrulestorejectalltrafficfromspecificsourceIPaddressesforthenext24hours.

NIDSToolsTherearenumerousexamplesofNIDStoolsinthemarketplace,fromopensourceprojectstocommercialentries.SnorthasbeenthedefactostandardIDSenginesinceitscreationin1998.Ithasalargeuserbaseand

setthestandardformanyIDSelement,includingrulesetsandformats.SnortrulesarethelistofactivitiesthatSnortwillalertonandprovidetheflexiblepowerbehindtheIDSplatform.SnortrulesetsareupdatedbyalargeactivecommunityaswellasSourcefireVulnerabilityResearchTeam,thecompanybehindSnort.SnortVRTrulesetsareavailabletosubscribersandprovidesuchelementsassame-dayprotectionforitemssuchasMicrosoftpatchTuesdayvulnerabilities.Theserulesaremovedtotheopencommunityafter30days.AnewerentranttotheIDSmarketplaceisSuricata.Suricataisanopen

sourceIDS,begunwithgrantmoneyfromtheU.S.governmentandmaintainedbytheOpenSourceSecurityFoundation(OSIF).SuricatahasoneadvantageoverSnort:itsupportsmultithreading,whileSnortonlysupportssingle-threadedoperation.Bothofthesesystemsarehighlyflexibleandscalable,operatingonbothWindowsandLinuxplatforms.

TechTip

SnortRulesThebasicformatforSnortrulesisaruleheaderfollowedbyruleoptions.

Host-BasedIDSsTheveryfirstIDSswerehost-basedanddesignedtoexamineactivityonlyonaspecifichost.Ahost-basedIDS(HIDS)examineslogfiles,audittrails,andnetworktrafficcomingintoorleavingaspecifichost.HIDSscanoperateinrealtime,lookingforactivityasitoccurs,orinbatchmode,lookingforactivityonaperiodicbasis.Host-basedsystemsaretypicallyself-contained,butmanyofthenewercommercialproductshavebeendesignedtoreporttoandbemanagedbyacentralsystem.Host-based

systemsalsotakelocalsystemresourcestooperate.Inotherwords,aHIDSwilluseupsomeofthememoryandCPUcyclesofthesystemitisprotecting.EarlyversionsofHIDSsraninbatchmode,lookingforsuspiciousactivityonanhourlyordailybasis,andtypicallylookedonlyforspecificeventsinthesystem’slogfiles.Asprocessorspeedsincreased,laterversionsofHIDSslookedthroughthelogfilesinrealtimeandevenaddedtheabilitytoexaminethedatatrafficthehostwasgeneratingandreceiving.MostHIDSsfocusonthelogfilesoraudittrailsgeneratedbythelocal

operatingsystem.OnUNIXsystems,theexaminedlogsusuallyincludethosecreatedbysyslog,suchasmessages,kernellogs,anderrorlogs.OnWindowssystems,theexaminedlogsaretypicallythethreeeventlogs:Application,System,andSecurity.SomeHIDSscancoverspecificapplications,suchasFTPorwebservices,byexaminingthelogsproducedbythosespecificapplicationsorexaminingthetrafficfromtheservicesthemselves.Withinthelogfiles,theHIDSislookingforcertainactivitiesthattypifyhostileactionsormisuse,suchasthefollowing:

Loginsatoddhours

Loginauthenticationfailures

Additionsofnewuseraccounts

Modificationoraccessofcriticalsystemfiles

Modificationorremovalofbinaryfiles(executables)

Startingorstoppingprocesses

Privilegeescalation

Useofcertainprograms

Ingeneral,mostHIDSsoperateinaverysimilarfashion.(Figure13.8showsthelogicallayoutofaHIDS.)Byconsideringthefunctionandactivityofeachcomponent,youcangainsomeinsightintohowHIDSsoperate.

•Figure13.8Host-basedIDScomponents

AsonanyIDS,thetrafficcollectoronaHIDSpullsintheinformationtheothercomponents,suchastheanalysisengine,needtoexamine.FormostHIDSs,thetrafficcollectorpullsdatafrominformationthelocalsystemhasalreadygenerated,suchaserrormessages,logfiles,andsystemfiles.Thetrafficcollectorisresponsibleforreadingthosefiles,selectingwhichitemsareofinterest,andforwardingthemtotheanalysisengine.OnsomeHIDSs,thetrafficcollectoralsoexaminesspecificattributesofcriticalfiles,suchasfilesize,datemodified,orchecksum.

Criticalfilesarethosethatarevitaltothesystem’soperationoroverallfunctionality.Theymaybeprogram(orbinary)files,filescontaininguseraccountsandpasswords,orevenscriptstostartorstopsystemprocesses.Anyunexpectedmodificationstothesefilescouldmeanthesystemhas

beencompromisedormodifiedbyanattacker.Bymonitoringthesefiles,theHIDScanwarnusersofpotentiallymaliciousactivity.

TheanalysisengineisperhapsthemostimportantcomponentoftheHIDS,asitmustdecidewhatactivityis“okay”andwhatactivityis“bad.”Theanalysisengineisasophisticateddecisionandpattern-matchingmechanism—itlooksattheinformationprovidedbythetrafficcollectorandtriestomatchitagainstknownpatternsofactivitystoredinthesignaturedatabase.Iftheactivitymatchesaknownpattern,theanalysisenginecanreact,usuallybyissuinganalertoralarm.Ananalysisenginemayalsobecapableofrememberinghowtheactivityitislookingatrightnowcomparestotrafficithasalreadyseenormayseeinthenearfuture,sothatitcanmatchmorecomplicated,multistepmaliciousactivitypatterns.Ananalysisenginemustalsobecapableofexaminingtrafficpatternsasquicklyaspossible,asthelongerittakestomatchamaliciouspattern,thelesstimetheHIDSorhumanoperatorhastoreacttomalicioustraffic.MostHIDSvendorsbuildadecisiontreeintotheiranalysisenginestoexpeditepatternmatching.Thesignaturedatabaseisacollectionofpredefinedactivitypatterns

thathavealreadybeenidentifiedandcategorized—patternsthattypicallyindicatesuspiciousormaliciousactivity.Whentheanalysisenginehasanactivityortrafficpatterntoexamine,itcomparesthatpatterntotheappropriatesignaturesinthedatabase.Thesignaturedatabasecancontainanywherefromafewtoafewthousandsignatures,dependingonthevendor,typeofHIDS,spaceavailableonthesystemtostoresignatures,andotherfactors.TheuserinterfaceisthevisiblecomponentoftheHIDS—thepartthat

humansinteractwith.TheuserinterfacevarieswidelydependingontheproductandvendorandcouldbeanythingfromadetailedGUItoasimplecommandline.Regardlessofthetypeandcomplexity,theinterfaceisprovidedtoallowtheusertointeractwiththesystem:changingparameters,receivingalarms,tuningsignaturesandresponsepatterns,andsoon.

TechTip

DecisionTreesIncomputersystems,atreeisadatastructure,eachelementofwhichisattachedtooneormorestructuresdirectlybeneathit(theconnectionsarecalledbranches).Structuresontheendofabranchwithoutanyelementsbelowthemarecalledleaves.Treesaremostoftendrawninverted,withtherootatthetopandallsubsequentelementsbranchingdownfromtheroot.Treesinwhicheachelementhasnomorethantwoelementsbelowitarecalledbinarytrees.InIDSs,adecisiontreeisusedtohelptheanalysisenginequicklyexaminetrafficpatternsandeliminatesignaturesthatdon’tapplytotheparticulartrafficoractivitybeingexamined,sothatthefewestnumberofcomparisonsneedtobemade.Forexample,asshowninthisillustration,thedecisiontreemaycontainasectionthatdividestheactivityintooneofthreesubsectionsbasedupontheoriginoftheactivity(alogentryforaneventtakenfromthesystemlogs,afilechangeforamodificationtoacriticalfile,orauseractionforsomethingauserhasdone):

Whentheanalysisenginelooksattheactivitypatternandstartsdownthedecisiontree,itmustdecidewhichpathtofollow.Ifitisalogentry,theanalysisenginecanthenconcentrateononlythesignaturesthatapplytologentriesanditdoesnotneedtoworryaboutsignaturesthatapplytofilechangesoruseractions.Thistypeofdecisiontreeallowstheanalysisenginetofunctionmuchfaster,asitdoesnothavetocompareactivitiestoeverysignatureinthedatabase,justthesignaturesthatapplytothatparticulartypeofactivity.ItisimportanttonotethatHIDSscanlookatbothactivitiesoccurringonthehostitselfandthenetworktrafficcomingintoorleavingthehost.

TobetterunderstandhowaHIDSoperates,takealookatthefollowingexamplesfromaUNIXsystemandaWindowssystem.OnaUNIXsystem,theHIDSislikelygoingtoexamineanyofa

numberofsystemlogs—basically,largetextfilescontainingentriesaboutwhatishappeningonthesystem.Forthisexample,considerthefollowinglinesfromthe“messages”logonaRedHatsystem:

InthefirstlinebeginningJan5,youseeasessionbeingopenedbyausernamedbob.Thisusuallyindicatesthatwhoeverownstheaccountbobhasloggedintothesystem.OnthenextthreelinesbeginningJan5,youseeauthenticationfailuresasbobtriestobecomeroot—thesuperuseraccountthatcandoanythingonthesystem.Inthiscase,userbobtriesthreetimes

tobecomerootandfailsoneachtry.Thispatternofactivitycouldmeananumberofdifferentthings—bobcouldbeanadminwhohasforgottenthepasswordfortherootaccount,bobcouldbeanadminandsomeonechangedtherootpasswordwithouttellinghim,bobcouldbeauserattemptingtoguesstherootpassword,oranattackercouldhavecompromisedbob’saccountandisnowtryingtocompromisetherootaccountonthesystem.Inanycase,ourHIDSwillworkthroughitsdecisiontreetodeterminewhetheranauthenticationfailureinthemessagelogissomethingitneedstoexamine.Inthisinstance,whentheHIDSexaminestheselinesinthelog,itwillnotethefactthatthreeofthelinesinthelogmatchoneofthepatternsithasbeentoldtolookfor(asdeterminedbyinformationfromthedecisiontreeandthesignaturedatabase),anditwillreactaccordingly,usuallybygeneratinganalarmoralertofsometypethatappearsontheuserinterfaceorinane-mail,page,orotherformofmessage.

TechTip

Analyst-DrivenLogAnalysisLoganalysisistheartoftranslatingcomputer-generatedlogsintomeaningfuldata.Forexample,acomputercan’talwaystellyouifanadministrator-levelloginat3A.M.onaSaturdayisdefinitelyabadthing,butananalystcan.Humananalystscanaddvaluethroughtheinterpretationofinformationincontextwithothersourcesofinformation.

OnaWindowssystem,theHIDSwilllikelyexaminethelogsgeneratedbytheoperatingsystem.Thethreebasictypesoflogs(Application,System,andSecurity)aresimilartothelogsonaUNIXsystem,thoughtheWindowslogsarenotstoredastextfilesandtypicallyrequireautilityorapplicationtoreadthem.ThisexampleusestheSecuritylogfromaWindowsVistasystem:

InthefirstthreemainlinesoftheSecuritylog,youseeanAuditFailureentryfortheLogonprocess.Thisindicatessomeonehastriedtologintothesystemthreetimesandhasfailedeachtime(muchlikeourUNIXexample)andthensucceededonthefourthtry.Youwon’tseethenameoftheaccountuntilyouexpandthelogentrywithintheWindowsEventViewertool,butforthisexample,assumeitwastheadministratoraccount—theWindowsequivalentoftherootaccount.Hereagain,youseethreeloginfailures—iftheHIDShasbeenprogrammedtolookforfailedloginattempts,itwillgeneratealertswhenitexaminestheselogentries.

AdvantagesofHIDSsHIDSshavecertainadvantagesthatmakethemagoodchoiceforcertainsituations:

Theycanbeveryoperatingsystem–specificandhavemoredetailedsignatures.AHIDScanbeveryspecificallydesignedtorunonacertainoperatingsystemortoprotectcertainapplications.Thisnarrowfocusletsdevelopersconcentrateonthespecificthingsthataffectthespecificenvironmenttheyaretryingtoprotect.Withthistypeoffocus,thedeveloperscanavoidgenericalarmsanddevelopmuchmorespecific,detailedsignaturestoidentifymalicioustrafficmore

accurately.Theycanreducefalse-positiverates.Whenrunningonaspecificsystem,theHIDSprocessismuchmorelikelytobeabletodeterminewhetherornottheactivitybeingexaminedismalicious.Bymoreaccuratelyidentifyingwhichactivityis“bad,”theHIDSwillgeneratefewerfalsepositives(alarmsgeneratedwhenthetrafficmatchesapatternbutisnotactuallymalicious).

Theycanexaminedataafterithasbeendecrypted.Withsecurityconcernsconstantlyontherise,manydevelopersarestartingtoencrypttheirnetworkcommunications.Whendesignedandimplementedintherightmanner,aHIDSwillbeabletoexaminetrafficthatisunreadabletoanetwork-basedIDS.Thisparticularabilityisbecomingmoreimportanteachdayasmoreandmorewebsitesstarttoencryptalloftheirtraffic.

Theycanbeveryapplicationspecific.Onahostlevel,theIDScanbedesigned,modified,ortunedtoworkverywellonspecificapplicationswithouthavingtoanalyzeorevenholdsignaturesforotherapplicationsthatarenotrunningonthatparticularsystem.Signaturescanbebuiltforspecificversionsofwebserversoftware,FTPservers,mailservers,oranyotherapplicationhousedonthathost.

Theycandeterminewhetherornotanalarmmayimpactthatspecificsystem.Theabilitytodeterminewhetherornotaparticularactivityorpatternwillreallyaffectthesystembeingprotectedassistsgreatlyinreducingthenumberofgeneratedalarms.BecausetheHIDSresidesonthesystem,itcanverifythingssuchaspatchlevels,presenceofcertainfiles,andsystemstatewhenitanalyzestraffic.Byknowingwhatstatethesystemisin,theHIDScanmoreaccuratelydeterminewhetheranactivityispotentiallyharmfultothesystem.

DisadvantagesofHIDSs

HIDSsalsohavecertaindisadvantagesthatmustbeweighedinmakingthedecisionofwhethertodeploythistypeoftechnology:

TheHIDSmusthaveaprocessoneverysystemyouwanttowatch.YoumusthaveaHIDSprocessorapplicationinstalledoneveryhostyouwanttowatch.Towatch100systems,then,youwouldneedtodeploy100HIDSs,orremoteagents.

TheHIDScanhaveahighcostofownershipandmaintenance.Dependingonthespecificvendorandapplication,aHIDScanbefairlycostlyintermsoftimeandmanpowertomaintain.Unlesssometypeofcentralconsoleisusedthatallowsyoutomaintainremoteprocesses,administratorsmustmaintaineachHIDSprocessindividually.Evenwithacentralconsole,withaHIDS,therewillbeahighnumberofprocessestomaintain,softwaretoupdate,andparameterstotune.

TheHIDSuseslocalsystemresources.Tofunction,theHIDSmustuseCPUcyclesandmemoryfromthesystemitistryingtoprotect.WhateverresourcestheHIDSusesarenolongeravailableforthesystemtoperformitsotherfunctions.Thisbecomesextremelyimportantonapplicationssuchashigh-volumewebservers,wherefewerresourcesusuallymeansfewervisitorsservedandtheneedformoresystemstohandleexpectedtraffic.

TheHIDShasaveryfocusedviewandcannotrelatetoactivityaroundit.TheHIDShasalimitedviewoftheworld,asitcanseeactivityonlyonthehostitisprotecting.Ithaslittletonovisibilityintotrafficarounditonthenetworkoreventstakingplaceonotherhosts.Consequently,aHIDScantellyouonlyifthesystemitisrunningonisunderattack.

TheHIDS,ifloggingonlylocally,couldbecompromisedordisabled.WhenaHIDSgeneratesalarms,ittypicallystoresthealarminformationinafileordatabaseofsomesort.IftheHIDSstoresitsgeneratedalarmtrafficonthelocalsystem,anattackerthatis

successfulinbreakingintothesystemmaybeabletomodifyordeletethosealarms.Thismakesitdifficultforsecuritypersonneltodiscovertheintruderandconductanytypeofpost-incidentinvestigation.AcapableintrudermayevenbeabletoturnofftheHIDSprocesscompletely.

Asecuritybestpracticeistostoreormakeacopyofloginformation,especiallysecurity-relatedloginformation,onaseparatesystem.Whenasystemiscompromised,theattackertypicallyhidestheirtracksbyclearingoutanylogfilesonthecompromisedsystem.Ifthelogfilesareonlystoredlocallyonthecompromisedsystem,you’llknowanattackerwaspresent(duetotheemptylogfiles)butyouwon’tknowwhattheydidorwhentheydidit.

Activevs.PassiveHIDSsMostIDSscanbedistinguishedbyhowtheyexaminetheactivityaroundthemandwhetherornottheyinteractwiththatactivity.ThisiscertainlytrueforHIDSs.Onapassivesystem,theHIDSisexactlythat—itsimplywatchestheactivity,analyzesit,andgeneratesalarms.Itdoesnotinteractwiththeactivityitselfinanyway,anditdoesnotmodifythedefensivepostureofthesystemtoreacttothetraffic.ApassiveHIDSissimilartoasimplemotionsensor—itgeneratesanalarmwhenitmatchesapattern,muchasthemotionsensorgeneratesanalarmwhenitseesmovement.AnactiveIDSwillcontainallthesamecomponentsandcapabilitiesof

thepassiveIDSwithonecriticalexception—theactiveIDScanreacttotheactivityitisanalyzing.Thesereactionscanrangefromsomethingsimple,suchasrunningascripttoturnaprocessonoroff,tosomethingascomplexasmodifyingfilepermissions,terminatingtheoffendingprocesses,loggingoffspecificusers,andreconfiguringlocalcapabilitiestopreventspecificusersfromlogginginforthenext12hours.

ResurgenceandAdvancementofHIDSs

ThepastfewyearshaveseenastrongresurgenceintheuseofHIDSs.Withthegreatadvancesinprocessorpower,theintroductionofmulticoreprocessors,andtheincreasedcapacityofharddrivesandmemorysystems,someofthetraditionalbarrierstorunningaHIDShavebeenovercome.Combinethoseadvancesintechnologywiththewidespreadadoptionofalways-onbroadbandconnections,theriseintheuseoftelecommuting,andagreateroverallawarenessoftheneedforcomputersecurity,andsolutionssuchasHIDSsstarttobecomeanattractiveandsometimeseffectivesolutionforbusinessandhomeusersalike.ThelatestgenerationofHIDSshasintroducednewcapabilitiesdesigned

tostopattacksbypreventingthemfromeverexecutingoraccessingprotectedfilesinthefirstplace,ratherthanrelyingonaspecificsignaturesetthatonlymatchesknownattacks.Themoreadvancedhost-basedofferings,whichmostvendorsrefertoashost-basedintrusionpreventionsystems(HIPSs),combinethefollowingelementsintoasinglepackage:

IntegratedsystemfirewallThefirewallcomponentchecksallnetworktrafficpassingintoandoutofthehost.Userscansetrulesforwhattypesoftraffictheywanttoallowintooroutoftheirsystem.

Behavioral-andsignature-basedIDSThishybridapproachusessignaturestomatchwell-knownattacksandgenericpatternsforcatching“zero-day”orunknownattacksforwhichnosignaturesexist.

ApplicationcontrolThisallowsadministratorstocontrolhowapplicationsareusedonthesystemandwhetherornotnewapplicationscanbeinstalled.Controllingtheaddition,deletion,ormodificationofexistingsoftwarecanbeagoodwaytocontrolasystem’sbaselineandpreventmalwarefrombeinginstalled.

EnterprisemanagementSomehost-basedproductsareinstalledwithan“agent”thatallowsthemtobemanagedbyandreportbacktoacentralserver.Thistypeofintegratedremotemanagementcapabilityisessentialinanylarge-scaledeploymentofhost-basedIDS/IPS.

MalwaredetectionandpreventionSomeHIDSs/HIPSsinclude

scanningandpreventioncapabilitiesthataddressspyware,malware,rootkits,andothermalicioussoftware.

Integratedsecurityproductscanprovideagreatdealofsecurity-relatedfeaturesinasinglepackage.Thisisoftencheaperandmoreconvenientthanpurchasingaseparateantivirusproduct,afirewall,andanIDS.However,integratedproductsarenotwithoutpotentialpitfalls—ifoneportionoftheintegratedproductfails,theentireprotectivesuitemayfail.Symantec’sEndpointProtectionandMcAfee’sInternetSecurityareexamplesofintegrated,host-basedprotectionproducts.

IntrusionPreventionSystemsAnintrusionpreventionsystem(IPS)monitorsnetworktrafficformaliciousorunwantedbehaviorandcanblock,reject,orredirectthattrafficinrealtime.Soundfamiliar?Itshould:whilemanyvendorswillarguethatanIPSisadifferentanimalfromanIDS,thetruthisthatmostIPSsaremerelyexpansionsofexistingIDScapabilities.Asacorefunction,anIPSmustbeabletomonitorforanddetectpotentiallymaliciousnetworktraffic,whichisessentiallythesamefunctionasanIDS.However,anIPSdoesnotstopatmerelymonitoringtraffic—itmustbeabletoblock,reject,orredirectthattrafficinrealtimetobeconsideredatrueIPS.Itmustbeabletostoporpreventmalicioustrafficfromhavinganimpact.ToqualifyasanIDS,asystemjustneedstoseeandclassifythetrafficasmalicious.ToqualifyasanIPS,asystemmustbeabletodosomethingaboutthattraffic.Inreality,mostproductsthatarecalledIDSs,includingthefirstcommerciallyavailableIDS,NetRanger,caninteractwithandstopmalicioustraffic,sothedistinctionbetweenthetwoisoftenblurred.

ThetermintrusionpreventionsystemwasoriginallycoinedbyAndrewPlatoinmarketingliteraturedevelopedforNetworkICE,acompanythatwaspurchasedbyISSandwhichisnowpartofIBM.ThetermIPShaseffectivelytakentheplaceoftheterm“activeIDS.”

LikeIDSs,mostIPSshaveaninternalsignaturedatabasetocomparenetworktrafficagainstknown“bad”trafficpatterns.IPSscanperformcontent-basedinspections,lookinginsidenetworkpacketsforuniquepackets,datavalues,orpatternsthatmatchknownmaliciouspatterns.SomeIPSscanperformprotocolinspection,inwhichtheIPSdecodestrafficandanalyzesitasitwouldappeartotheserverreceivingit.Forexample,manyIPSscandoHTTPprotocolinspection,sotheycanexamineincomingandoutgoingHTTPtrafficandprocessitasanHTTPserverwould.TheadvantagehereisthattheIPScandetectanddefeatpopularevasiontechniquessuchasencodingURLsbecausetheIPS“sees”thetrafficinthesamewaythewebserverwouldwhenitreceivesanddecodesit.TheIPScanalsodetectactivitythatisabnormalorpotentiallymaliciousforthatprotocol,suchaspassinganextremelylargevalue(over10,000characters)toaloginfieldonawebpage.

ExamTip:AnIDSislikeaburglaralarm—itwatchesandalertsyouwhensomethingbadhappens.AnIPSislikeanarmedsecurityguard—itwatches,stopsthebadactivity,andthenletsyouknowwhathappened.

UnlikeatraditionalIDS,anIPSmustsitinline(intheflowoftraffic)tobeabletointeracteffectivelywiththenetworktraffic.MostIPSscanoperatein“stealthmode”anddonotrequireanIPaddressfortheconnectionstheyaremonitoring.WhenanIPSdetectsmalicioustraffic,itcandroptheoffendingpackets,resetincomingorestablishedconnections,generatealerts,quarantinetrafficto/fromspecificIPaddresses,orevenblocktrafficfromoffendingIPaddressesonatemporaryorpermanentbasis.Astheyaresittinginline,mostIPSscanalsoofferrate-basedmonitoringtodetectandmitigatedenial-of-serviceattacks.Withrate-

basedmonitoring,theIPScanwatchtheamountoftraffictraversingthenetwork.IftheIPSseestoomuchtrafficcomingintoorgoingoutfromaspecificsystemorsetofsystems,theIPScaninterveneandthrottledownthetraffictoalowerandmoreacceptablelevel.ManyIPSsperformthisfunctionby“learning”whatare“normal”networktrafficpatternswithregardtonumberofconnectionspersecond,amountofpacketsperconnection,packetscomingfromorgoingtospecificports,andsoon,andcomparingcurrenttrafficratesfornetworktraffic(TCP,UDP,ARP,ICMP,andsoon)tothoseestablishednorms.Whenatrafficpatternreachesathresholdorvariesdramaticallyfromthosenorms,theIPScanreactandinterveneasneeded.

TechTip

InlineNetworkDevicesAn“inline”networkdeviceissomethingthatispositionedintheflowoftraffic—networktrafficmustpassthroughitgoingintooroutofthenetwork.Anyinlinedevicehasthepotentialtostopnetworktrafficifthatdevicefails.Toallownetworktraffictoflow,manynetworkdeviceswillfail“open,”meaningtheysimplypasstrafficfromoneinterfacetoanotherwithoutinspectingitorinteractingwithit.SomeadministratorschoosetohavetheirfirewallsandIPSsfail“closed,”meaningthatifthedevicesarenotfunctioningcorrectly,alltrafficisstoppeduntilthosedevicescanberepaired.

LikeatraditionalIDS,theIPShasapotentialweaknesswhendealingwithencryptedtraffic.TrafficthatisencryptedwilltypicallypassbytheIPSuntouched(provideditdoesnottriggeranynon-content–relatedalarmssuchasrate-basedalarms).Tocounterthisproblem,someIPSvendorsareincludingtheabilitytodecryptSecureSocketsLayer(SSL)sessionsforfurtherinspection.Todothis,someIPSsolutionsstorecopiesofanyprotectedwebservers’privatekeysonthesensoritself.WhentheIPSseesasessioninitiationrequest,itmonitorstheinitialtransactionsbetweentheserverandtheclient.Byusingtheserver’sstoredprivatekeys,theIPSwillbeabletodeterminethesessionkeysnegotiatedduring

theSSLsessioninitiation.Withthesessionkeys,theIPScandecryptallfuturepacketspassedbetweenserverandclientduringthatwebsession.ThisgivestheIPStheabilitytoperformcontentinspectiononSSL-encryptedtraffic.

Thetermwirespeedreferstothetheoreticalmaximumtransmissionrateofacableorothermediumandisbasedonanumberoffactors,includingthepropertiesofthecableitselfandtheconnectionprotocolinuse(inotherwords,howmuchdatacanbepushedthroughunderidealconditions).

YouwilloftenseeIPSs(andIDSs)advertisedandmarketedbytheamountoftraffictheycanprocesswithoutdroppingpacketsorinterruptingtheflowofnetworktraffic.Inreality,anetworkwillneverreachitshypotheticalmaximumtransmissionrate,orwirespeed,duetoerrors,collisions,retransmissions,andotherfactors;therefore,a1-Gbpsnetworkisnotactuallycapableofpassing1Gbpsofnetworktraffic,evenifallthecomponentsareratedtohandle1Gbps.Whenusedinamarketingsense,wirespeedisthemaximumthroughputratethenetworkingorsecuritydeviceequipmentcanprocesswithoutimpactingthatnetworktraffic.Forexample,a1-GbpsIPSshouldbeabletoprocess,analyze,andprotect1Gbpsofnetworktrafficwithoutimpactingtrafficflow.IPSvendorsoftenquotetheirproducts’capacityasthecombinedthroughputpossiblethroughallavailableportsontheIPSsensor—a10-Gbpssensormayhave12GigabitEthernetportsbutiscapableofhandlingonly10Gbpsofnetworktraffic.

TechTip

DetectionControlsvs.PreventionControlsWhensecuringyourorganization,especiallyyournetworkperimeterandcriticalsystems,youwilllikelyhavetomakesomechoicesastowhattypeofprotectivemeasuresandcontrolsyouneedtoimplement.Forexample,youmayneedtodecidebetweendetectioncontrols

(capabilitiesthatdetectandalertonsuspiciousormaliciousactivity)andpreventioncontrols(capabilitiesthatstopsuspiciousormaliciousactivity).ConsiderthedifferencesbetweenatraditionalIDSandIPS.AlthoughmanyIDSshavesometypeofresponsecapability,theirrealpurposeistowatchforactivityandthenalertwhen“hostile”activityisnoted.Ontheotherhand,anIPSisdesignedtoblock,thwart,andpreventthatsame“hostile”activity.Aparallelexampleinthephysicalsecurityspacewouldbeacameraandasecurityguard.

Acamerawatchesactivityandcanevengeneratealertswhenmotionisdetected.Butacameracannotstopanintruderfrombreakingintoafacilityandstealingsomething—itonlyrecordsandalerts.Asecurityguard,however,hastheabilitytostoptheintruderphysically,eitherbeforetheybreakintothefacilityorbeforetheycanleavewiththestolengoods.

HoneypotsandHoneynetsAsisoftenthecase,oneofthebesttoolsforinformationsecuritypersonnelhasalwaysbeenknowledge.Tosecureanddefendanetworkandtheinformationsystemsonthatnetworkproperly,securitypersonnelneedtoknowwhattheyareupagainst.Whattypesofattacksarebeingused?Whattoolsandtechniquesarepopularatthemoment?Howeffectiveisacertaintechnique?Whatsortofimpactwillthistoolhaveonmynetwork?Oftenthissortofinformationispassedthroughwhitepapers,conferences,mailinglists,orevenwordofmouth.Insomecases,thetooldevelopersthemselvesprovidemuchoftheinformationintheinterestofpromotingbettersecurityforeveryone.Informationisalsogatheredthroughexaminationandforensicanalysis,

oftenafteramajorincidenthasalreadyoccurredandinformationsystemsarealreadydamaged.Oneofthemosteffectivetechniquesforcollectingthistypeofinformationistoobserveactivityfirsthand—watchinganattackerasheprobes,navigates,andexploitshiswaythroughanetwork.Toaccomplishthiswithoutexposingcriticalinformationsystems,securityresearchersoftenusesomethingcalledahoneypot.Ahoneypot,sometimescalledadigitalsandbox,isanartificial

environmentwhereattackerscanbecontainedandobservedwithoutputtingrealsystemsatrisk.Agoodhoneypotappearstoanattackertobearealnetworkconsistingofapplicationservers,usersystems,network

traffic,andsoon,butinmostcasesit’sactuallymadeupofoneorafewsystemsrunningspecializedsoftwaretosimulatetheuserandnetworktrafficcommontomosttargetednetworks.Figure13.9illustratesasimplehoneypotlayoutinwhichasinglesystemisplacedonthenetworktodeliberatelyattractattentionfrompotentialattackers.

•Figure13.9Logicaldepictionofahoneypot

Figure13.9showsthesecurityresearcher’sviewofthehoneypot,whileFigure13.10showstheattacker’sview.Thesecurityadministratorknowsthatthehoneypot,inthiscase,actuallyconsistsofasinglesystemrunningsoftwaredesignedtoreacttoprobes,reconnaissanceattempts,andexploitsasifitwereanentirenetworkofsystems.Whentheattackerconnectstothehoneypot,sheispresentedwithanentire“virtual”networkofserversandPCsrunningavarietyofapplications.Inmostcases,thehoneypotwill

appeartoberunningversionsofapplicationsthatareknowntobevulnerabletospecificexploits.Allthisisdesignedtoprovidetheattackerwithanenticing,hopefullyirresistible,target.

•Figure13.10Virtualnetworkcreatedbythehoneypot

Anytimeanattackerhasbeenluredintoprobingorattackingthevirtualnetwork,thehoneypotrecordstheactivityforlateranalysis:whattheattackerdoes,whichsystemsandapplicationssheconcentrateson,what

toolsarerun,howlongtheattackerstays,andsoon.Allthisinformationiscollectedandanalyzedinthehopesthatitwillallowsecuritypersonneltobetterunderstandandprotectagainstthethreatstotheirsystems.Therearemanyhoneypotsinuse,specializingineverythingfrom

wirelesstodenial-of-serviceattacks;mostarerunbyresearch,government,orlawenforcementorganizations.Whyaren’tmorebusinessesrunninghoneypots?Quitesimply,thetimeandcostareprohibitive.Honeypotstakealotoftimeandefforttomanageandmaintain,andevenmoreefforttosort,analyze,andclassifythetrafficthehoneypotcollects.Unlesstheyaredevelopingsecuritytools,mostcompaniesfocustheirlimitedsecurityeffortsonpreventingattacks,andinmanycases,companiesaren’teventhatconcernedwithdetectingattacksaslongastheattacksareblocked,areunsuccessful,anddon’taffectbusinessoperations.Eventhoughhoneypotscanserveasavaluableresourcebyluringattackersawayfromproductionsystemsandallowingdefenderstoidentifyandthwartpotentialattackersbeforetheycauseanyseriousdamage,thecostsandeffortsinvolveddetermanycompaniesfromusinghoneypots.Ahoneynetisacollectionoftwoormorehoneypots.Larger,very

diversenetworkenvironmentscandeploymultiplehoneypots(thusformingahoneynet)whenasinglehoneypotdevicedoesnotprovideenoughcoverage.Honeynetsareoftenintegratedintoanorganization-wideIDS/IPSbecausethehoneynetcanproviderelevantinformationaboutpotentialattackers.

ExamTip:Ahoneypotisasystemdesignedtoattractpotentialattackersbypretendingtobeoneormoresystemswithopennetworkservices.

Tools

Toolsareavitalpartofanysecurityprofessional’sskillset.Youmaynotbean“assessmentprofessional”whospendsmostofhisorhercareerexaminingnetworkslookingforvulnerabilities,butyoucanusemanyofthesametoolsforinternalassessmentactivities,trackingdowninfectedsystems,spottinginappropriatebehavior,andsoon.Knowingtherighttoolforthejobcanbecriticaltoperformingeffectively.

ProtocolAnalyzerAprotocolanalyzer(alsoknownasapacketsniffer,networkanalyzer,ornetworksniffer)isapieceofsoftwareoranintegratedsoftware/hardwaresystemthatcancaptureanddecodenetworktraffic.Protocolanalyzershavebeenpopularwithsystemadministratorsandsecurityprofessionalsfordecadesbecausetheyaresuchversatileandusefultoolsforanetworkenvironment.Fromasecurityperspective,protocolanalyzerscanbeusedforanumberofactivities,suchasthefollowing:

Detectingintrusionsorundesirabletraffic(anIDS/IPSmusthavesometypeofcaptureanddecodeabilitytobeabletolookforsuspicious/malicioustraffic)

Capturingtrafficduringincidentresponseorincidenthandling

Lookingforevidenceofbotnets,Trojans,andinfectedsystems

Lookingforunusualtrafficortrafficexceedingcertainthresholds

Testingencryptionbetweensystemsorapplications

Fromanetworkadministrationperspective,protocolanalyzerscanbeusedforactivitiessuchasthese:

Analyzingnetworkproblems

Detectingmisconfiguredapplicationsormisbehavingapplications

Gatheringandreportingnetworkusageandtrafficstatistics

Debuggingclient/servercommunications

ExamTip:AsniffermustuseaNICplacedinpromiscuous(promisc)modeoritwillnotseeallthenetworktrafficcomingintotheNIC.

Regardlessoftheintendeduse,aprotocolanalyzermustbeabletoseenetworktrafficinordertocaptureanddecodeit.Asoftware-basedprotocolanalyzermustbeabletoplacetheNICitisgoingtousetomonitornetworktrafficinpromiscuousmode(sometimescalledpromiscmode).PromiscuousmodetellstheNICtoprocesseverynetworkpacketitseesregardlessoftheintendeddestination.Normally,aNICprocessesonlybroadcastpackets(whichgotoeveryoneonthatsubnet)andpacketswiththeNIC’sMediaAccessControl(MAC)addressasthedestinationaddressinsidethepacket.Asasniffer,theanalyzermustprocesseverypacketcrossingthewire,sotheabilitytoplaceaNICintopromiscuousmodeiscritical.Witholdernetworkingtechnologies,suchashubs,itwaseasierto

operateaprotocolanalyzer,asthehubbroadcastedeverypacketacrosseveryinterfaceregardlessofthedestination.Withswitchesnowthestandardfornetworkingequipment,placingaprotocolanalyzerbecomesmoredifficultasswitchesdonotbroadcasteverypacketacrosseveryport.Whilethismaymakeitharderforadministratorstosniffthetraffic,italsomakesitharderforeavesdroppersandpotentialattackers.Toaccommodateprotocolanalyzers,IDSdevices,andIPSdevices,

mostswitchmanufacturerssupportportmirroringoraSwitchedPortAnalyzer(SPAN)port(discussedinthenextsection).Dependingonthemanufacturerandthehardware,amirroredportwillseeallthetrafficpassingthroughtheswitchorthroughaspecificVLAN(s),orallthetrafficpassingthroughotherspecificswitchports.Thenetworktrafficisessentiallycopied(ormirrored)toaspecificport,whichcanthensupportaprotocolanalyzer.

Anotheroptionfortrafficcaptureistouseanetworktap,ahardwaredevicethatcanbeplacedinlineonanetworkconnectionandthatwillcopytrafficpassingthroughthetaptoasecondsetofinterfacesonthetap.Networktapsareoftenusedtosnifftrafficpassingbetweendevicesatthenetworkperimeter,suchasthetrafficpassingbetweenarouterandafirewall.Manycommonnetworktapsworkbybridginganetworkconnectionandpassingincomingtrafficoutonetapport(A)andoutgoingtrafficoutanothertapport(B),asshowninFigure13.11.

•Figure13.11Abasicnetworktap

Apopular,opensourceprotocolanalyzerisWireshark(www.wireshark.org).AvailableforbothUNIXandWindowsoperatingsystems,WiresharkisaGUI-basedprotocolanalyzerthatallowsuserstocaptureanddecodenetworktrafficonanyavailablenetworkinterfaceinthesystemonwhichthesoftwareisrunning(includingwirelessinterfaces),asdemonstratedinFigure13.12.Wiresharkhassomeinterestingfeatures,includingtheabilityto“followtheTCPstream,”whichallowstheusertoselectasingleTCPpacketandthenseealltheotherpacketsinvolvedinthatTCPconversation.

•Figure13.12Wireshark—apopular,opensourceprotocolanalyzer

SwitchedPortAnalyzerThetermSwitchedPortAnalyzer(SPAN)isusuallyassociatedwithCiscoswitches—othervendorsrefertothesamecapabilityasportmirroringorportmonitoring.ASPANhastheabilitytocopynetworktrafficpassingthroughoneormoreportsonaswitchoroneormoreVLANsonaswitchandforwardthatcopiedtraffictoaportdesignatedfortrafficcaptureandanalysis(asshowninFigure13.13).ASPANportormirrorportcreatesthecollectionpointfortrafficthatwillbefedintoaprotocolanalyzerorIDS/IPS.SPANormirrorportscanusuallybeconfiguredtomonitortrafficpassingintointerfaces,passingoutofinterfaces,orpassinginbothdirections.Whenconfiguringportmirroring,youneedtobeawareofthecapabilitiesoftheswitchyouareworkingwith.Canithandlethevolumeoftraffic?Canitsuccessfullymirrorallthetraffic,orwillitendupdroppingpacketstotheSPANiftrafficvolumegetstoohigh?

•Figure13.13ASPANportcollectstrafficfromotherportsonaswitch.

PortScannerAportscannerisatooldesignedtoprobeasystemorsystemsforopenports.Itsjobistoprobeforopen(orlistening)portsandreportbacktotheuserwhichportsareclosed,whicharefiltered,andwhichareopen.Portscannersareavailableforvirtuallyeveryoperatingsystemandalmosteverypopularmobilecomputingplatform—fromtabletstosmartphones.Havingagoodport-scanningtoolinyourtoolsetandknowinghowtouseitcanbeverybeneficial.Thegoodnews/badnewsaboutportscannersisthatthe“badguys”usethemforbasicallythesamereasonsthegoodguysusethem.Portscannerscanbeusedtodothefollowing:

Searchfor“live”hostsonanetwork.Mostportscannersenableyou

toperformaquickscanusingICMP,TCP,orUDPpacketstosearchforactivehostsonagivennetworkornetworksegment.ICMPisstillverypopularforthistask,butwiththedefaultblockingofICMPv4inmanymodernoperatingsystems,suchasWindows7andbeyond,usersareincreasinglyturningtoTCPorUDPscansforthesetasks.

Searchforanyopenportsonthenetwork.Portscannersaremostoftenusedtoidentifyanyopenportsonahost,groupofhosts,ornetwork.Byscanningalargenumberofportsoveralargenumberofhosts,aportscannercanprovideyou(oranattacker)withaverygoodpictureofwhatservicesarerunningonwhichhostsonyournetwork.Scanscanbedoneforthe“default”setofpopularports,alargerangeofports,oreverypossibleport(from1to65535).

Searchforspecificports.Onlylookingforwebservers?Mailservers?Portscannerscanalsobeconfiguredtojustlookforspecificservices.

Identifyservicesonports.Someportscannerscanhelpidentifytheservicesrunningonopenportsbasedoninformationreturnedbytheserviceortheport/serviceassigned(ifstandardshavebeenfollowed).Forexample,aservicerunningonport80islikelytobeawebserver.

LookforTCP/UDPservices.MostportscannerscanperformscansforbothTCPandUDPservices,althoughsometoolsdonotallowyoutoscanforbothprotocolsatthesametime.

Asasecurityprofessional,you’lluseportscannersinmuchthesamewayanattackerwould:toprobethesystemsinyournetworkforopenservices.Whenyoufindopenservices,you’llneedtodetermineifthoseservicesshouldberunningatall,iftheyshouldberunningonthesystem(s)youfoundthemon,andifyoucandoanythingtolimitwhatconnectionsareallowedtothoseservices.Forexample,youmaywanttoscanyournetworkforanysystemacceptingconnectionsonTCPport1433(MicrosoftSQLServer).IfyoufindasystemacceptingconnectionsonTCPport1433inyourSalesgroup,chancesaresomeonehasinstalledsomethingtheyshouldn’thave(orsomeoneinstalledsomethingforthem).

Sohowdoesaportscanneractuallywork?Muchwilldependontheoptionsyouselectwhenconfiguringyourscan,butforthesakeofthisexample,assumeyou’rerunningastandardTCPconnectscanagainst192.168.1.20forports1–10000.ThescannerwillattempttocreateaTCPconnectiontoeachportintherange1–10000on192.168.1.20.WhenthescannersendsoutthatSYNpacket,itwaitsfortherespondingSYN/ACK.IfaSYN/ACKisreceived,thescannerwillattempttocompletethethree-wayhandshakeandmarktheportas“open.”IfthesentpackettimesoutoranRSTpacketisreceived,thescannerwilllikelymarkthatportas“closed.”Ifan“administrativelyprohibited”messageorsomethingsimilarcomesback,thescannermaymarkthatportas“filtered.”Whenthescaniscomplete,thescannerwillpresenttheresultsinasummaryformat—listingtheportsthatareopen,closed,filtered,andsoon.Byexaminingtheresponsesfromeachport,youcantypicallydeduceabitmoreinformationaboutthesystem(s)youarescanning,asdetailedhere:

OpenOpenportsacceptconnections.Ifyoucanconnecttothesewithaportscanner,theportsarenotbeingfilteredatthenetworklevel.However,thereareinstanceswhereyoumayfindaportthatismarkedas“open”byaportscannerthatwillimmediatelydropyourconnectionsifyouattempttoconnecttoitinsomeothermanner.Forexample,port22forSSHmayappear“open”toaportscannerbutwillimmediatelydropyourSSHconnections.Insuchacase,theserviceislikelybeingfilteredbyahost-basedfirewallorafirewallcapabilitywithintheserviceitself.

ClosedYouwilltypicallyseethisresponsewhenthescannedtargetreturnsanRSTpacket.

FilteredYouwilltypicallyseethisresponsewhenanICMPunreachableerrorisreturned.Thisusuallyindicatesthatportisbeingfilteredbyafirewallorotherdevice.

AdditionaltypesSomeportscannerswillattempttofurtherclassifyresponses,suchasdropped,blocked,denied,timeout,andsoon.

Thesearefairlytoolspecific,andyoushouldrefertoanydocumentationorhelpfilethataccompaniesthatportscannerforadditionalinformation.

Ingeneral,youwillwanttorunyourscanningeffortsmultipletimesusingdifferentoptionstoensureyougetabetterpicture.ASYNscanmayreturndifferentresultsthanaNULLscanorFINscan.You’llwanttorunbothTCPandUDPscansaswell.Youmayneedtoalteryourscanningapproachtousemultipletechniquesatdifferenttimesoftheday/nighttoensurecompletecoverage.Thebadguysaredoingthisagainstyournetworkrightnow,soyoumightaswellusethesametoolstheydotoseewhattheysee.Portscannerscanalsobeveryusefulfortestingfirewallconfigurationsbecausetheresultsoftheportscanscanshowyouexactlywhichportsareopen,whichonesyouallowthrough,whichportsarecarryingservices,andsoon.Sohowdoyoudefendagainstportscans?Well,it’stough.Portscans

areprettymuchapartoftheInternettrafficlandscapenow.AlthoughyoucanblockIPaddressesthatscanyou,mostorganizationsdon’tbecauseyouruntheriskofanattackerspoofingsourceaddressesasdecoysforotherscanningactivity.Thebestdefenseistocarefullycontrolwhattrafficyouletinandoutofyournetwork,usingfirewalls,networkfilters,andhostfilters.Thencarefullymonitoranytrafficthatyoudoallowin.

Passivevs.ActiveToolsToolscanbeclassifiedasactiveorpassive.Activetoolsinteractwithatargetsysteminafashionwheretheirusecanbedetected.ScanninganetworkwithNmap(NetworkMapper)isanactiveactthatcanbedetected.InthecaseofNmap,thetoolmaynotbespecificallydetectable,butitsuse,thesendingofpackets,canbedetected.Whenyouneedtomapoutyournetworkorlookforopenservicesononeormorehosts,aportscannerisprobablythemostefficienttoolforthejob.Figure13.14showsascreenshotofZenmap,across-platformversionoftheverypopularNmapportscanneravailablefromhttp://insecure.org.

•Figure13.14Zenmap—aportscannerbasedonNmap

Passivetoolsarethosethatdonotinteractwiththesysteminamannerthatwouldpermitdetection,asinsendingpacketsoralteringtraffic.AnexampleofapassivetoolisTripwire,whichcandetectchangestoafilebasedonhashvalues.AnotherpassiveexampleistheOSmappingbyanalyzingTCP/IPtraceswithatoolsuchasWireshark.Passivesensorscanuseexistingtraffictoprovidedataforanalysis.

ExamTip:Passivetoolsreceivetrafficonlyanddonothingtothetrafficflowthatwouldpermitotherstoknowtheyareinteractingwiththenetwork.Activetoolsmodifyorsendtrafficandarethusdiscoverablebytheirtrafficpatterns.

BannerGrabbingBannergrabbingisatechniqueusedtogatherinformationfromaservicethatpublicizesinformationviaabanner.Bannerscanbeusedformanythings;forexample,theycanbeusedtoidentifyservicesbytype,version,andsoforth,andtheyenableadministratorstopostinformation,includingwarnings,touserswhentheylogin.Attackerscanusebannerstodeterminewhatservicesarerunning,andtypicallydoforcommonbanner-issuingservicessuchasHTTP,FTP,SMTP,andTelnet.Figure13.15showsacoupleofbannergrabsbeingperformedfromaTelnetclientagainstawebserver.Inthisexample,Telnetsendsinformationtotwodifferentwebserversanddisplaystheresponses(thebanners).ThetopresponseisfromanApacheinstance(Apache/2.0.65)andthebottomisfromMicrosoftIIS(Microsoft-HTTPAPI/2.0).

•Figure13.15BannergrabbingusingTelnet

Chapter13Review

ForMoreInformationSANSIntrusionDetectionFAQwww.sans.org/security-resources/idfaq/

SANSReadingRoom—Firewalls&PerimeterProtectionwww.sans.org/reading_room/whitepapers/firewalls/

TheHoneynetProjectwww.honeynet.orgFightSpamontheInternet!http://spam.abuse.net/

LabManualExercisesThefollowinglabexercisesfromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providepracticalapplicationofmaterialcoveredinthischapter:

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingfactsaboutintrusiondetectionsystemsandnetworksecurity.

Applytheappropriatenetworktoolstofacilitatenetworksecurity

Intrusiondetectionisamechanismfordetectingunexpectedorunauthorizedactivityoncomputersystems.

IDSscanbehost-based,examiningonlytheactivityapplicabletoaspecificsystem,ornetwork-based,examiningnetworktrafficforalargenumberofsystems.

Protocolanalyzers,oftencalledsniffers,aretoolsthatcaptureanddecodenetworktraffic.

Honeypotsarespecializedformsofintrusiondetectionthatinvolvesettingupsimulatedhostsandservicesforattackerstotarget.

Honeypotsarebasedontheconceptofluringattackersawayfromlegitimatesystemsbypresentingmoretemptingorinterestingsystemsthat,inmostcases,appeartobeeasytargets.

Determinetheappropriateuseoftoolstofacilitatenetworksecurity

IDSsmatchpatternsknownassignaturesthatcanbecontent-orcontext-based.SomeIDSsaremodel-basedandalertanadministratorwhenactivitydoesnotmatchnormalpatterns(anomaly-based)orwhenitmatchesknownsuspiciousormaliciouspatterns(misusedetection).

NewerversionsofIDSsincludepreventioncapabilitiesthatautomaticallyblocksuspiciousormalicioustrafficbeforeitreachesitsintendeddestination.Mostvendorscalltheseintrusionpreventionsystems(IPSs).

Analyzersmustbeabletoseeandcapturenetworktraffictobeeffective,andmanyswitchvendorssupportnetworkanalysisthroughtheuseofmirroringorSPANports.

Networktrafficcanalsobeviewedusingnetworktaps,adeviceforreplicatingnetworktrafficpassingacrossaphysicallink.

Bymonitoringactivitywithinthehoneypot,securitypersonnelarebetterabletoidentifypotentialattackersalongwiththeirtoolsandcapabilities.

Applyhost-basedsecurityapplications

Host-basedIDSscanapplyspecificcontext-sensitiverulesbecauseoftheknownhostrole.

Host-basedIPSscanprovidebettercontroloverspecificattacksasthescopeofcontrolislimitedtoahost.

KeyTermsanalysisengine(379)anomalydetectionmodel(379)bannergrabbing(403)content-basedsignature(381)context-basedsignature(381)digitalsandbox(396)falsenegative(382)falsepositive(382)honeynet(397)honeypot(396)host-basedIDS(HIDS)(378)intrusiondetectionsystem(IDS)(376)intrusionpreventionsystem(IPS)(394)misusedetectionmodel(380)networktap(399)network-basedIDS(NIDS)(378)perimetersecurity(383)portmirroring(399)protocolanalyzer(398)signaturedatabase(379)Snort(387)Suricata(387)

SwitchedPortAnalyzer(SPAN)(400)trafficcollector(378)userinterfaceandreporting(379)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.A(n)_______________isapieceofsoftwareoranintegratedsoftware/hardwaresystemthatcancaptureanddecodenetworktraffic.

2.WhenanIDSgeneratesanalarmon“normal”trafficthatisactuallynotmaliciousorsuspicious,thatalarmiscalleda(n)_______________.

3.Anattackerscanninganetworkfullofinviting,seeminglyvulnerabletargetsmightactuallybescanninga(n)_______________wheretheattacker’severymovecanbewatchedandmonitoredbysecurityadministrators.

4.A(n)_______________looksatacertainstringofcharactersinsideaTCPpacket.

5.AnIDSthatlooksforunusualorunexpectedbehaviorisusinga(n)_______________.

6._______________allowsadministratorstosendalltrafficpassingthroughanetworkswitchtoaspecificportontheswitch.

7.WithinanIDS,the_______________examinesthecollectednetworktrafficandcomparesittoknownpatternsofsuspiciousormaliciousactivitystoredinthesignaturedatabase.

8._______________isatechniquewhereahostisqueriedandidentifiedbasedonitsresponsetoaquery.

9._______________isatechniquetomatchanelementagainstalargesetofpatternsanduseactivityasascreeningelement.

10._______________isanewentryintheIDStoolsetasareplacementforSnort.

Multiple-ChoiceQuiz1.Whatarethetwomaintypesofintrusiondetectionsystems?

A.Network-basedandhost-based

B.Signature-basedandevent-based

C.Activeandreactive

D.Intelligentandpassive

2.WhatarethetwomaintypesofIDSsignatures?A.Network-basedandfile-based

B.Context-basedandcontent-based

C.Activeandreactive

D.Noneoftheabove

3.Whichofthefollowingdescribesapassive,host-basedIDS?A.Runsonthelocalsystem

B.Doesnotinteractwiththetrafficaroundit

C.Canlookatsystemeventanderrorlogs

D.Alloftheabove

4.Whichofthefollowingisnotacapabilityofnetwork-basedIDS?A.Candetectdenial-of-serviceattacks

B.Candecryptandreadencryptedtraffic

C.CandecodeUDPandTCPpackets

D.Canbetunedtoaparticularnetworkenvironment

5.AnactiveIDScan:A.RespondtoattackswithTCPresets

B.Monitorformaliciousactivity

C.AandB

D.Noneoftheabove

6.Honeypotsareusedto:A.Attractattackersbysimulatingsystemswithopennetwork

services

B.Monitornetworkusagebyemployees

C.ProcessalarmsfromotherIDSs

D.Attractcustomerstoe-commercesites

7.Connectingtoaserverandsendingarequestoveraknownportinanattempttoidentifytheversionofaserviceisanexampleof:

A.Portsniffing

B.Protocolanalysis

C.Bannergrabbing

D.TCPreset

8.Preventativeintrusiondetectionsystems:A.Arecheaper

B.Aredesignedtostopmaliciousactivityfromoccurring

C.Canonlymonitoractivity

D.WerethefirsttypesofIDS

9.IPSstandsfor:A.Intrusionprocessingsystem

B.Intrusionpreventionsensor

C.Intrusionpreventionsystem

D.Interactiveprotectionsystem

10.Aprotocolanalyzercanbeusedto:A.Troubleshootnetworkproblems

B.Collectnetworktrafficstatistics

C.Monitorforsuspicioustraffic

D.Alloftheabove

EssayQuiz1.Discussthedifferencesbetweenananomaly-basedandamisuse-

baseddetectionmodel.Whichwouldyouusetoprotectacorporatenetworkof10,000users?Whywouldyouchoosethatmodel?

2.Pickthreetechnologiesdiscussedinthischapteranddescribehowyouwoulddeploythemtoprotectasmallbusinessnetwork.Describetheprotectioneachtechnologyprovides.

LabProjects

•LabProject13.1

Designthreecontent-basedandthreecontext-basedsignaturesforuseinanIDS.Nameeachsignatureanddescribewhatthesignatureshouldlookfor,includingtrafficpatternsorcharactersthatneedtobematched.Describeanyactivitythatcouldgenerateafalsepositiveforeachsignature.

•LabProject13.2UsetheInternettoresearchSnort(anopensourceIDS).Withyourinstructor’spermission,downloadSnortandinstallitonyourclassroomnetwork.Examinethetrafficandnoteanyalarmsthataregenerated.Researchandnotethesourcesofthealarmtraffic.SeeifyoucantrackdownthesourcesofthealarmtrafficanddiscoverwhytheyaregeneratingthosealarmsonyourIDS.

chapter14 SystemHardeningandBaselines

PeoplecanhavetheModelTinanycolor—solongasit’sblack.

—HENRYFORD

T

Inthischapter,youwilllearnhowto

Hardenoperatingsystemsandnetworkoperatingsystems

Implementhost-levelsecurity

Hardenapplications

Establishgrouppolicies

Securealternativeenvironments(SCADA,real-time,etc.)

hemanyusesforsystemsandoperatingsystemsrequireflexiblecomponentsthatallowuserstodesign,configure,andimplementthesystemstheyneed.Yetitisthisveryflexibilitythatcausessomeofthe

biggestweaknessesincomputersystems.Computerandoperatingsystemdevelopersoftenbuildanddeliversystemsin“default”modesthatdolittletosecurethesystemfromexternalattacks.Fromtheviewofthedeveloper,thisisthemostefficientmodeofdelivery,asthereisnowaytheycananticipatewhateveryuserineverysituationwillneed.Fromtheuser’sview,however,thismeansagooddealofeffortmustbeputintoprotectingandsecuringthesystembeforeitiseverplacedintoservice.Theprocessofsecuringandpreparingasystemfortheproductionenvironmentiscalledhardening.Unfortunately,manyusersdon’tunderstandthestepsnecessarytosecuretheirsystemseffectively,resultinginhundredsofcompromisedsystemseveryday.Hardeningsystems,servers,workstations,networks,andapplicationsis

aprocessofdefiningtherequiredusesandneedsandaligningsecuritycontrolstolimitasystem’sdesiredfunctionality.Oncethisisdetermined,youhaveasystembaselinethatyoucancomparechangestooverthecourseofasystem’slifecycle.

OverviewofBaselinesTosecuresystemseffectivelyandconsistently,youmusttakeastructured

andlogicalapproach.Thisstartswithanexaminationofthesystem’sintendedfunctionsandcapabilitiestodeterminewhatprocessesandapplicationswillbehousedonthesystem.Asabestpractice,anythingthatisnotrequiredforoperationsshouldberemovedordisabledonthesystem;then,alltheappropriatepatches,hotfixes,andsettingsshouldbeappliedtoprotectandsecureit.Thisprocessofestablishingasystem’ssecuritystateiscalled

baselining,andtheresultingproductisasecuritybaselinethatallowsthesystemtorunsafelyandsecurely.Oncetheprocesshasbeencompletedforaparticularhardwareandsoftwarecombination,anysimilarsystemscanbeconfiguredwiththesamebaselinetoachievethesamelevelanddepthofsecurityandprotection.Uniformbaselinesarecriticalinlarge-scaleoperations,becausemaintainingseparateconfigurationsandsecuritylevelsforhundredsorthousandsofsystemsisfartoocostly.Afteradministratorshavefinishedpatching,securing,andpreparinga

system,theyoftencreateaninitialbaselineconfiguration.Thisrepresentsasecurestateforthesystemornetworkdeviceandareferencepointthatcanbeusedtohelpkeepthesystemsecure.Ifthisinitialbaselinecanbereplicated,itcanalsobeusedasatemplatewhendeployingsimilarsystemsandnetworkdevices.Constructingabaselineorhardenedsystemissimilarforservers,

workstations,andnetworkOSs.Thespecificsmayvary,buttheobjectsarethesame.

OperatingSystemandNetworkOperatingSystemHardening

Theoperatingsystem(OS)ofacomputeristhebasicsoftwarethathandlesthingssuchasinput,output,display,memorymanagement,andalltheotherhighlydetailedtasksrequiredtosupporttheuserenvironmentandassociatedapplications.MostusersarefamiliarwiththeMicrosoftfamilyofdesktopoperatingsystems:WindowsVista,Windows7,

Windows8,andWindows10.Indeed,thevastmajorityofhomeandbusinessPCsrunsomeversionofaMicrosoftoperatingsystem.OtherusersmaybefamiliarwithMacOSX,Solaris,oroneofthemanyvarietiesoftheUNIX/Linuxoperatingsystem.Anetworkoperatingsystem(NOS)isanoperatingsystemthat

includesadditionalfunctionsandcapabilitiestoassistinconnectingcomputersanddevices,suchasprinters,toalocalareanetwork(LAN).SomeofthemorefamiliarnetworkoperatingsystemsincludeNovell’sNetWareandPCMicro’sLANtastic.Formostmodernoperatingsystems,includingWindows2008,Solaris,andLinux,thetermsoperatingsystemandnetworkoperatingsystemareusedinterchangeablyastheyperformallthebasicfunctionsandprovideenhancedcapabilitiesforconnectingtoLANs.

TechTip

TheTerm“OperatingSystem”Theterm“operatingsystem”isthecommonlyacceptednameforthesoftwarethatprovidestheinterfacebetweencomputerhardwareandtheuserandisresponsibleforthemanagement,coordination,andsharingoflimitedcomputerresourcessuchasmemoryanddiskspace.

OSSecurityTheoperatingsystemitselfisthefoundationofsystemsecurity.Theoperatingsystemdoesthisthroughtheuseofasecuritykernel.Thesecuritykernelisalsocalledareferencemonitorandisthecomponentoftheoperatingsystemthatenforcesthesecuritypoliciesoftheoperatingsystem.ThecoreoftheOSisconstructedsothatalloperationsmustpassthroughandbemoderatedbythesecuritykernel,placingitincompletecontrolovertheenforcementofrules.Securitykernelsmustexhibitsomepropertiestobereliedupon:theymustoffercompletemediation,asjustdiscussed,andmustbetamperproofandverifiableinoperation.Because

theyarepartoftheOSandareinfactapieceofsoftware,ensuringthatsecuritykernelsaretamperproofandverifiableisalegitimateconcern.ToachieveassurancewithrespecttotheseattributesisatechnicalmatterthatisrootedintheactualconstructionoftheOSandtechnicallybeyondthelevelofthisbook.

ProtectionRingsProtectionringsweredevisedintheMulticsoperatingsysteminthe1960s,todealwithsecurityissuesassociatedwithtime-sharingoperations.Protectionringscanbeenforcedbyhardware,software,oracombination,andservetoactasameansofmanagingprivilegeinahierarchicalmanner.Ring0isthelevelwiththehighestprivilegeandistheelementthatactsdirectlywiththephysicalhardware(CPUandmemory).Higherlevels,withlessprivilege,mustinteractthroughadjoiningringsthroughspecificgatesinapredefinedmanner.UseofringsseparateselementssuchasapplicationsfromdirectlyinterfacingwiththehardwarewithoutgoingthroughtheOSand,specifically,thesecuritykernel.

HostSecurityMostenvironmentsarefilledwithdifferentoperatingsystems(Windows,Linux,OSX),differentversionsofthoseoperatingsystems,anddifferenttypesofinstalledapplications.Also,today,host-basedsecurityformobiledeviceoperatingsystemsisanimportantsecurityissue,whichexpandstheoperatingsystemlisttoincludeiOS,Android,andBlackBerry.Each

operatingsystemhassecurityconfigurationsthatdifferfromothersystems,anddifferentversionsofthesameoperatingsystemmayinfacthavevariationsbetweenthem.Ensuringthateverycomputeris“lockeddown”tothesamedegreeaseveryothersystemintheenvironmentcanbeoverwhelmingandoftenresultsinanunsuccessfulandfrustratingeffort.Hostsecurityisimportantandshouldalwaysbeaddressed.Security,

however,shouldnotstopthere,ashostsecurityisacomplementaryprocesstobecombinedwithnetworksecurity.Ifindividualhostcomputershavevulnerabilitiesembodiedwithinthem,thennetworksecuritycanprovideanotherlayerofprotectionthatwill,hopefully,stopanyintruderswhohavegottenthatfarintotheenvironment.

MachineHardeningThekeymanagementissuebehindrunningasecureserversetupistoidentifythespecificneedsofaserverforitsproperoperationandenableonlyitemsnecessaryforthosefunctions.Keepingallotherservicesandusersoffthesystemimprovessystemthroughputandincreasessecurity.Reducingtheattacksurfaceareaassociatedwithaserverreducesthevulnerabilitiesnowandinthefutureasupdatesarerequired.Onceaserverhasbeenbuiltandisreadytobeplacedintooperation,the

recordingofhashvaluesonallofitscrucialfileswillprovidevaluableinformationlaterincaseofaquestionconcerningpossiblesystemintegrityafteradetectedintrusion.TheuseofhashvaluestodetectchangeswasfirstdevelopedbyGeneKimandEugeneSpaffordatPurdueUniversityin1992.TheconceptbecametheproductTripwire,whichisnowavailableincommercialandopensourceforms.Thesamebasicconceptisusedbymanysecuritypackagestodetectfile-levelchanges.Theprimarymethodofcontrollingthesecurityimpactofasystemona

networkistoreducetheavailableattacksurfacearea.Turningoffallservicesthatarenotneededorpermittedbypolicywillreducethenumberofvulnerabilities.Removingmethodsofconnectingadditionaldevicestoaworkstationtomovedata—suchasopticaldrivesandUSBports—assists

incontrollingthemovementofdataintoandoutofthedevice.User-levelcontrols,suchaslimitinge-mailattachmentoptions,screeningallattachmentsatthee-mailserverlevel,andreducingnetworksharestoneededsharesonly,canbeusedtolimittheexcessiveconnectivitythatcanimpactsecurity.

TechTip

ServerHardeningTipsSpecificsecurityneedscanvarydependingontheserver’sspecificuse,butasaminimum,thefollowingarebeneficial:

RemoveunnecessaryprotocolssuchasTelnet,NetBIOS,InternetworkPacketExchange(IPX),andFileTransferProtocol(FTP).

RemoveunnecessaryprogramssuchasInternetInformationServices(IIS).

Removeallsharesthatarenotnecessary.Renametheadministratoraccount,securingitwithastrongpassword.

RemovetheLocalAdminaccountinWindows.Disableunnecessaryuseraccounts.

Disableunnecessaryportsandservices.Keeptheoperatingsystem(OS)patchedanduptodate.

Keepallapplicationspatchedanduptodate.Turnoneventloggingfordeterminedsecurityelements.

Controlphysicalaccesstoservers.

OperatingSystemSecurityandSettingsOperatingsystemsarecomplexprogramsdesignedtoprovideaplatformforawidevarietyofservicestorun.SomeoftheseservicesareextensionsoftheOSitself,whileothersarestandaloneapplicationsthatusetheOSasamechanismtoconnecttootherprogramsandhardwareresources.ItisuptotheOStomanagethesecurityaspectsofthehardwarebeingutilized.

Thingssuchasaccesscontrolmechanismsaregreatintheory,butitisthepracticalimplementationofthesesecurityelementsintheOSthatprovidestheactualsecurityprofileofamachine.

TechTip

SecuringaWorkstationWorkstationsareattractivetargetsforcrackersbecausetheyarenumerousandcanserveasentrypointsintothenetworkandthedatathatiscommonlythetargetofanattack.Althoughsecurityisarelativeterm,followingthesebasicstepswillincreaseworkstationsecurityimmensely:

RemoveunnecessaryprotocolssuchasTelnet,NetBIOS,andIPX.Removeunnecessarysoftware.

Removemodemsunlessneededandauthorized.Removeallsharesthatarenotnecessary.

Renametheadministratoraccount,securingitwithastrongpassword.RemovetheLocalAdminaccountinWindows.

Disableunnecessaryuseraccounts.Disableunnecessaryportsandservices.

Installanantivirusprogramandkeepabreastofupdates.Ifthefloppydriveisnotneeded,removeordisconnectit.

ConsiderdisablingUSBportsviaCMOStorestrictdatamovementtoUSBdevices.IfnocorporatefirewallexistsbetweenthemachineandtheInternet,installafirewall.

Keeptheoperatingsystem(OS)patchedanduptodate.Keepallapplicationspatchedanduptodate.

Turnoneventloggingfordeterminedsecurityelements.

Earlyversionsofhomeoperatingsystemsdidnothaveseparatenamedaccountsforseparateusers.Thiswasseenasaconveniencemechanism;afterall,whowantsthehassleofsigningintothemachine?Thisledtothesimpleproblemthatalluserscouldthenseeandmodifyanddelete

everyoneelse’scontent.Contentcouldbeseparatedbyusingaccesscontrolmechanisms,butthatrequiredconfigurationoftheOStomanageeveryuser’sidentity.EarlyversionsofmanyOSscamewithliterallyeveryoptionturnedon.Again,thiswasaconveniencefactor,butitledtosystemsrunningprocessesandservicesthattheyneverused,andincreasingtheattacksurfaceofthehostunnecessarily.Determiningthecorrectsettingsandimplementingthemcorrectlyisan

importantstepinsecuringahostsystem.Thefollowingsectionsexplorethemultitudeofcontrolsandoptionsthatneedtobeemployedproperlytoachieveareasonablelevelofsecurityonahostsystem.

OSHardeningYoumustmeetseveralkeyrequirementstoensurethatthesystemhardeningprocessesdescribedinthissectionachievetheirsecuritygoals.TheseareOSindependentandshouldbeanormalpartofallsystemmaintenanceoperations:

ExamTip:Systemhardeningistheprocessofpreparingandsecuringasystemandinvolvestheremovalofallunnecessarysoftwareandservices.

ThebaseinstallationofallOSandapplicationsoftwarecomesfromatrustedsource,andisverifiedascorrectbyusinghashvalues.

Machinesareconnectedonlytoacompletelytrustednetworkduringtheinstallation,hardening,andupdateprocesses.

ThebaseinstallationincludesallcurrentservicepacksandupdatesforboththeOSandapplications.

Currentbackupimagesaretakenafterhardeningandupdatestofacilitatesystemrestorationtoaknownstate.

Thesestepsensurethatyouknowwhatisonthemachine,canverifyitsauthenticity,andhaveanestablishedbackupversion.

HardeningMicrosoftOperatingSystemsForthisbook,WindowsVista,Windows7and8,aswellasserverproductsWindowsServer2008,2008R2,and2012,arethefocusofthediscussion.OlderMicrosoftOSs,suchasWindows3.11,95,98,Me,andXP,arenolongersupportedbyMicrosoftandwon’tbecoveredinthischapter.

HardeningWindowsWiththereleaseofWindowsVista,MicrosofttriedtomakesimilarsecurityimprovementstoitsmainstreamdesktopOSasitdidtoitsmainserverOS,Windows2003.AsadesktopOS,Windowshasprovidedarangeofsecurityfeaturesforuserstosecuretheirsystems.Mostoftheseoptionscanbeemployedviagrouppoliciesinenterprisesetups,makingthemeasilydeployableandmaintainableacrossanenterprise.HerearesomeofthesecuritycapabilitiesintroducedwithVistaand

continuedinlaterversionsofWindows:

UserAccountControlallowsuserstooperatethesystemwithoutrequiringadministrativeprivileges.Ifyou’veusedWindowsVistaandbeyond,you’veundoubtedlyseenthe“Windowsneedsyourpermissiontocontinue”pop-ups.Whileannoyingtomanyusers(oneofApple’s“I’maMac”commercialsfocusedspecificallyonthisfeature),thisfeaturedoeshelppreventusersfrom“accidentally”makingchangestotheirsystemconfiguration.Figure14.1showstheUserAccountControlfeatureinWindows7.

•Figure14.1Windows7UserAccountControlinaction

WindowsFirewallincludesanoutboundfilteringcapability.Windowsallowsfilteringoftrafficcomingintoandleavingthesystem,whichisusefulforcontrollingthingslikepeer-to-peerapplications.

BitLockerallowsencryptionofalldataonaserver,includinganydatavolumes.Thiscapabilityisonlyavailableinthehigher-enddistributionsofWindows.

WindowsclientsworkwithNetworkAccessProtection.SeethediscussionofNAPinthefollowing“HardeningWindowsServer2008”sectionformoredetails.

WindowsDefenderisabuilt-inmalwaredetectionandremovaltool.WindowsDefenderdetectsmanytypesofpotentiallysuspicioussoftwareandcanprompttheuserbeforeallowingapplicationstomakepotentiallymaliciouschanges.

TechTip

VulnerabilityScanningOnevaluablemethodforhelpingadministratorssecuretheirsystemsisvulnerabilityscanning.Vulnerabilityscanningistheprocessofexaminingyoursystemsandnetworkdevicesforholes,weaknesses,andissuesandfindingthembeforeapotentialattackerdoes.Specializedtoolscalledvulnerabilityscannersaredesignedtohelpadministratorsdiscoverandaddressvulnerabilities.Butthereismuchmoretovulnerabilityscanningthansimplyrunningtoolsandexaminingtheresults—administratorsmustbeabletoanalyzeanydiscoveredvulnerabilitiesanddeterminetheirseverityandhowtoaddressthosevulnerabilitiesifneeded,andifanybusinessprocesseswillbeaffectedbypotentialfixes.Vulnerabilityscanningcanalsohelpadministratorsidentifycommonmisconfigurationsinaccountsetup,patchlevels,applications,andoperatingsystems.Mostorganizationslookatvulnerabilityscanningasanongoingprocess,asitisnotenoughtoscansystemsonceandassumetheywillbesecurefromthatpointon.

HardeningWindowsServer2008MicrosofttoutedWindowsServer2008asits“mostsecureserver”todateuponitsrelease.BuildingonthechangesitmadetotheWindowsServer2003andVistaOSs,Microsoftattemptedtoaddmoredefense-in-depthprotectionstoWindowsServer2008.(MicrosofthasafreehardeningguidefortheWindowsServer2008OSfromitsDownloadCenter.)HerearesomeofthenewsecuritycapabilitiesthatwereintroducedinWindowsServer2008:

BitLockerallowsencryptionofalldataonaserver,includinganydatavolumes.ThiscapabilityisalsoavailableincertainversionsofVista(andbeyond).

Role-basedinstallationoffunctionsandcapabilitiesminimizestheserver’sfootprint.Forexample,ifaserverisgoingtobeawebserver,itdoesnotneedDNSorSMTPsoftware,andthusthosefeaturesarenolongerinstalledbydefault.

NetworkAccessProtection(NAP)controlsaccesstonetwork

resourcesbasedonaclientcomputer’sidentityandcompliancewithcorporategovernancepolicy.NAPallowsnetworkadministratorstodefinegranularlevelsofnetworkaccessbasedonclientidentity,groupmembership,andthedegreetowhichthatclientiscompliantwithcorporatepolicies.NAPcanalsoensurethatclientscomplywithcorporatepolicies.Suppose,forexample,thatasalesmanagerconnectsherlaptoptothecorporatenetwork.NAPcanbeusedtoexaminethelaptopandseeifitisfullypatchedandrunningacompany-approvedantivirusproductwithupdatedsignatures.Ifthelaptopdoesnotmeetthosestandards,networkaccessforthatlaptopcanberestricteduntilthelaptopisbroughtbackintocompliancewithcorporatestandards.

Read-onlydomaincontrollerscanbecreatedanddeployedinhigh-risklocations,buttheycan’tbemodifiedtoaddnewusers,changeaccesslevels,andsoon.Thisnewabilitytocreateanddeploy“read-only”domaincontrollerscanbeveryusefulinhigh-threatenvironments.

More-granularpasswordpoliciesallowfordifferentpasswordpoliciesonagrouporuserbasis.Thisallowsadministratorstoassigndifferentpasswordpoliciesandrequirementsforthesalesgroupandtheengineeringgroupifthatcapabilityisneeded.

WebsitesorwebapplicationscanbeadministeredwithinIIS7.Thisallowsadministratorsquickerandmoreconvenientadministrationcapabilities,suchastheabilitytoturnonoroffspecificmodulesthroughtheIISmanagementinterface.Forexample,removingCGIsupportfromawebapplicationisaquickandsimpleoperationinIIS7.

Figure14.2liststheinitialconfigurationtasksforWindows2008.

•Figure14.2Windows2008InitialConfigurationTasks

HardeningWindowsServer2012WiththereleaseofWindowsServer2012,Microsoftaddedsignificantenhancementstoitssecuritybaselineforitsserverline:

ReplacedthetraditionalROM-BIOSwithUnifiedExtensibleFirmwareInterface(UEFI).Microsoftisusingthesecurity-hardened2.3.1version,whichpreventsbootcodeupdateswithoutappropriatedigitalcertificatesandsignatures.

ExtendedthetrustworthyandverifiedbootprocesstotheentireWindowsOSbootcodewithafeatureknownasSecureBoot.UEFIandSecureBootsignificantlyreducetheriskofmaliciouscode,suchasrootkitsandbootviruses.

ImprovedBitLockerfunctionalitytoallowadministrator-lessreboots.

InstitutedEarlyLaunchAnti-Malware(ELAM)toensurethatonlyknown,digitallysignedantimalwareprogramscanloadrightafterSecureBootfinishes(itdoesnotrequireUEFIorSecureBoot).Thispermitslegitimateantimalwareprogramstogetintomemoryandstartdoingtheirjobbeforefakeantivirusprogramsorothermaliciouscodecanact.

FullyintegratedDNSSEC.

IntegratedDataClassificationwithRightsManagementService,sothatyoucancontrolwhichusersandgroupscanaccesswhichdocumentsbaseduponcontentormarkedclassification.

IncludedManagedServiceAccounts,introducedinServer2008R2,toallowforadvancedself-maintainingfeatureswithextremelylongpasswords,whichautomaticallyresetevery30days,allunderActiveDirectorycontrolintheenterprise.

Windows2012R2continuedthesecurityfeaturesetthrough

refinementsandimprovementsacrossmanyofthesecurityfeatures.ConsistentwithMicrosoft’sclaimthatWindowsServer2008wasitsmostsecureservertodateatthetimeofrelease,itssubsequenttrackrecordshowsthatthecompanyiscommittedtounrivaledsecurityinenterpriseserverproducts.ThetoolsavailableineachsubsequentreleaseoftheserverOSaredesignedtoincreasethedifficultyfactorforattackers,eliminatingknownmethodsofexploitation.Thechallengeisinadministratingthesecurityfunctions,althoughtheintegrationofmanyoftheseviaActiveDirectorymakesthismuchmoremanageablethaninthepast.

MicrosoftSecurityComplianceManagerMicrosoftprovidesatool,SecurityComplianceManager(SCM),toassistsystemandenterpriseadministratorswiththeconfigurationofsecurityoptionsacrossawiderangeofMicrosoftplatforms.SCMallowsadministratorstousegrouppolicyobjects(GPOs)todeploysecurityconfigurationsacrossInternetExplorer,thedesktopOSs,serverOSs,andcommonapplicationssuchasMicrosoftOffice.Figure14.3illustratessomeofthemenuoptionsavailableinSCM,currentlyversion3.0.

•Figure14.3MicrosoftSecurityComplianceManager

MicrosoftAttackSurfaceAnalyzerOneofthechallengesinamodernenterpriseisunderstandingtheimpactofsystemchangesfromtheinstallationorupgradeofanapplicationonasystem.Tohelpyouovercomethatchallenge,MicrosofthasreleasedtheAttackSurfaceAnalyzer(ASA),afreetoolthatcanbedeployedonasystembeforeachangeandagainafterachangetoanalyzethechangestovarioussystempropertiesasaresultofthechange.UsingASA,developerscanviewchangesintheattacksurfaceresulting

fromtheintroductionoftheircodeontotheWindowsplatform,andsystemadministratorscanassesstheaggregateattacksurfacechangebytheinstallationofanapplication.SecurityauditorscanusethetooltoevaluatetheriskofaparticularpieceofsoftwareinstalledontheWindowsplatform.AndifASAisdeployedinabaselinemodebeforeanincident,securityincidentresponderscanpotentiallyuseASAtogainabetterunderstandingofthestateofasystem’ssecurityduringaninvestigation.

HardeningUNIX-orLinux-basedOperatingSystemsWhileyoudonothavetheadvantageofasinglemanufacturerforallUNIXoperatingsystems(likeyoudowithWindowsoperatingsystems),theconceptsbehindsecuringdifferentUNIX-orLinux-basedoperatingsystemsaresimilarwhetherthemanufacturerisRedHatorSunMicrosystems.Indeed,theoveralltasksinvolvedwithhardeningalloperatingsystemsareremarkablysimilar.

EstablishingGeneralUNIXBaselinesGeneralUNIXbaseliningfollowssimilarconceptsasbaseliningforWindowsOSs:disableunnecessaryservices,restrictpermissionsonfiles

anddirectories,removeunnecessarysoftware,applypatches,removeunnecessaryusers,andapplypasswordguidelines.SomeversionsofUNIXprovideGUI-basedtoolsforthesetasks,whileothersrequireadministratorstoeditconfigurationfilesmanually.Inmostcases,anythingthatcanbeaccomplishedthroughaGUIcanbeaccomplishedfromthecommandlineorbymanuallyeditingconfigurationfiles.LikeWindowssystems,UNIXsystemsareeasiesttosecureand

baselineiftheyareprovidingasingleserviceorperformingasinglefunction,suchasactingasaSimpleMailTransferProtocol(SMTP)serverorwebserver.Priortoperforminganysoftwareinstallationsorbaselining,theadministratorshoulddefinethepurposeofthesystemandidentifyallrequiredcapabilitiesandfunctions.OneniceadvantageofUNIXsystemsisthatyoutypicallyhavecompletecontroloverwhatdoesordoesnotgetinstalledonthesystem.Duringtheinstallationprocess,theadministratorcanselectwhichservicesandapplicationsareplacedonthesystem,offeringanopportunitytonotinstallservicesandapplicationsthatwillnotberequired.However,thisassumesthattheadministratorknowsandunderstandsthepurposeofthissystem,whichisnotalwaysthecase.Inothercases,thefunctionofthesystemitselfmayhavechanged.

TechTip

RunlevelsRunlevelsareusedtodescribethestateofinit(initialization)andwhatsystemservicesareoperatinginUNIXsystems.Forexample,runlevel0isshutdown.Runlevel1issingle-usermode(typicallyforadministrativepurposes).Runlevels2through5areuserdefined(thatis,administratorscandefinewhatservicesarerunningateachlevel).Runlevel6isforreboot.

Regardlessoftheinstallationdecisions,theadministratormayneedtoremoveapplicationsorcomponentsthatarenolongerneeded.WithUNIXsystems,no“add/removeprogram”wizardisusuallyavailable,unlikeWindows,butyouwilloftenencounterpackagemanagersthathelpyouremoveunneededcomponentsandapplicationsautomatically.Onsome

UNIXversions,though,youmustmanuallydeletethefilesassociatedwiththeapplicationsorservicesyouwanttoremove.ServicesonaUNIXsystem(calleddaemons)canbecontrolledthrough

anumberofdifferentmechanisms.Astherootuser,anadministratorcanstartandstopservicesmanuallyfromthecommandlineorthroughaGUItool.TheOScanalsostopandstartservicesautomaticallythroughconfigurationfiles(usuallycontainedinthe/etcdirectory).(NotethatUNIXsystemsvaryagooddealinthisregard,assomeuseasuper-serverprocess,suchasinetd,whileothershaveindividualconfigurationfilesforeachnetworkservice.)UnlikeWindows,UNIXsystemscanalsohavedifferentrunlevels,inwhichthesystemcanbeconfiguredtobringupdifferentservicesdependingontherunlevelselected.OnarunningUNIXsystem,youcanseewhichprocesses,applications,

andservicesarerunningbyusingtheprocessstatus,orps,command,asshowninFigure14.3.Tostoparunningservice,anadministratorcanidentifytheservicebyitsuniqueprocessidentifier(PID)andthenusethekillcommandtostoptheservice.Forexample,ifyouwantedtostopthebluetooth-appletserviceinFigure14.4,youwouldusethecommandkill2443.Topreventthisservicefromstartingagainwhenthesystemisrebooted,youwouldhavetomodifytheappropriaterunlevelstoremovethisservice,asshowninFigure14.5,ormodifytheconfigurationfilesthatcontrolthisservice.

•Figure14.4pscommandrunonaFedorasystem

•Figure14.5ServiceConfigurationutilityfromaFedorasystem

AccountsonaUNIXsystemcanalsobecontrolledviaGUIsinsomecasesandcommand-lineinterfacesinothers.OnmostpopularUNIXversions,theuserinformationcanbefoundinthepasswdfilelocatedinthe/etcdirectory.Bymanuallyeditingthisfile,youcanadd,delete,ormodifyuseraccountsonthesystem.Byexaminingthisfile,anadministratorcanseewhichuseraccountsexistonthesystemandthen

determinewhichaccountstoremoveordisable.OnmostUNIXsystems,ifyouremovetheuseraccountfromthepasswdfile,youmustmanuallyremoveanyfilesthatbelongtothatuser,includinghomedirectories.MostmodernUNIXversionsstoretheactualpasswordassociatedwithauseraccountinashadowfilelocatedinthe/etcdirectory.Theshadowfilecontainstheactualpasswordhashesforeachuseraccountandisreadableonlybytherootuser(oraprocesswithroot-levelpermissions).HowyoupatchaUNIXsystemdependsagreatdealontheUNIX

versioninuseandthepatchbeingapplied.Insomecases,apatchwillconsistofaseriesofmanualstepsrequiringtheadministratortoreplacefiles,changepermissions,andalterdirectories.Inothercases,thepatchesareexecutablescriptsorutilitiesthatperformthepatchactionsautomatically.SomeUNIXversions,suchasRedHatandSolaris,havebuilt-inutilitiesthathandlethepatchingprocess.Inthosecases,theadministratordownloadsaspecificallyformattedfilethatthepatchingutilitythenprocessestoperformanymodificationsorupdatesthatneedtobemade.TobetterillustrateUNIXbaselines,wewillexaminetwopopular

UNIX-basedoperatingsystems:SolarisandRedHatLinux.

TechTip

TCPWrappersTCPwrapperscanbeagreatadditionallayerofprotectionforUNIXsystems.WhencreatingasecuritybaselineforUNIXsystems,besuretoconsidertheuseofTCPwrappers.

Anothermethodofexaminingasystemforvulnerabilitiesisdonethroughobservation—monitoringnetworktrafficfromspecificsystems,forexample.Thisiscalledpassivevulnerabilityscanningasadministratorsaremerelyobservingwhatthesystemdoesandhowitbehaves.Forinstance,ifanadministratorseesFTPtraffictravelingtoadedicatedmailserver,thentheyknowtheyneedtoexamineandpossiblydisablethatFTPservice.

PluggableAuthenticationModules(PAM)areamechanismforprovidinginteroperationandsecureaccesstoavarietyofservicesondifferentplatforms.Theyprovideacommonauthenticationschemethatcanbeusedwithawidevarietyofapplications.PAMhasanextensivedocumentationsetwithdetailsaboutbothusingPAMandwritingmodulestointegratePAMwithapplications.

HardeningLinuxLinuxisaratheruniqueoperatingsystem.ItisUNIX-based,verypowerful,opensource,canbeobtainedforfree,andisavailableinmanydifferent“versions”ordistributions(“distros”)fromseveralvendors.LinuxwasinitiallyconceivedandwrittenbyLinusTorvaldsin1991.Hisconceptofcreatingalightweight,flexible,andfreeoperatingsystemgaverisetoanentirelynewoperatingsystemthatisverypopularandisinstalledonmillionsofcomputersaroundtheworld.Duetoitsopennature,theentiresource-codebasefortheoperatingsystemisavailabletoanyonewhowantstoexamineit,modifyit,orrecompileitfortheirownspecificuses.Linuxisafavoredoperatingsystemamongmanysecurityprofessionals,systemadministrators,andotherhighlytechnicaluserswhoenjoytheflexibilityandpowerthatLinuxprovides.

ManyLinuxdistributionsare“opensource,”meaningifyouhavethetime,energy,andexpertise,youcanaccessandmodifythecodethatcomprisestheoperatingsystemitself.

WhilemostversionsofLinuxcanbeobtainedforfreesimplybydownloadingthemfromtheInternet(includingmajorcommercialdistributions),youcanalsopurchasecommercialversionsoftheLinuxoperatingsystemfromvendors,suchasRedHat,Slackware,SuSE,andDebian,whohavebuiltabusinessoutofprovidingcustomversionsofLinuxalongwithsupportandtraining.WewilluseFedora,apopular(and

free)Linuxdistribution,astheexamplefortherestofthissection.RegardlessofwhichLinuxversionyouprefer,baseliningaLinuxsystemfollowsthesameguidelinesasanyotherUNIXsystem:disableunnecessaryservices,restrictpermissionsonfilesanddirectories,removeunnecessarysoftware,applypatches,removeunnecessaryusers,andapplypasswordguidelines.ServicesunderLinuxarenormallycontrolledbytheirown

configurationfilesorbyxinetd,theextendedInternetservicesdaemon.InsteadofstartingallInternetservices,suchasFTPservers,atsystemstartup,someLinuxdistributionsusexinetdtolistenforincomingconnections.Xinetdlistenstoalltheappropriateports(thosethatmatchtheservicesinitsconfigurationfiles),andwhenaconnectionrequestcomesin,xinetdstartstheappropriateserverandhandsovertheconnectionrequest.This“masterprocess”approachmakesitfairlysimpletodisableunwantedservices—alltheconfigurationinformationforeachserverislocatedin/etc/xinetd.d,withaconfigurationfileforeachprocess.PermissionsunderLinuxarethesameasforotherUNIX-based

operatingsystems.Therearepermissionsforowner,group,andothers(orworld).Permissionsarebasedonthesameread-write-executeprincipleandcanbeadjustedusingthechmodcommand.Individualandgroupownershipinformationcanbechangedusingchownandchgrp,respectively.Aswithotherbaseliningexercises,permissionsshouldbeasrestrictiveasfunctionallypossible,givingread-onlyaccesswhenpossibleandwriteorexecuteaccesswhennecessary.

TechTip

LinuxVariantsTheoriginalLinuxcodeisopensource,andfromthiscodemanydiversevariantshavebeendeveloped.Whiletheseareallverysimilar,therearedifferenceinhowdevelopersapproachedsomeactivitiessuchaspatchingandsourcecoderepositories.ThedifferentdistrosofLinuxandmethodsofapplyingthemarerelatedtothelineageoftheLinuxdistroitself.FordistrosthatderivefromtheDebianline(Debian,Ubuntu,LinuxMint)thefileformat.debisused.FordistrosderivedfromRedhat(Redhat,RHEL,Fedora,CentOS,SUSE)

the.rpmfilestructureisused.Thetwoformats,.deband.rpm,arebasicallyarchivefileswithmetadatatoassist

installers.Thedifferencesarenoticeablewhenauserusestoolstoapplytheupdates.Theunderlyingtoolfor.debisdpkg,andrpmfor.rpm.Butthesearesimpletools,notrepositorymanagers;forrepositorymanagementandbetterfunctionality,apt-getisusedwith.debandyumisusedwithrpm.Althougheachoftheseoptionsisdifferentinusageandeachhasitschampions,attheendoftheday,bothpathsprovidethesameservicesforadministrators.Thekeytakeawayisalthoughsimilar,therearedifferencesinversionsofLinuxthatmakeadministrationlessuniversalinprocess.

AddingandremovingsoftwareunderLinuxistypicallydonethroughapackagemanager.InFedoraCoreLinux,thepackagemanageriscalledRedHatPackageManager,orrpmforshort.Usingrpm,youcanadd,modify,update,orremovesoftwarepackagesfromyoursystem.Usingtherpm–qacommandwillgiveyoualistofallthesoftwarepackagesinstalledonyourRedHatsystem.Youcanremoveanypackagesyoudonotwishtoleaveinstalledbyusingtherpm-ecommand.AswithmostthingsunderLinux,thereisaGUI-basedutilitytoaccomplishthissametask.TheGUI-basedAdd/RemoveSoftwareutilityisshowninFigure14.6.

•Figure14.6FedoraAdd/RemoveSoftwareutility

PatchingandkeepingaFedoraLinuxsystemuptodateisafairlysimpleexercise,aswell.FedorahasprovidedanUpdateAgentthat,onceconfigured,willexamineyoursystem,obtainthelistofavailableupdates,and,ifdesired,installthoseupdatesonyoursystem.Likeanyotheroperatingsystem,itisimportanttomaintainthepatchlevelofyourFedorasystem.FormoreinformationontheFedoraUpdateAgent,seethe“Updates(a.k.a.Hotfixes,ServicePacks,andPatches)”sectionlaterinthischapter.ManagingandmaintaininguseraccountsunderLinuxcanbe

accomplishedwitheitherthecommandlineoraGUI.Unlikecertainother

operatingsystems,there’sreallyonlyonedefaultaccountforLinuxsystems—theroot,orsuperuser,account.Therootaccounthascompleteandtotalcontroloverthesystemandshouldthereforebeprotectedwithanexceptionallystrongpassword.Manyadministratorswillconfiguretheirsystemstopreventanyonefromloggingindirectlyasroot;insteadtheymustloginwiththeirownpersonalaccountsandswitchtotherootaccountusingthesucommand.Addinguseraccountscanbedonewiththeuseraddcommand,andunwanteduseraccountscanberemovedusingtheuserdelcommand.Additionallyyoucanmanuallyedit/etc/passwdtoaddorremoveuseraccounts.UseraccountscanalsobemanagedviaaGUI,asshowninFigure14.7.

•Figure14.7FedoraUserManager

Forincreasedlocalsecurity,Fedoraalsoprovidesabuilt-infirewallfunctionthatcanbemanagedeitherviathecommandlineorthroughaGUI,asshowninFigure14.8.Toprotectnetworkaccesstothelocalsystem,administratorscancontrolwhichportsexternalusersmayconnectto,suchasmail,FTP,orweb.Administratorsmaychooseasecuritylevel,fromhigh,medium,off,oracustomizedoptionthatenablesthemtoindividuallyselectwhichportsonwhichinterfacesexternalusersmayconnectto.

•Figure14.8FedoraFirewallConfigurationGUI

Inadditiontothebuilt-infirewallfunctions,administratorsmayalsouseTCPwrapperslikethosediscussedearlierinthischapter.Byspecifying

hostandportcombinationsin/etc/hosts.allow,administratorscanallowcertainhoststoconnectoncertainports.Thefirewallfunctionandhosts.allowmustworktogetherifbothfunctionsareusedonthesamesystem.Theconnectionmustbeallowedbybothutilitiesoritwillbedropped.

HardeningMacOSXApple’soperatingsystemisessentiallyanewvariantoftheUNIXoperatingsystem.WhilethisPOSIX-compliantOSbringsanewlevelofpower,flexibility,andstabilitytoMacuserseverywhere,italsobringsanewlevelofsecurityconcerns.Traditionally,theMacoperatingsystemwaslargelyignoredbythehackercommunity—thedeploymentwasrelativelysmallandlargelyrestrictedtoindividualusersordepartments.WiththemigrationtoaUNIX-basedOSandariseinthenumberofMacsonthemarket,Macusersshouldanticipateasharpincreaseinunwantedattentionandscrutinyfrompotentialattackers.BecauseitisaUNIX-basedOS,thesameroughguidelinesforallUNIX

systemsapplytoMacOSX.Applehasincludedsomesecurity-specificfeaturestohelpprotectitsuserbase:

MandatoryaccesscontrolsforaccesstosystemresourcesOnlyprocessesthatareexplicitlygrantedaccessareallowedtoaccesssystemresourcessuchasnetworking,filesystems,processexecution,andsoon.

TaggeddownloadsAnyfiledownloadedwithSafari,iChat,orMailisautomaticallytaggedwithmetadata,includingthesourceURL,dateandtimeofdownload,andsoon.Ifthedownloadwasanarchive(suchasazipfile),thesamemetadataistaggedtoanyfileextractedfromthearchive.Usersarepromptedwiththisinformationthefirsttimetheytrytorunoropenthedownloadedfile.

ExecutedisableLeopard(OSX10.5)andbeyondprovidesno-executestackprotection.Essentiallythismeansthatcertainportionsof

thestackhavebeenmarkedas“dataonly”andtheOSwillnotexecuteanyinstructionsinregionsmarkedasdataonly.Thishelpsprotectagainstbuffer-overflowattacks.

LibraryrandomizationInanotherattempttohelpdefeatbuffer-overflowattacks,Leopard(OSX10.5)andbeyondloadssystemlibrariesintorandomlocations,makingitharderforattackerstoreferencestaticsystemlibrarylocationsintheirexploitcode.

FileVaultFileVaultencryptsfileswithAESencryption.Whenthisfeatureisenabled,everythingintheuser’shomedirectoryisautomaticallyencrypted.

Application-awarefirewallTheAppleApplicationfirewallallowsuserstorestrictnetworkaccessonbothaper-applicationandaper-portbasis.

Pre-emptivemultitaskingandmemoryprotectionThesefeaturesprovideameansforthesystemtoensurethatmultipleapplicationscanberunsimultaneouslywithoutinterruptingorcorruptingeachother.

GatekeeperTheGatekeeperapplicationisemployedtomakeitsafertodownloadanddeployapplications.ThecombinationoftheGatekeeperapplicationandthecontrolAppleexertsoverapplicationsinitsAppstoreprovidesoneofthesafestsetsofsoftwaredistribution.

AppSandboxTheAppSandboxinOSXprovidesameansofensuringthatappsareseparatedfromtheOSinwaystoprotectcriticalcomponentsfrommalicioussoftware.

FilepermissionsinOSXarenearlyidenticaltothoseinanyotherUNIXvariantandarebasedonseparateread,write,andexecutepermissionsforowner,group,andworld.Whilethesepermissionscanbeadjustedmanuallyfromacommand-lineinterface,withthestandardchown,chmod,andchgrpcommands,Appleagainprovidessomeniceinterfacecapabilitiesforviewingandmanagingfileanddirectorypermissions.Byselectingthepropertiesofanygivenfileorfolder,the

usercanviewandmodifythepermissionsforthatfileorfolder,asshowninFigure14.9.NotethattheGUIfollowsthesameuser-group-worldpatternofpermissionsthatotherUNIXvariantsfollow,thoughAppleusesthetermothersasopposedtoworld.

•Figure14.9SettingfilepermissionsinMacOSX

ThisGUIallowsuserstorestrictaccesstosensitivefilesanddirectoriesquicklyandeffectively.Bydefault,OSXlimitsauser’sabilitytoaccessormodifycertainareasofthefilesystem,includingthoseareascontainingsystembinaries.However,theserestrictionscanbecircumventedbyauserwiththeappropriatepermissionsorbycertainthird-partyapplications.RemovingunwantedorunnecessaryprogramsinOSXisusuallydone

throughtheprogram’sownuninstallerutilityorbysimplyusingtheFindertolocateandthendeletethefoldercontainingtheprogramandassociatedutilities.LikeWindows,OSXmapscertainfileextensionstospecificprograms,sodeletingaprogramthathandlesspecificextensiontypesmayrequirethatanadministratorclearupassociatedextensions.

LikemostUNIX-basedOSs,OSXisamultiuserplatform.Aspartofthebaseliningeffort,theactiveuseraccountsshouldbeexaminedtoensuretheyhavetherightlevelofaccess,permissions,groupmemberships,andsoon.MacOSXalsopermitsadministratorstolockaccountssothattheycanbemodifiedonlybyuserswithadministrative-levelprivileges.

TherearethreetypesofaccountsinOSX:User,Administrator,andRoot.Useristheaccountwiththelowestprivileges,andtypical“users”shouldbegiventhistypeofaccount.Administratoraccountshave“root-like”permissionsexcepttheycannotadd,modify,ordeletefilesinthesystemdomain.TheRootaccountisessentiallythesameastherootaccountonanyUNIXsystem;however,OSXdisablestheRootaccountbydefault.YoumustenabletheRootaccountifyouwanttouseitonaMac.

Updates(a.k.a.Hotfixes,ServicePacks,andPatches)Operatingsystemsarelargeandcomplexmixesofinterrelatedsoftwaremoduleswrittenbydozensoreventhousandsofseparateindividuals.WiththepushtowardGUI-basedfunctionalityandenhancedcapabilitiesthathasoccurredoverthepastseveralyears,operatingsystemshavecontinuedtogrowandexpand.WindowsVistacontainsapproximately50millionlinesofcode,andthoughitmaybeoneofthelargestinthatrespect,othermodernoperatingsystemsarenotfarbehind.Asoperatingsystemscontinuetogrowandintroducenewfunctions,thepotentialforproblemswiththecodegrowsaswell.Itisalmostimpossibleforanoperatingsystemvendortotestitsproductoneverypossibleplatformundereverypossiblecircumstance,sofunctionalityandsecurityissuesdoariseafteranoperatingsystemhasbeenreleased.Totheaverageuserorsystemadministrator,thismeansafairlyconstantstreamofupdatesdesignedtocorrectproblems,replacesectionsofcode,orevenaddnewfeaturestoaninstalledoperatingsystem.

Vendorstypicallyfollowahierarchyforsoftwareupdates:

HotfixThisisatermgiventoa(usually)smallsoftwareupdatedesignedtoaddressaspecificproblem,suchasabufferoverflowinanapplicationthatexposesthesystemtoattacks.Hotfixesaretypicallydevelopedinreactiontoadiscoveredproblemandareproducedandthenreleasedratherquickly.Hotfixestypicallyaddresscritical,security-relatedissuesandshouldbeappliedtotheaffectedapplicationoroperatingsystemassoonaspossible.

PatchThistermisusuallyappliedtoamoreformal,largersoftwareupdatethatmayaddressseveralormanysoftwareproblems.Patchesoftencontainenhancementsoradditionalcapabilitiesaswellasfixesforknownbugs.Patchesareusuallydevelopedoveralongerperiodoftime.

ServicepackThistermisusuallygiventoalargecollectionofpatchesandhotfixesrolledintoasingle,ratherlargepackage.Servicepacksaredesignedtobringasystemuptothelatestknowngoodlevelallatonce,ratherthanrequiringtheuserorsystemadministratortodownloaddozensorhundredsofupdatesseparately.

Everyoperatingsystem,fromLinuxtoSolaristoWindows,requiressoftwareupdates,andeachoperatingsystemhasdifferentmethodsofassistingusersinkeepingtheirsystemsuptodate.Microsoft,forexample,typicallymakesupdatesavailablefordownloadfromitswebsite.Whilemostadministratorsortechnicallyproficientusersmayprefertoidentifyanddownloadupdatesindividually,Microsoftrecognizesthatnontechnicaluserspreferasimplerapproach,whichMicrosofthasbuiltintoitsoperatingsystems.BeginningwithWindowsVista,andServer2003,Microsoftprovidesanautomatedupdatefunctionalitythatwill,onceconfigured,locateanyrequiredupdates,downloadthemtoyoursystem,andeveninstalltheupdatesifthatisyourpreference.Figure14.10showstheAutomaticUpdateswindow,whichcanbefoundintheControlPanel.Notethatboththeweb-basedupdatesandAutomaticUpdatesrequire

activeInternetconnectionstoretrieveinformationandupdatesfromMicrosoft.

•Figure14.10AutomaticUpdatessettingsinWindows7

TheWindowsUpdateutility(seeFigure14.11)canperformanon-demandsearchforupdatesorbeconfiguredtoscanfor,download,andeveninstallupdatesautomatically—essentiallythesamefunctionsasAutomaticUpdateswithanewlook.AnespeciallynicefeatureofWindowsUpdateistheabilitytoscanforanddownloadpatchesforotherMicrosoftsoftware,suchasOffice,aswellasupdatesandpatchesfortheoperatingsystemitself.

•Figure14.11WindowsUpdateutilityinWindows7

Microsoftisnotaloneinprovidingutilitiestoassistusersinkeepingtheirsystemsuptodateandsecure.FedoraLinuxcontainsautilitycalledthePackageUpdater,showninFigure14.12,whichdoesessentiallythesamething.Runningtheutilitywillshowyouwhichupdatesareavailableandallowyoutoselectwhichupdatestodownloadandapply.Aswithmostoperatingsystems,youcanconfigureFedoratoautomaticallydownloadandapplyavailableupdates.

•Figure14.12Fedorasoftwarepackageupdateutility

Regardlessofthemethodyouusetoupdatetheoperatingsystem,itiscriticallyimportanttokeepsystemsuptodate.Newsecurityadvisoriescomeouteveryday,andwhileabufferoverflowmaybea“potential”problemtoday,itwillalmostcertainlybecomea“definite”probleminthenearfuture.Muchlikethestepstakentobaselineandinitiallysecureanoperatingsystem,keepingeverysystempatchedanduptodateiscriticaltoprotectingthesystemandtheinformationitcontains.

ExamTip:Allsoftwarewillrequirechanges/patchesovertime.Managingpatchesisanessentialelementofasecurityprogram.

OperatingSystemPatchingEveryOS,fromLinuxtoWindows,requiressoftwareupdates,andeachOShasdifferentmethodsofassistingusersinkeepingtheirsystemsuptodate.Microsoft,forexample,typicallymakesupdatesavailablefordownloadfromitswebsite.Whilemostadministratorsortechnicallyproficientusersmayprefertoidentifyanddownloadupdatesindividually,Microsoftrecognizesthatnontechnicaluserspreferasimplerapproach,whichMicrosofthasbuiltintoitsoperatingsystems.InWindows7and8andWindowsServer2012,Microsoftprovidesanautomatedupdatefunctionalitythatwill,onceconfigured,locateanyrequiredupdates,downloadthemtoyoursystem,andeveninstalltheupdatesifthatisyourpreference.InMicrosoftWindows,theWindowsUpdateutility(seeFigure14.11)canperformanon-demandsearchforupdatesorbeconfiguredtoscanfor,download,andeveninstallupdatesautomatically—essentiallythesamefunctionsasAutomaticUpdateswithanewlook.AnespeciallynicefeatureofWindowsUpdateistheabilitytoscanforanddownloadpatchesforotherMicrosoftsoftware,suchasOffice,aswellas

updatesandpatchesfortheOSitself.

TechTip

WindowsUpdatesoftheFutureMicrosofthasannouncedthatbeginningwithWindows10itwilldiscontinuethemonthlypatchdistributionprocessreferredtoasPatchTuesday.Thenewmethodwillbecontinuous,seamlessupdatesinthebackground.Thishasraisedquestionsinenterprisesastohowtheycantestupdatesbeforeapplyingtheminproduction.

HowyoupatchaLinuxsystemdependsagreatdealonthespecificversioninuseandthepatchbeingapplied.Insomecases,apatchwillconsistofaseriesofmanualstepsrequiringtheadministratortoreplacefiles,changepermissions,andalterdirectories.Inothercases,thepatchesareexecutablescriptsorutilitiesthatperformthepatchactionsautomatically.SomeLinuxversions,suchasRedHat,havebuilt-inutilitiesthathandlethepatchingprocess.Inthosecases,theadministratordownloadsaspecificallyformattedfilethatthepatchingutilitythenprocessestoperformanymodificationsorupdatesthatneedtobemade.RegardlessofthemethodyouusetoupdatetheOS,itiscritically

importanttokeepsystemsuptodate.Newsecurityadvisoriescomeouteveryday,andwhileabufferoverflowmaybea“potential”problemtoday,itwillalmostcertainlybecomea“definite”probleminthenearfuture.MuchlikethestepstakentobaselineandinitiallysecureanOS,keepingeverysystempatchedanduptodateiscriticaltoprotectingthesystemandtheinformationitcontains.

ApplicationUpdatesJustasoperatingsystemsneedpatches,sodoapplications.Managingthewidevarietyofapplicationsandtherequiredupdatesfromnumerousdifferentsoftwarevendorscanbeadauntingchallenge.Thishascreatedanichemarketforpatch-managementsoftware.Inmostenterprises,some

formofautomatedpatchmanagementsolutionisused,bothtoreducelaborandtoensureupdatesareappliedappropriatelyacrosstheenterprise.

AntimalwareIntheearlydaysofPCuse,threatswerelimited:mosthomeuserswerenotconnectedtotheInternet24/7throughbroadbandconnections,andthemostcommonthreatwasaviruspassedfromcomputertocomputerviaaninfectedfloppydisk(muchlikethemedicaldefinition,acomputervirusissomethingthatcaninfectthehostandreplicateitself).Butthingshavechangeddramaticallysincethoseearlydays,andcurrentthreatsposeamuchgreaterriskthaneverbefore.AccordingtoSANSInternetStormCenter,theaveragesurvivaltimeofanunpatchedWindowsPContheInternetislessthan60minutes(http://isc.sans.org/survivaltime.html).Thisistheestimatedtimebeforeanautomatedprobefindsthesystem,penetratesit,andcompromisesit.AutomatedprobesfrombotnetsandwormsarenottheonlythreatsroamingtheInternet—therearevirusesandmalwarespreadbye-mail,phishing,infectedwebsitesthatexecutecodeonyoursystemwhenyouvisitthem,adware,spyware,andsoon.Fortunately,asthethreatsincreaseincomplexityandcapability,sodotheproductsdesignedtostopthem.

CrossCheckMalwareMalwarecomesinmanyformsandiscoveredspecificallyinChapter15.Antivirussolutionsandproperworkstationconfigurationsarepartofadefensivepostureagainstvariousformsofmalware.Additionalstepsincludepolicyandprocedureactions,prohibitingfilesharingviaUSBorexternalmedia,andprohibitingaccesstocertainwebsites.

AntivirusAntivirus(AV)productsattempttoidentify,neutralize,orremovemaliciousprograms,macros,andfiles.Theseproductswereinitially

designedtodetectandremovecomputerviruses,thoughmanyoftheantivirusproductsarenowbundledwithadditionalsecurityproductsandfeatures.Althoughantivirusproductshavehadovertwodecadestorefinetheir

capabilities,thepurposeoftheantivirusproductsremainsthesame:todetectandeliminatecomputervirusesandmalware.Mostantivirusproductscombinethefollowingapproacheswhenscanningforviruses:

Signature-basedscanningMuchlikeanintrusiondetectionsystem(IDS),theantivirusproductsscanprograms,files,macros,e-mails,andotherdataforknownworms,viruses,andmalware.Theantivirusproductcontainsavirusdictionarywiththousandsofknownvirussignaturesthatmustbefrequentlyupdated,asnewvirusesarediscovereddaily.Thisapproachwillcatchknownvirusesbutislimitedbythevirusdictionary—whatitdoesnotknowaboutitcannotcatch.

Heuristicscanning(oranalysis)Heuristicscanningdoesnotrelyonavirusdictionary.Instead,itlooksforsuspiciousbehavior—anythingthatdoesnotfitintoa“normal”patternofbehaviorfortheOSandapplicationsrunningonthesystembeingprotected.

Mostcurrentantivirussoftwarepackagesprovideprotectionagainstawiderangeofthreats,includingviruses,worms,Trojans,andothermalware.Useofanup-to-dateantiviruspackageisessentialinthecurrentthreatenvironment.

ExamTip:Heuristicscanningisamethodofdetectingpotentiallymaliciousor“virus-like”behaviorbyexaminingwhataprogramorsectionofcodedoes.Anythingthatis“suspicious”orpotentially“malicious”iscloselyexaminedtodeterminewhetherornotitisathreattothesystem.Usingheuristicscanning,anantivirusproductattemptstoidentifynewvirusesorheavily

modifiedversionsofexistingvirusesbeforetheycandamageyoursystem.

Assignature-basedscanningisafamiliarconcept,let’sexamineheuristicscanninginmoredetail.Heuristicscanningtypicallylooksforcommandsorinstructionsthatarenotnormallyfoundinapplicationprograms,suchasattemptstoaccessareservedmemoryregister.Mostantivirusproductsuseeitheraweight-basedsystemorarule-basedsystemintheirheuristicscanning(moreeffectiveproductsuseacombinationofbothtechniques).Aweight-basedsystemrateseverysuspiciousbehaviorbasedonthedegreeofthreatassociatedwiththatbehavior.Ifthesetthresholdispassedbasedonasinglebehaviororacombinationofbehaviors,theantivirusproductwilltreattheprocess,application,macro,andsoonthatisperformingthebehavior(s)asathreattothesystem.Arule-basedsystemcomparesactivitytoasetofrulesmeanttodetectandidentifymalicioussoftware.Ifpartofthesoftwarematchesarule,orifaprocess,application,macro,andsoonperformsabehaviorthatmatchesarule,theantivirussoftwarewilltreatthatasathreattothelocalsystem.Someheuristicproductsareveryadvancedandcontaincapabilitiesfor

examiningmemoryusageandaddressing,aparserforexaminingexecutablecode,alogicflowanalyzer,andadisassembler/emulatorsotheycan“guess”whatthecodeisdesignedtodoandwhetherornotitismalicious.

Computerviruswriters’intentionshavechangedovertheyears,fromsimplyspreadingavirusandwantingtobenoticed,totoday’sstealthybotnet-creatingcriminals.Onemethodofremaininghiddenistoproducevirusesthatcanmorphtolowertheirdetectionratesbystandardantivirusprograms.Thenumberofvariantsforsomeviruseshasincreasedfromlessthan10togreaterthan10,000.Thisexplosioninsignatureshascreatedtwoissues.One,usersmustconstantly(sometimesmorethandaily)updatetheirsignaturefile.And,moreimportantly,detectionmethodsarehavingtochangeasthenumberofsignaturesbecometoolargetoscanquickly.Forendusers,thebottomlineissimple:updatesignaturesautomatically,andatleastdaily.

AswithIDS/IPSproducts,encryptionandobfuscationposeaproblem

forantivirusproducts:anythingthatcannotbereadcannotbematchedagainstcurrentvirusdictionariesoractivitypatterns.Tocombattheuseofencryptioninmalwareandviruses,manyheuristicscannerslookforencryptionanddecryptionloops.Asmalwareisusuallydesignedtorunaloneandunattended,ifitusesencryption,itmustcontainalltheinstructionstoencryptanddecryptitselfasneeded.Heuristicscannerslookforinstructionssuchastheinitializationofapointerwithavalidmemoryaddress,manipulationofacounter,orabranchconditionbasedonacountervalue.Whiletheseactionsdon’talwaysindicatethepresenceofanencryption/decryptionloop,iftheheuristicenginecanfindaloop,itmightbeabletodecryptthesoftwareinaprotectedmemoryspace,suchasanemulator,andevaluatethesoftwareinmoredetail.Manyvirusessharecommonencryption/decryptionroutinesthathelpantivirusdevelopers.Currentantivirusproductsarehighlyconfigurableandmostofferings

willhavethefollowingcapabilities:

AutomatedupdatesPerhapsthemostimportantfeatureofagoodantivirussolutionisitsabilitytokeepitselfuptodatebyautomaticallydownloadingthelatestvirussignaturesonafrequentbasis.ThisusuallyrequiresthatthesystembeconnectedtotheInternetinsomefashionandthatupdatesbeperformedonadaily(ormorefrequent)basis.

AutomatedscanningMostantivirusproductsallowfortheschedulingofautomatedscanssothatyoucandesignatewhentheantivirusproductwillexaminethelocalsystemforinfectedfiles.Theseautomatedscanscantypicallybescheduledforspecificdaysandtimes,andthescanningparameterscanbeconfiguredtospecifywhatdrives,directories,andtypesoffilesarescanned.

MediascanningRemovablemediaisstillacommonmethodforvirusandmalwarepropagation,andmostantivirusproductscanbeconfiguredtoautomaticallyscanopticalmedia,USBdrives,memorysticks,oranyothertypeofremovablemediaassoonastheyareconnectedtooraccessedbythelocalsystem.

ManualscanningManyantivirusproductsallowtheusertoscandrives,files,ordirectories(folders)“ondemand.”

E-mailscanningE-mailisstillamajormethodofvirusandmalwarepropagation.Manyantivirusproductsgiveuserstheabilitytoscanbothincomingandoutgoingmessagesaswellasanyattachments.

ResolutionWhentheantivirusproductdetectsaninfectedfileorapplication,itcantypicallyperformoneofseveralactions.Theantivirusproductmayquarantinethefile,makingitinaccessible;itmaytrytorepairthefilebyremovingtheinfectionoroffendingcode;oritmaydeletetheinfectedfile.Mostantivirusproductsallowtheusertospecifythedesiredaction,andsomeallowforanescalationinactionssuchascleaningtheinfectedfileifpossibleandquarantiningthefileifitcannotbecleaned.

Antivirussolutionsaretypicallyinstalledonindividualsystems(desktops,servers,andevenmobiledevices),butnetwork-basedantiviruscapabilitiesarealsoavailableinmanycommercialgatewayproducts.Thesegatewayproductsoftencombinefirewall,IDS/IPS,andantiviruscapabilitiesintoasingleintegratedplatform.Mostorganizationswillalsoemployantivirussolutionsone-mailservers,asthatcontinuestobeaverypopularpropagationmethodforviruses.Whiletheinstallationofagoodantivirusproductisstillconsidereda

necessarybestpractice,thereisgrowingconcernabouttheeffectivenessofantivirusproductsagainstdevelopingthreats.Earlyvirusesoftenexhibiteddestructivebehaviors;werepoorlywritten,modifiedfiles;andwerelessconcernedwithhidingtheirpresencethantheywerewithpropagation.Weareseeinganemergenceofvirusesandmalwarecreatedbyprofessionals,sometimesfinancedbycriminalorganizationsorgovernments,whichgotogreatlengthstohidetheirpresence.ThesevirusesandmalwareareoftenusedtostealsensitiveinformationorturntheinfectedPCintopartofalargerbotnetforuseinspammingorattackoperations.

ExamTip:Antivirusisanessentialsecurityapplicationonallplatforms.Therearecomplianceschemesthatmandateantivirusdeployment,suchasPCIDSSandNERCCIP.

AntivirusSoftwareforServersTheneedforantivirusprotectiononserversdependsagreatdealontheuseoftheserver.Sometypesofservers,suchase-mailservers,requireextensiveantivirusprotectionbecauseoftheservicestheyprovide.Otherservers(domaincontrollersandremoteaccessservers,forexample)maynotrequireanyantivirussoftware,astheydonotallowuserstoplacefilesonthem.Fileserversneedprotection,asdocertaintypesofapplicationservers.Thereisnogeneralrule,soeachserveranditsroleinthenetworkwillneedtobeexaminedtodeterminewhetheritneedsantivirussoftware.

AntivirusSoftwareforWorkstationsAntiviruspackagesareavailablefromawiderangeofvendors.Runninganetworkofcomputerswithoutthisbasiclevelofprotectionwillbeanexerciseinfutility.Eventhoughthenumberofwidespread,indiscriminatebroadcastvirusattackshasdecreasedbecauseoftheeffectivenessofantivirussoftware,itisstillnecessarytouseantivirussoftware;thetimeandmoneyyouwouldspendcleaningupafteravirusattackmorethanequalsthecostofantivirusprotection.ThemajorityofvirusestodayexisttocreatezombiemachinesforbotnetsthatenableotherstocontrolresourcesonyourPC.Evenmoreimportant,onceconnectedbynetworks,computerscanspreadavirusfrommachinetomachinewithaneasethat’sevengreaterthansimpleUSBflashdrivetransfer.Oneunprotectedmachinecanleadtoproblemsthroughoutanetworkasothermachineshavetousetheirantivirussoftwaretoattempttocleanupaspreadinginfection.AppleMaccomputerswereonceconsideredbymanyuserstobe

immunebecauseveryfewexamplesofmalicioussoftwaretargetingMacs

existed.Thiswasnotduetoanythingotherthanalowmarketshare,andhencethedeviceswereignoredbythemalwarecommunityasawhole.AsMachasincreasedinmarketshare,sohasitsexposure,andtodayavarietyofMacOSXmalwarestealsfilesandpasswordsandisevenusedtotakeusers’pictureswiththecomputer’sbuilt-inwebcam.Allusermachinesneedtoinstallantivirussoftwareintoday’senvironment,becauseanycomputercanbecomeatarget.

AntispamIfyouhaveane-mailaccount,you’velikelyreceivedspam,thatendlessstreamofunsolicited,electronicjunkmailadvertisingget-rich-quickschemes,askingyoutovalidateyourbankaccount’spassword,orinvitingyoutovisitonewebsiteoranother.Despitefederallegislation(suchastheCAN-SPAMActof2003)andpromisesfromITindustrygiantslikeBillGates(“Twoyearsfromnow,spamwillbesolved”—2004),spamisaliveandwellandfillingupyourinboxasyoureadthis.Industryexpertshavebeenfightingthespambattleforyears,andwhilesignificantprogresshasbeenmadeinthedevelopmentofantispamproducts,unfortunatelythespammershaveproventobeverycreativeandverydedicatedintheirquesttofillyourinbox.

Spamisnotanewproblem.It’sreportedthatthefirstspammessagewassentonMay1,1978byaDigitalEquipmentCorporationsalesrepresentative.ThissalesrepresentativeattemptedtosendamessagetoallARPANETusersontheWestCoast.

Antispamproductsattempttofilteroutthatendlessstreamofjunke-mailsoyoudon’thaveto.Someantispamproductsoperateatthecorporatelevel,filteringmessagesastheyenterorleavedesignatedmailservers.Otherproductsoperateatthehostlevel,filteringmessagesastheycomeintoyourpersonalinbox.Mostantispamproductsusesimilartechniquesandapproachesforfilteringoutspam:

BlacklistingSeveralorganizationsmaintainlistsofserversordomainsthatgenerateorhavegeneratedspam.Mostgateway-orserver-levelproductscanreferencetheseblacklistsandautomaticallyrejectanymailcomingfromserversordomainsontheblacklists.

HeaderfilteringTheantispamproductslookatthemessageheaderstoseeiftheyareforged.E-mailheaderstypicallycontaininformationsuchassender,receiver,serversusedtotransmitthemessage,andsoon.Spammersoftenforgeinformationinmessageheadersinanattempttohidewherethemessageisreallycomingfrom.

ContentfilteringThecontentofthemessageisexaminedforcertainkeywordsorphrasesthatarecommontospambutrarelyseeninlegitimatee-mails(“getrichnow”forexample).Unfortunately,contentfilteringdoesoccasionallyflaglegitimatemessagesasspam.

LanguagefilteringSomespamproductsallowyoutofilteroute-mailswrittenincertainlanguages.

User-definedfilteringMostantispamproductsallowenduserstodeveloptheirownfilters,suchasalwaysallowinge-mailfromaspecificsourceevenifitwouldnormallybeblockedbyacontentfilter.

TrappingSomeproductswillmonitorunpublishede-mailaddressesforincomingspam—anythingsenttoanunpublishedandotherwiseunusedaccountislikelytobespam.

EnforcingthespecificationsoftheprotocolSomespam-generationtoolsdon’tproperlyfollowtheSMTPprotocol.ByenforcingthetechnicalrequirementsofSMTP,somespamcanberejectedasdeliveryisattempted.

EgressfilteringThistechniquescansmailasitleavesanorganizationtocatchspambeforeitissenttootherorganizations.

CrossCheckSpamThetopicofspamandalltheinterestingdetailsofundesirede-mailispresentedinChapter16.Spamislistedhereasitisconsideredaclientthreat,butthemainmethodsofcombatingspamarecoveredinChapter16.

AntispywareMostantivirusproductswillincludeantispywarecapabilitiesaswell.Whileantivirusprogramsweredesignedtowatchforthewritingoffilestothefilesystem,manycurrentformsofmalwareavoidthefilesystemtoavoidthisformofdetection.Newerantivirusproductsareadaptingandscanningmemoryaswellaswatchingfilesystemaccessinanattempttodetectadvancedmalware.Spywareisthetermusedtodefinemalwarethatisdesignedtostealinformationfromthesystem,suchaskeystrokes,passwords,PINs,andkeys.Antispywarehelpsprotectyoursystemsfromtheever-increasingfloodofmalwarethatseekstowatchyourkeystrokes,stealyourpasswords,andreportsensitiveinformationbacktoattackers.Manyoftheseattackvectorsworkinsystemmemorytoavoideasydetection.

WindowsDefenderAspartofitsongoingeffortstohelpsecureitsPCoperatingsystems,MicrosoftreleasedafreeutilitycalledWindowsDefenderinFebruary2006.ThestatedpurposeofWindowsDefenderistoprotectyourcomputerfromspywareandotherunwantedsoftware(http://windows.microsoft.com/en-us/windows/using-defender#1TC=windows-7).WindowsDefenderisstandardwithallversionsoftheVistaandWindows7operatingsystemsandisavailableviafreedownloadinboth32-and64-bitversions.Ithasthefollowingcapabilities:

SpywaredetectionandremovalWindowsDefenderisdesignedtofindandremovespywareandotherunwantedprogramsthatdisplaypop-ups,modifybrowserorInternetsettings,orstealpersonalinformationfromyourPC.

ScheduledscanningYoucanschedulewhenyouwantyoursystemtobescannedoryoucanrunscansondemand.

AutomaticupdatesUpdatestotheproductcanbeautomaticallydownloadedandinstalledwithoutuserinteraction.

Real-timeprotectionProcessesaremonitoredinrealtimetostopspywareandmalwarewhentheyfirstlaunch,attempttoinstallthemselves,orattempttoaccessyourPC.

SoftwareExplorerOneofthemoreinterestingcapabilitieswithinWindowsDefenderistheabilitytoexaminethevariousprogramsrunningonyourcomputer.WindowsDefenderallowsyoutolookatprogramsthatrunautomaticallyonstartup,arecurrentlyrunningonyourPC,orareaccessingnetworkconnectionsonyourPC.WindowsDefenderprovidesyouwithdetailssuchasthepublisherofthesoftware,whenitwasinstalledonyourPC,whetherornotthesoftwareis“good”orconsideredtobeknownmalware,thefilesize,publicationdate,andotherinformation.

ConfigurableresponsesWindowsDefenderletsyouchoosewhatactionsyouwanttotakeinresponsetodetectedthreats(seeFigure14.13);youcanautomaticallydisablethesoftware,quarantineit,attempttouninstallit,andperformothertasks.

•Figure14.13WindowsDefenderconfigurationoptions

Pop-upBlockersOneofthemostannoyingnuisancesassociatedwithwebbrowsingisthepop-upad.Pop-upadsareonlineadvertisementsdesignedtoattractwebtraffictospecificwebsites,capturee-mailaddresses,advertiseaproduct,andperformothertasks.Ifyou’vespentmorethananhoursurfingtheWeb,you’veundoubtedlyseenthem.They’recreatedwhenthewebsiteyouarevisitingopensanewwebbrowserwindowforthesolepurposeofdisplayinganadvertisement.Pop-upadstypicallyappearinfrontofyourcurrentbrowserwindowtocatchyourattention(anddisruptyourbrowsing).Pop-upadscanrangefrommildlyannoying,generatingoneortwopop-ups,tosystemcripplingifamaliciouswebsiteattemptstoopenthousandsofpop-upwindowsonyoursystem.Similartothepop-upadisthepop-underadthatopensupbehindyour

currentbrowserwindow.Youwon’tseetheseadsuntilyourcurrentwindowisclosed,andtheyareconsideredbysometobelessannoyingthanpop-ups.Anotherformofpop-upisthehoveradthatusesDynamicHTMLtoappearasafloatingwindowsuperimposedoveryourbrowserwindow.Tosomeusers,pop-upadsareasundesirableasspam,andmanywebbrowsersnowallowuserstorestrictorpreventpop-upswithfunctionalityeitherbuiltintothewebbrowseroravailableasanadd-on.InternetExplorercontainsabuilt-inPop-upBlocker(showninFigure14.14andavailablefromtheToolsmenuinInternetExplorer11).

•Figure14.14Pop-upBlockerinIE11

Firefoxalsocontainsabuilt-inpop-upblocker(availablebychoosing

Tools|OptionsandthenselectingtheContenttab).Popularadd-onssuchastheGoogleandYahoo!toolbarsalsocontainpop-upblockers.Ifthesefreelyavailableoptionsarenotenoughforyourneeds,manycommercialsecuritysuitesfromMcAfee,Symantec,andCheckPointcontainpop-upblockingcapabilitiesaswell.Usersmustbecarefulwhenselectingapop-upblocker,assomeunscrupulousdevelopershavecreatedadwareproductsdisguisedasfreepop-upblockersorothersecuritytools.

ExamTip:Pop-upblockersareusedtopreventwebsitesfromopeningadditionalwebbrowserwindowsortabswithoutspecificuserconsent.

Pop-upsadscanbegeneratedinanumberofways,includingJavaScriptandAdobeFlash,andaneffectivepop-upblockermustbeabletodealwiththemanymethodsusedtocreatepop-ups.Whenapop-upiscreated,userstypicallycanclickacloseorcancelbuttoninsidethepop-uporclosethenewwindowusingamethodavailablethroughtheOS,suchasclosingthewindowfromthetaskbarinWindows.Withtheadvancedfeaturesavailabletotheminawebdevelopmentenvironment,someunscrupulousdevelopersprogramthecloseorcancelbuttonintheirpop-upstolaunchnewpop-ups,redirecttheuser,runcommandsonthelocalsystem,orevenloadsoftware.Pop-upsshouldnotbeconfusedwithadware.Pop-upsareadsthat

appearasyouvisitwebpages.Adwareisadvertising-supportedsoftware.Adwareautomaticallydownloadsanddisplaysadsonyourcomputeraftertheadwarehasbeeninstalled,andtheseadsaretypicallyshownwhilethesoftwareisbeingused.Adwareisoftentoutedas“free”software,astheuserpaysnothingforthesoftwarebutmustagreetoallowadstobedownloadedanddisplayedbeforeusingthesoftware.Thisapproachisverypopularonsmartphonesandmobiledevices.

WhiteListingvs.BlackListingApplicationsApplicationscanbecontrolledattheOSatthetimeofstartviablacklistingorwhitelisting.Blacklistingisessentiallynotingwhichapplicationsshouldnotbeallowedtorunonthemachine.Thisisbasicallyapermanent“ignore”or“callblock”typecapability.Whitelistingistheexactopposite:itconsistsofalistofallowedapplications.Eachoftheseapproacheshasadvantagesanddisadvantages.Blacklistingisdifficulttouseagainstdynamicthreats,astheidentificationofaspecificapplicationcaneasilybeavoidedthroughminorchanges.Whitelistingiseasiertoemployfromtheaspectoftheidentificationofapplicationsthatareallowedtorun—hashvaluescanbeusedtoensuretheexecutablesarenotcorrupted.Thechallengeinwhitelistingisthenumberofpotentialapplicationsthatarerunonatypicalmachine.Forasingle-purposemachine,suchasadatabaseserver,whitelistingcanberelativelyeasytoemploy.Formultipurposemachines,itcanbemorecomplicated.MicrosofthastwomechanismsthatarepartoftheOStocontrolwhich

userscanusewhichapplications:

SoftwarerestrictivepoliciesEmployedviagrouppoliciesandallowsignificantcontroloverapplications,scripts,andexecutablefiles.Theprimarymodeisbymachineandnotbyuseraccount.

UseraccountlevelcontrolEnforcedviaAppLocker,aservicethatallowsgranularcontroloverwhichuserscanexecutewhichprograms.Throughtheuseofrules,anenterprisecanexertsignificantcontroloverwhocanaccessanduseinstalledsoftware.

OnaLinuxplatform,similarcapabilitiesareofferedfromthird-partyvendorapplications.

AppLockerAppLockerisacomponentofWindows7andlaterthatenablesadministratorstoenforcewhichapplicationsareallowedtorunviaasetof

predefinedrules.AppLockerisanadjuncttoSoftwareRestrictionPolicies(SRP).SRPrequiredsignificantadministrationonamachine-by-machinebasisandwasdifficulttoadministeracrossanenterprise.AppLockerwasdesignedsotherulescanbedistributedandenforcedbyGPO.Theybothacttopreventtherunningofbothunauthorizedsoftwareandmalwareonamachine,butAppLockerissignificantlyeasiertoadminister.Figure14.15showstheAppLockerinterfaceinWindows7.SomeofthefeaturesthatareenabledviaAppLockerarerestrictionsbyuserandtheabilitytoruninanauditmode,whereresultsareloggedbutnotenforced,allowingsettingstobetestedbeforeuse.

•Figure14.15AppLockerinWindows7

TrustedOSATrustedOperatingSystemisonethatisdesignedtoallowmultilevelsecurityinitsoperation.ThisisfurtherdefinedbyitsabilitytomeetaseriesofcriteriarequiredbytheU.S.government.TrustedOSsareexpensivetocreateandmaintainbecauseanychangemusttypicallyundergoarecertificationprocess.ThemostcommoncriteriausedtodefineaTrustedOSistheCommonCriteriaforInformationTechnologySecurityEvaluation(abbreviatedasCommonCriteria,orCC),aharmonizedsecuritycriteriarecognizedbymanynations,includingtheUnitedStates,Canada,GreatBritain,andmostoftheEUcountries,aswellasothers.VersionsofWindows,Linux,mainframeOSs,andspecialtyOSshavebeenqualifiedtovariousCommonCriterialevels.

ExamTip:ThetermTrustedOperatingSystemisusedtorefertoasystemthathasmetasetofcriteriaanddemonstratedcorrectnesstomeetrequirementsofmultilevelsecurity.TheCommonCriteriaisoneexampleofastandardusedbygovernmentbodiestodeterminecompliancetoalevelofsecurityneed.

Host-basedFirewallsPersonalfirewallsarehost-basedprotectivemechanismsthatmonitorandcontroltrafficpassingintoandoutofasinglesystem.Designedfortheenduser,softwarefirewallsoftenhaveaconfigurablesecuritypolicythatallowstheusertodeterminewhichtrafficis“good”andisallowedtopassandwhichtrafficis“bad”andisblocked.Softwarefirewallsareextremelycommonplace—somuchsothatmostmodernOSscomewithsometypeofpersonalfirewallincluded.Linux-basedOSshavehadbuilt-insoftware-basedfirewalls(seeFigure

14.16)foranumberofyears,includingTCPWrappers,ipchains,andiptables.

•Figure14.16Linuxfirewall

TCPWrappersisasimpleprogramthatlimitsinboundnetworkconnectionsbasedonportnumber,domain,orIPaddressandismanagedwithtwotextfilescalledhosts.allowandhosts.deny.IftheinboundconnectioniscomingfromatrustedIPaddressanddestinedforaporttowhichitisallowedtoconnect,thentheconnectionisallowed.Ipchainsisamoreadvanced,rule-basedsoftwarefirewallthatallowsfor

trafficfiltering,NetworkAddressTranslation(NAT),andredirection.Threeconfigurable“chains”areusedforhandlingnetworktraffic:input,output,andforward.Theinputchaincontainsrulesfortrafficthatiscomingintothelocalsystem.Theoutputchaincontainsrulesfortrafficthatisleavingthelocalsystem.Theforwardchaincontainsrulesfortrafficthatwasreceivedbythelocalsystembutisnotdestinedforthelocalsystem.Iptablesisthelatestevolutionofipchains.Iptablesusesthesamethreechainsforpolicyrulesandtraffichandlingasipchains,butwithiptableseachpacketisprocessedonlybytheappropriatechain.Underipchains,eachpacketpassesthroughallthreechainsforprocessing.Withiptables,incomingpacketsareprocessedonlybytheinputchainandpacketsleavingthesystemareprocessedonlybytheoutputchain.Thisallowsformoregranularcontrolofnetworktrafficandenhancesperformance.Inadditiontothe“free”firewallsthatcomebundledwithOSs,many

commercialpersonalfirewallpackagesareavailable.ProgramssuchasZoneAlarmfromCheckPointSoftwareTechnologiesprovideorbundleadditionalcapabilitiesnotfoundinsomebundledsoftwarefirewalls.Manycommercialsoftwarefirewallslimitinboundandoutboundnetworktraffic,blockpop-ups,detectadware,blockcookies,blockmaliciousprocesses,andscaninstantmessengertraffic.Whileyoucanstillpurchaseorevendownloadafreesoftware-basedpersonalfirewall,mostcommercialvendorsarebundlingthefirewallfunctionalitywithadditionalcapabilitiessuchasantivirusandantispyware.MicrosoftWindowshashadapersonalsoftwarefirewallsinceWindows

XPSP2.WindowsFirewall(seeFigure14.17)isenabledbydefaultandhaswarningswhendisabled.WindowsFirewallisfairlyconfigurable;itcanbesetuptoblockalltraffic,makeexceptionsfortrafficyouwanttoallow,andlogrejectedtrafficforlateranalysis.

•Figure14.17WindowsFirewallisenabledbydefaultinXPSP2,Vista,andWindows7.

WiththeintroductionoftheVistaoperatingsystem,MicrosoftmodifiedWindowsFirewalltomakeitmorecapableandconfigurable.Moreoptionswereaddedtoallowformoregranularcontrolofnetworktrafficaswellastheabilitytodetectwhencertaincomponentsarenotbehavingasexpected.Forexample,ifyourMSOutlookclientsuddenlyattemptstoconnecttoaremotewebserver,WindowsFirewallcandetectthisasadeviationfromnormalbehaviorandblocktheunwantedtraffic.

HardwareSecurityHardware,intheformofservers,workstations,andevenmobiledevices,canrepresentaweaknessorvulnerabilityinthesecuritysystemassociatedwithanenterprise.Whilehardwarecanbeeasilyreplacediflostorstolen,theinformationthatiscontainedbythedevicescomplicatesthesecuritypicture.Dataorinformationcanbesafeguardedfromlossbybackups,butthisdoeslittleinthewayofprotectingitfromdisclosuretoanunauthorizedparty.Therearesoftwaremeasuresthatcanassistintheformofencryption,butthesealsohavedrawbacksintheformofscalabilityandkeydistribution.Therearesomehardwareprotectionmechanismsthatshouldbe

employedtosafeguardinformationinservers,workstations,andmobiledevices.Cablelockscanbeemployedonmobiledevicestopreventtheirtheft.Lockingcabinetsandsafescanbeusedtosecureportablemedia,USBdrives,andCDs/DVDs.PhysicalsecurityiscoveredinmoredetailinChapter8.

ExamTip:Physicalsecurityisanessentialelementofasecurityplan.Unauthorizedaccesstohardwareandnetworkingcomponentscanmakemanysecuritycontrolsineffective.

HostSoftwareBaseliningTosecurethesoftwareonasystemeffectivelyandconsistently,youmusttakeastructuredandlogicalapproach.Thisstartswithanexaminationofthesystem’sintendedfunctionsandcapabilitiestodeterminewhatprocessesandapplicationswillbehousedonthesystem.Asabestpractice,anythingthatisnotrequiredforoperationsshouldberemovedordisabledonthesystem;then,alltheappropriatepatches,hotfixes,andsettingsshouldbeappliedtoprotectandsecureit.Thisprocessofestablishingsoftware’sbasesecuritystateiscalled

baselining,andtheresultingproductisasecuritybaselinethatallowsthesoftwaretorunsafelyandsecurely.Softwareandhardwarecanbetiedintimatelywhenitcomestosecurity,sotheymustbeconsideredtogether.Oncetheprocesshasbeencompletedforaparticularhardwareandsoftwarecombination,anysimilarsystemscanbeconfiguredwiththesamebaselinetoachievethesamelevelanddepthofsecurityandprotection.Uniformsoftwarebaselinesarecriticalinlarge-scaleoperations,becausemaintainingseparateconfigurationsandsecuritylevelsforhundredsorthousandsofsystemsisfartoocostly.Afteradministratorshavefinishedpatching,securing,andpreparinga

system,theyoftencreateaninitialbaselineconfiguration.Thisrepresentsasecurestateforthesystemornetworkdeviceandareferencepointofthesoftwareanditsconfiguration.Thisinformationestablishesareferencethatcanbeusedtohelpkeepthesystemsecurebyestablishingaknownsafeconfiguration.Ifthisinitialbaselinecanbereplicated,itcanalsobeusedasatemplatewhendeployingsimilarsystemsandnetworkdevices.

Host-basedSecurityControlsSecuritycontrolscanbeimplementedonahostmachinefortheexpresspurposeofprovidingdataprotectiononthehost.Thissectionexploresmethodstoimplementtheappropriatecontrolstoensuredatasecurity.

Hardware-basedEncryptionDevicesHardware-basedencryptiondevicesaredesignedtoassistintheencryption/decryptionactionsviahardwareratherthansoftwareonasystem.Integrationofencryptionfunctionalityviahardwareoffersbothperformanceandsecurityadvantagesforthesesolutions.

TPMTheTrustedPlatformModule(TPM)isahardwaresolutiononthemotherboard,onethatassistswithkeygenerationandstorageaswellasrandomnumbergeneration.WhentheencryptionkeysarestoredintheTPM,theyarenotaccessiblevianormalsoftwarechannelsandarephysicallyseparatedfromtheharddriveorotherencrypteddatalocations.ThismakestheTPMamoresecuresolutionthanstoringthekeysonthemachine’snormalstorage.

HSMAhardwaresecuritymodule(HSM)isadeviceusedtomanageorstoreencryptionkeys.Itcanalsoassistincryptographicoperationssuchasencryption,hashing,ortheapplicationofdigitalsignatures.HSMsaretypicallyperipheraldevices,connectedviaUSBoranetworkconnection.HSMshavetamperprotectionmechanismstopreventphysicalaccesstothesecretstheyprotect.Becauseoftheirdedicateddesign,theycanoffersignificantperformanceadvantagesovergeneral-purposecomputerswhenitcomestocryptographicoperations.Whenanenterprisehassignificantlevelsofcryptographicoperations,HSMscanprovidethroughputefficiencies.

ExamTip:Storingprivatekeysanywhereonanetworkedsystemisarecipeforloss.HSMsaredesignedtoallowtheuseofthekeywithoutexposingittothewiderangeofhost-basedthreats.

USBEncryptionUniversalSerialBus(USB)offersaneasyconnectionmechanismtoconnectdevicestoacomputer.Thisactsasthemechanismoftransportbetweenthecomputerandanexternaldevice.WhendatatraversestheUSBconnection,ittypicallyendsuponaportabledeviceandthusrequiresanappropriatelevelofsecurity.Manymechanismsexist,fromencryptionontheUSBdeviceitself,toOS-enabledencryption,toindependentencryptionbeforemovingthedata.Eachofthesemechanismshasadvantagesanddisadvantages,anditisultimatelyuptotheusertochoosethebestmethodbasedonthesensitivityofthedata.

HardDriveAsharddrivesexisttostoreinformation,havingthedriveitselfofferencryptionservicescanprovideflexibilityintermsofperformanceandsecurity.ItispossibletobuyharddrivestodaywithintegratedAESencryption,sothatthedrivecontentissecuredandthekeyscanbestoredseparatelyinaTPM.Thisofferssignificantperformanceandsecurityenhancementsoverother,software-basedsolutions.

DataEncryptionDataencryptioncontinuestobethebestsolutionfordatasecurity.Properlyencrypted,thedataisnotreadablebyanunauthorizedparty.Therearenumerouswaystoenactthislevelofprotectiononahostmachine.

FullDiskFulldiskencryptionreferstotheactofencryptinganentirepartitioninoneoperation.Thenasspecificelementsareneeded,thoseparticularsectorscanbedecryptedforuse.Thisoffersasimpleconveniencefactorandensuresthatallofthedataisprotected.Itdoescomeataperformancecost,astheactofdecryptingandencryptingtakestime.Forsomehigh-

performancedatastores,especiallythosewithlatencyissues,thisperformancehitmaybecritical.Althoughbetterperformancecanbeachievedwithspecializedhardware,aswithallsecuritycontrolsthereneedstobeanevaluationoftheriskinvolvedversusthecosts.

DatabaseMajordatabaseengineshavebuilt-inencryptioncapabilities.Theadvantagetotheseencryptionschemesisthattheycanbetailoredtothedatastructure,protectingtheessentialcolumnswhilenotimpactingcolumnsthatarenotsensitive.Properlyemployingdatabaseencryptionrequiresthatthedataschemaanditssecurityrequirementsbedesignedintothedatabaseimplementation.Theadvantageisinbetterprotectionagainstanydatabasecompromise,andtheperformancehitistypicallynegligiblewithrespecttootheralternatives.

IndividualFilesIndividualfilescanbeencryptedaswellinasystem.ThiscanbedoneeitherattheOSlevelorviaathird-partyapplication.Managingindividualfileencryptioncanbetricky,astheproblemmovestoanencryptionkeysecurityproblem.Whenusingbuilt-inencryptionmethodswithanOS,thekeyissueisresolvedbytheOSitself,withasinglekeybeingemployedandstoredwiththeusercredentials.Oneoftheadvantagesofindividualfileencryptioncomeswhentransferringdatatoanotheruser.Transportingasinglefileviaanunprotectedchannelsuchase-mailcanbedonesecurelywithsingle-fileencryption.

RemovableMediaRemovablemedia,byitsverynature,canbemovedtoanotherlocation,makingthesecuringofthedatastoredonthedeviceessential.Again,encryptionbecomesthetoolofchoice,andawiderangeofencryptionmethodsandapplicationssupporttheprotectionofremovablemedia.MicrosoftBitLocker,builtintocurrenteditionsofitsEnterprise,Ultimate,

andProOSs,offerstheabilitytoprotectdatastoredonremovablemedia.

MobileDevicesMobiledevicesecurity,coveredindetailinChapter12,isalsoessentialwhencriticalorsensitivedataistransmittedtomobiledevices.Theprotectionofmobiledevicesgoesbeyondsimpleencryptionofthedata,asthedevicecanactasanauthorizedendpointforthesystem,openingupavenuesofattack.

DataSecurityDataorinformationisthemostimportantelementtoprotectintheenterprise.Equipmentcanbepurchased,replaced,andsharedwithoutconsequence;itistheinformationthatisbeingprocessedthathasthevalue.Datasecurityreferstotheactionstakenintheenterprisetosecuredata,whereveritresides:intransit,atrest,orinuse.

DatainTransitDatahasvalueintheenterprise,butfortheenterprisetofullyrealizethevalue,dataelementsneedtobesharedandmovedbetweensystems.Wheneverdataisintransit,beingmovedfromonesystemtoanother,itneedstobeprotected.Themostcommonmethodofthisprotectionisviaencryption.Whatisimportantistoensurethatdataisalwaysprotectedinproportiontothedegreeofriskassociatedwithadatasecurityfailure.

DataatRestDataatrestreferstodatabeingstored.Dataisstoredinavarietyofformats:infiles,indatabases,andasstructuredelements.WhetherinASCII,XML,JavaScriptObjectNotation(JSON),oradatabase,andregardlessofonwhatmediaitisstored,dataatreststillrequiresprotectioncommensuratewithitsvalue.Again,aswithdataintransit,encryptionisthebestmeansofprotectionagainstunauthorizedaccessoralteration.

DatainUseDataisprocessedinapplications,isusedforvariousfunctions,andcanbeatriskwheninsystemmemoryorevenintheactofprocessing.Protectingdatawhileinuseisamuchtrickierpropositionthanprotectingitintransitorinstorage.Whileencryptioncanbeusedintheseothersituations,itisnotpracticaltoperformoperationsonencrypteddata.Thismeansthatothermeansneedtobetakentoprotectthedata.Protectedmemoryschemesandaddressspacelayoutrandomizationaretwotoolsthatcanbeusedtopreventdatasecurityfailuresduringprocessing.Securecodingprinciples,includingthedefinitivewipingofcriticaldataelementsoncetheyarenolongerneeded,canassistinprotectingdatainuse.

ExamTip:Understandingtheneedtoprotectdatainallthreephases,intransit,atrest,andinuse,isanimportantconceptfortheexam.Thefirststepistoidentifythephasethedataisin,andthesecondistoidentifythecorrectmeansofprotectionforthatphase.

HandlingBigDataBigdataistheindustrybuzzwordforverylargedatasetsbeingusedinmanyenterprises.Datasetsinthepetabyte,exabyte,andevenzettabyterangearenowbeingexploredinsomeapplications.Datasetsofthesesizesrequirespecialhardwareandsoftwaretohandlethem,butthisdoesnotalleviatetheneedforsecurity.Planningforsecurityonthisscalerequiresenterprise-levelthinking,butitisworthnotingthateventuallysomesubsetoftheinformationmakesitswaytoahostmachineforuse.Itisatthispointthatthedataisvulnerable,becausewhateverprotectionschemeisinplaceonthelargestoragesystem,thedataisoutsidethatrealmnow.Thismeansthatlocalprotectionmechanisms,suchasprovidedbyKerberos-basedauthentication,canbecriticalinmanagingthistypeofprotectionscheme.

CloudStorageCloudcomputingistheuseofonlineresourcesforstorage,processing,orboth.Whenstoringdatainthecloud,encryptioncanbeusedtoprotectthedata,sothatwhatisactuallystoredisencrypteddata.Thisreducestheriskofdatadisclosurebothintransittothecloudandbackaswellaswhileinstorage.

StorageAreaNetworkAstorageareanetwork(SAN)isameansofstoringdataacrossasecondarydedicatednetwork.SANsoperatetoconnectdatastoragedevicesasiftheywerelocalstorage,yettheyareseparateandcanbecollectionsofdisks,tapes,andotherstoragedevices.BecausethededicatednetworkisseparatefromthenormalIPnetwork,accessingtheSANrequiresgoingthroughoneoftheattachedmachines.ThismakesSANsabitmoresecurethanotherformsofstorage,althoughlossthroughacompromisedclientmachineisstillarisk.

Permissions/ACLAccesscontrollists(ACLs)formoneofthefoundationalbasesforsecurityonamachine.ACLscanbeusedbytheoperatingsystemtomakedeterminationsastowhetherornotausercanaccessaresource.ThislevelofpermissionrestrictionofferssignificantprotectionofresourcesandtransfersthemanagementoftheaccesscontrolproblemtothemanagementofACLs,asmallerandmoremanageableproblem.

NetworkHardeningWhileconsideringthebaselinesecurityofsystems,youmustconsidertherolethenetworkconnectionplaysintheoverallsecurityprofile.ThetremendousgrowthoftheInternetandtheaffordabilityofmultiplePCs

andEthernetnetworkinghaveresultedinalmosteverycomputerbeingattachedtosomekindofnetwork,andoncecomputersareattachedtoanetwork,theyareopentoaccessfromanyotheruseronthatnetwork.Propercontrolsovernetworkaccessmustbeestablishedoncomputersbycontrollingtheservicesthatarerunningandtheportsthatareopenedfornetworkaccess.Inadditiontoserversandworkstations,however,networkdevicesmustalsobeexamined:routers,switches,andmodems,aswellasvariousothercomponents.Thesenetworkdevicesshouldbeconfiguredwithverystrictparameters

tomaintainnetworksecurity.LikenormalcomputerOSsthatneedtobepatchedandupdated,thesoftwarethatrunsnetworkinfrastructurecomponentsneedstobeupdatedregularly.Finally,anouterlayerofsecurityshouldbeaddedbyimplementingappropriatefirewallrulesandrouterACLs.

CrossCheckNetworkDevices,NAT,andSecurityChapter9discussedNAT(NetworkAddressTranslation).HowdonetworkdevicesthatperformNATserviceshelpsecureprivatenetworksfromInternet-basedattacks?

SoftwareUpdatesMaintainingcurrentvendorpatchlevelsforyoursoftwareisoneofthemostimportantthingsyoucandotomaintainsecurity.Thisisalsotruefortheinfrastructurethatrunsthenetwork.Whilesomeequipmentisunmanagedandtypicallyhasnonetworkpresenceandfewsecurityrisks,anymanagedequipmentthatisrespondingonnetworkportswillhavesomesoftwareorfirmwarecontrollingit.Thissoftwareorfirmwareneedstobeupdatedonaregularbasis.ThemostcommondevicethatconnectspeopletotheInternetisthe

networkrouter.Dozensofbrandsofroutersareavailableonthemarket,butCiscoSystemsproductsdominate.ThepopularCiscoInternetwork

OperatingSystem(IOS)runsonmorethan70ofCisco’sdevicesandisinstalledcountlesstimesatcountlesslocations.Itspopularityhasfueledresearchintovulnerabilitiesinthecode,andoverthepastfewyearsquiteafewvulnerabilitieshavebeenreported.Thesevulnerabilitiescantakemanyformsbecauserouterssendandreceiveseveraldifferentkindsoftraffic,fromthestandardTelnetremoteterminal,toroutinginformationintheformofRoutingInformationProtocol(RIP)orOpenShortestPathFirst(OSPF)packets,toSimpleNetworkManagementProtocol(SNMP)packets.ThishighlightstheneedtoupdatetheCiscoIOSsoftwareonaregularbasis.

WhilewefocusonCiscoinourdiscussion,it’simportanttonotethateverynetworkdevice,regardlessofthemanufacturer,needstobemaintainedandpatchedtoremainsecure.

CiscoIOSalsorunsonmanyofitsEthernetswitchingproducts.Likerouters,thesehavecapabilitiesforreceivingandprocessingprotocolssuchasTelnetandSNMP.SmallernetworkcomponentsdonotusuallyrunlargesoftwaresuitesandtypicallyhavesmallersoftwareloadedoninternalnonvolatileRAM(NVRAM).Whiletheupdateprocessforthiskindofsoftwareistypicallycalledafirmwareupdate,thisdoesnotchangethesecurityimplicationsofkeepingituptodate.Inthecaseofacorporatenetworkwithseveraldevices,someonemusttakeownershipofupdatingthedevices,andupdatesmustbeperformedregularlyaccordingtosecurityandadministrationpolicies.

DeviceConfigurationAsimportantasitistokeepsoftwareuptodate,properlyconfiguringnetworkdevicesisequally,ifnotmore,important.Manynetworkdevices,suchasroutersandswitches,nowhaveadvancedremotemanagementcapabilities,withmultipleopenportsacceptingnetworkconnections.

Properconfigurationisnecessarytokeepthesedevicessecure.Choosingagoodpasswordisveryimportantinmaintainingexternalandinternalsecurity,andclosingorlimitingaccesstoanyopenportsisalsoagoodstepforsecuringthedevices.Onthemoreadvanceddevices,youmustcarefullyconsiderwhatservicesthedeviceisrunning,justaswithacomputer.Herearesomegeneralstepstotakewhensecuringnetworkingdevices:

LimitaccesstoonlythosewhoneeditIfyournetworkingdeviceallowsmanagementviaawebinterface,SSH,oranyothermethod,limitwhocanconnecttothoseservices.ManynetworkingdevicesallowyoutospecifywhichIPaddressesareallowedtoconnecttothosemanagementservices.

ChoosegoodpasswordsAlwayschangedefaultpasswordsandfollowgoodpasswordselectionguidelines.Ifthedevicesupportsencryption,ensurepasswordsarestoredinencryptedformatonthedevice.

Password-protectconsoleandremoteaccessIfthedevicesupportspasswordprotection,ensurethatalllocalandremoteaccesscapabilitiesarepasswordprotected.

TurnoffunnecessaryservicesIfyournetworkingequipmentsupportsTelnetbutyourorganizationdoesn’tneedit,turnthatserviceoff.It’salwaysagoodideatodisableorremoveunusedservices.YourdevicemayalsosupporttheuseofACLstolimitaccesstoservicessuchasTelnetorSSHonthedeviceitself.

ChangeSNMPcommunitystringsSNMPiswidelyusedtomanagenetworkingequipmentandtypicallyallowsa“public”string,whichcantypicallyonlyreadinformationfromadevice,anda“private”string,whichcanoftenreadandwritetoadevice’sconfiguration.Somemanufacturersusedefaultorwell-knownstrings(suchas“public”forthepublicstring)—alwayschangeboththepublicandprivatestringsifyouareusingSNMP.

ExamTip:Theuseoftheword“public”asanSNMPcommunitystringisanextremelywell-knownvulnerability.AnysystemusinganSNMPcommunitystringof“public”shouldbechangedimmediately.

SecuringManagementInterfacesSomenetworksecuritydeviceswillhave“managementinterfaces”thatallowforremotemanagementofthedevicesthemselves.Oftenseenonfirewalls,routers,andswitches,amanagementinterfaceallowsconnectionstothedevice’smanagementapplication,anSSHservice,orevenaweb-basedconfigurationGUI,whicharenotallowedonanyotherinterface.Duetothishighlevelofaccess,managementinterfacesandmanagementapplicationsmustbesecuredagainstunauthorizedaccess.Theyshouldnotbeconnectedtopublicnetworkconnections(theInternet)andDMZconnections.Wherepossible,accesstomanagementinterfacesandapplicationsshouldberestrictedwithinanorganizationsoemployeeswithouttheproperaccessrightsandprivilegescannotevenconnecttothoseinterfacesandapplications.

VLANManagementAvirtualLAN,orVLAN,isagroupofhoststhatcommunicateasiftheywereonthesamebroadcastdomain.AVLANisalogicalconstructthatcanbeusedtohelpcontrolbroadcastdomains,managetrafficflow,andrestricttrafficbetweenorganizations,divisions,andsoon.Layer2switches,bydefinition,willnotbridgeIPtrafficacrossVLANs,whichgivesadministratorstheabilitytosegmenttrafficquiteeffectively.Forexample,ifmultipledepartmentsareconnectedtothesamephysicalswitch,VLANscanbeusedtosegmentthetrafficsuchthatonedepartmentdoesnotseethebroadcasttrafficfromtheotherdepartments.BycontrollingthemembersofaVLAN,administratorscanlogically

separatenetworktrafficthroughouttheorganization.

IPv4vs.IPv6IPv4(InternetProtocolversion4)isthedefactocommunicationstandardinuseonalmosteverynetworkaroundtheplanet.Unfortunately,IPv4containssomeinherentshortcomingsandvulnerabilities.Inanefforttoaddresstheseissues,theInternetEngineeringTaskForce(IETF)launchedanefforttoupdateorreplaceIPv4;theresultisIPv6.Usinganewpacketformatandmuchlargeraddressspace,IPv6isdesignedtospeeduppacketprocessingbyroutersandsupply3.4×1038possibleaddresses(IPv4usesonly32bitsforaddressing;IPv6uses128bits).Additionally,IPv6hassecurity“builtin”withmandatorysupportfornetworklayersecurity.AlthoughwidelyadoptedunderIPv4,IPsecsupportismandatoryinIPv6.Theissuenowisoneofconversion.IPv4andIPv6networkscannottalkdirectlytoeachotherandmustrelyonsometypeofgateway.ManyoperatingsystemsanddevicescurrentlysupportdualIPstacksandcanrunbothIPv4andIPv6.WhileadoptionofIPv6isproceeding,itismovingslowlyandhasyettogainasignificantfoothold.

ExamTip:A“hotfix”isdesignedtoaddress/fixaspecificproblem—abufferoverflowinaspecificapplication,forexample.Apatchisusuallyacollectionofoneormorefixes.

Someapplication“patches”containneworenhancedfunctionsandsomechangeuser-definedsettingsbacktodefaultsduringinstallationofthepatch.Ifyouaredeployinganapplicationpatchacrossalargegroupofusers,itisimportanttounderstandexactlywhatthatapplicationpatchreallydoes.Patchesshouldfirstbetestedinanonproductionenvironmentbeforedeploymenttodetermineexactlyhowtheyaffectthesystemandthenetworkitisconnectedto.

ApplicationHardeningPerhapsasimportantasOSandnetworkhardeningisapplicationhardening—securinganapplicationagainstlocalandInternet-basedattacks.Hardeningapplicationsisfairlysimilartohardeningoperatingsystems—youremovethefunctionsorcomponentsyoudon’tneed,restrictaccesswhereyoucan,andmakesuretheapplicationiskeptuptodatewithpatches.Inmostcases,thelaststepinthatlististhemostimportantformaintainingapplicationsecurity.Afterall,applicationsmustbeaccessibletousersortheyservenopurpose.Asmostproblemswithapplicationstendtobebufferoverflowsinlegitimateuserinputfields,patchingtheapplicationisoftentheonlywaytosecureitfromattack.

TechTip

PortScannersTofindoutwhatservicesareopenonagivenhostornetworkdevices,manyadministratorswilluseatoolcalledaportscanner.AportscannerisatooldesignedtoproberemotesystemsforopenTCPandUDPservices.Nmapisaverypopular(andfree)portscanner(seehttp://nmap.org).

ApplicationConfigurationBaselineAswithoperatingsystems,applications(particularlythoseprovidingpublicservicessuchaswebserversandmailservers)willhaverecommendedsecurityandfunctionalitysettings.Insomecases,vendorswillprovidethoserecommendsettings,and,inothercases,anoutsideorganizationsuchasNSA,ISSA,orSANSwillproviderecommendedconfigurationsforpopularapplications.Manylargeorganizationswilldeveloptheirownapplicationconfigurationbaseline—thatlistofsettings,tweaks,andmodificationsthatcreatesafunctionalandhopefullysecureapplicationforusewithintheorganization.Developinganapplicationbaselineandusingitanytimethatapplicationisdeployedwithinthe

organizationhelpstoensureaconsistent(andhopefullysecure)configurationacrosstheorganization.

ApplicationPatchesAsobviousasthisseems,applicationpatchesaremostlikelygoingtocomefromthevendorthatsellstheapplication.Afterall,whoelsehasaccesstothesourcecode?Insomecases,suchaswithMicrosoft’sIIS,thisisthesamecompanythatsoldtheOSthattheapplicationrunson.Inothercases,suchasApache,thevendorisOSindependentandprovidesanapplicationwithversionsformanydifferentOSs.Applicationpatchesarelikelytocomeinthreevarieties:hotfixes,

patches,andupgrades.AsdescribedforOSsearlierinthechapter,hotfixesareusuallysmallsectionsofcodedesignedtofixaspecificproblem.Forexample,ahotfixmayaddressabufferoverflowintheloginroutineforanapplication.Patchesareusuallycollectionsoffixes,tendtobemuchlarger,andareusuallyreleasedonaperiodicbasisorwheneverenoughproblemshavebeenaddressedtowarrantapatchrelease.Upgradesareanotherpopularmethodofpatchingapplications,andtheytendtobepresentedwithamorepositivespinthanpatches.Eventhetermupgradehasapositiveconnotation—youaremovinguptoabetter,morefunctional,andmoresecureapplication.Forthisreason,manyvendorsrelease“upgrades”thatconsistmainlyoffixesratherthanneworenhancedfunctionality.

ExamTip:Patchmanagementistheprocessofplanning,testing,anddeployingpatchesinacontrolledmanner.

PatchManagementIntheearlydaysofnetworkcomputing,thingswereeasy—fewer

applicationsexisted,vendorpatchescameoutannuallyorquarterly,andaccesswasrestrictedtoauthorizedindividuals.Updateswerefewandeasytohandle.NowapplicationandOSupdatesarepushedconstantlyasvendorsstruggletoprovidenewcapabilities,fixproblems,andaddressvulnerabilities.Microsoftcreated“PatchTuesday”inanefforttocondensetheupdatecycleandreducetheeffortrequiredtomaintainitsproducts,andhasnowgonetocontinuouspatchingofitsnewestOS.Asthenumberofpatchescontinuestorise,manyorganizationsstruggletokeepupwithpatches—whichpatchesshouldbeappliedimmediately,whicharecompatiblewiththecurrentconfiguration,whichwillnotaffectcurrentbusinessoperations,andsoon.Tohelpcopewiththisfloodofpatches,manyorganizationshaveadoptedpatchmanagement,theprocessofplanning,testing,anddeployingpatchesinacontrolledmanner.Patchmanagementisadisciplinedapproachtotheacquisition,testing,

andimplementationofOSandapplicationpatchesandrequiresafairamountofresourcestoimplementproperly.Toimplementpatchmanagementeffectively,youmustfirsthaveagoodinventoryofthesoftwareusedinyourenvironment,includingallOSsandapplications.Thenyoumustsetupaprocesstomonitorforupdatestothosesoftwarepackages.Manyvendorsprovidetheabilitytoupdatetheirproductsautomaticallyortoautomaticallycheckforupdatesandinformtheuserwhenupdatesareavailable.Keepingtrackofpatchavailabilityismerelythefirststep;inmany

environments,patchesmustbeanalyzedandtested.Doesthepatchapplytothesoftwareyouarerunning?Doesthepatchaddressavulnerabilityorcriticalissuethatmustbeaddressedimmediately?Whatistheimpactofapplyingthatpatchorgroupofpatches?Willitbreaksomethingelseifyouapplythispatch?Toaddresstheseissues,itisrecommendedthatyouusedevelopmentortestplatforms,whereyoucancarefullyanalyzeandtestpatchesbeforeplacingthemintoaproductionenvironment.Whilepatchesaregenerally“good,”theyarenotalwaysexhaustivelytested;somehavebeenknownto“break”otherproductsorfunctionswithintheproductbeingpatched;andsomehaveintroducednewvulnerabilities

whileattemptingtoaddressanexistingvulnerability.Theextentofanalysisandtestingvarieswidelyfromorganizationtoorganization.TestingandanalysiswillalsovarydependingontheapplicationorOSandtheextentofthepatch.

TechTip

Patch-ManagementSolutionsKeepingtrackofcurrentpatchlevelsinasystemorgroupofsystemscanbeadauntingjob.Thereareavarietyofsoftwaresolutionstoassistadministratorsinthistask.OneoftheseprogramsisSecuniaPersonalSoftwareInspector(PSI),http://secunia.com.Thisprogram,whichisfreeforpersonaluse,willtrackupdatesforapplicationsinstalledonamachine.

•SecuniaPersonalSoftwareInspectorresultsscreen

Onceapatchhasbeenanalyzedandtested,administratorshavetodeterminewhentoapplythepatch.Asmanypatchesrequirearestartofapplicationsorservicesorevenarebootoftheentiresystem,mostoperationalenvironmentsapplypatchesonlyatspecifictimes,toreducedowntimeandpossibleimpactandtoensureadministratorsareavailableifsomethinggoeswrong.Manyorganizationswillalsohavearollbackplanthatallowsthemtorecoverthesystemsbacktoaknowngood

configurationpriortothepatch,incasethepatchhasunexpectedorundesirableeffects.Someorganizationsrequireextensivecoordinationandapprovalofpatchespriortoimplementation,andsomeinstitute“lockout”dateswherenopatchingorsystemchanges(withfewexceptions)canbemade,toensurebusinessoperationsarenotdisrupted.Forexample,ane-commercesitemighthavealockoutbetweentheThanksgivingandChristmasholidaystoensurethesiteisalwaysavailabletoholidayshoppers.

TechTip

ProductionPatchingPatchingofproductionsystemsbringsriskinthechangeprocess.Thisriskshouldbemitigatedviaachangemanagementprocess.ChangemanagementiscoveredindetailinChapter21.Patchingofproductionsystemsshouldfollowtheenterprisechangemanagementprocess.

Withanyenvironment,butespeciallywithlargerenvironments,itcanbeachallengetotracktheupdatestatusofeverydesktopandserverintheorganization.Documentingandmaintainingpatchstatuscanbeachallenge.However,withadisciplinedapproach,training,policies,andprocedures,eventhelargestenvironmentscanbemanaged.Toassistintheirpatch-managementefforts,manyorganizationsuseapatch-managementproductthatautomatesmanyofthemundaneandmanpower-intensivetasksassociatedwithpatchmanagement.Forexample,manypatch-managementproductsprovidethefollowing:

Abilitytoinventoryapplicationsandoperatingsystemsinuse

Notificationofpatchesthatapplytoyourenvironment

Periodicorcontinualscanningofsystemstovalidatepatchstatusandidentifymissingpatches

Abilitytoselectwhichpatchestoapplyandtowhichsystemstoapply

them

Abilitytopushpatchestosystemsonanon-demandorscheduledbasis

Abilitytoreportpatchsuccessorfailure

Abilitytoreportpatchstatusonanyorallsystemsintheenvironment

Patch-managementsolutionscanalsobeusefultosatisfyauditorcompliancerequirements,astheycanshowastructuredapproachtopatchmanagement,showwhenandhowsystemsarepatched,andprovideadetailedaccountingofpatchstatuswithintheorganization.Microsoftprovidesafreepatch-managementproductcalledWindows

ServerUpdateServices(WSUS),showninFigure14.18.UsingtheWSUSproduct,administratorscanmanageupdatesforanycompatibleWindows-basedsystemintheirorganization.TheWSUSproductcanbeconfiguredtodownloadpatchesautomaticallyfromMicrosoftbasedonavarietyoffactors(suchasOS,productfamily,criticality,andsoon).Whenupdatesaredownloaded,theadministratorcandeterminewhetherornottopushoutthepatchesandwhentoapplythemtothesystemsintheirenvironment.TheWSUSproductcanalsohelpadministratorstrackpatchstatusontheirsystems,whichisausefulandnecessaryfeature.

•Figure14.18WindowsServerUpdateServices

HostSoftwareBaseliningTosecure,configure,andpatchsoftware,administratorsmustfirstknowwhatsoftwareisinstalledandrunningonsystems.Maintaininganaccuratepictureofwhatoperatingsystemsandapplicationsarerunninginsideanorganizationcanbeaverylabor-intensivetaskforadministrators—especiallyifindividualusershavetheabilitytoloadsoftwareontotheirownserversandworkstations.Toaddressthisissue,manyorganizationsdevelopsoftwarebaselinesforhostsandservers.Sometimescalled“default,”“gold,”or“standard”configurations,asoftwarebaselinecontainsalltheapprovedsoftwarethatshouldappearonadesktoporserverwithintheorganization.Whilesoftwarebaselinescandifferslightlyduetodisparateneedsbetweengroupsofusers,themore“standard”asoftwarebaselinebecomes,theeasieritwillbeforadministratorstosecure,patch,andmaintainsystemswithintheorganization.

VulnerabilityScannerAvulnerabilityscannerisaprogramdesignedtoprobehostsforweaknesses,misconfigurations,oldversionsofsoftware,andsoon.Thereareessentiallythreemaincategoriesofvulnerabilityscanners:network,host,andapplication.Anetworkvulnerabilityscannerprobesahostorhostsforissues

acrosstheirnetworkconnections.Typicallyanetworkscannerwilleithercontainoruseaportscannertoperformaninitialassessmentofthenetworktodeterminewhichhostsarealiveandwhichservicesareopenonthosehosts.Eachsystemandserviceisthenprobed.Networkscannersareverybroadtoolsthatcanrunpotentiallythousandsofchecks,dependingontheOSandservicesbeingexamined.Thismakesthemaverygood“broadsweep”fornetwork-visiblevulnerabilities.

Duetothenumberofcheckstheycanperform,networkscannerscangenerateagreatdealoftrafficandalargenumberofconnectionstothesystemsbeingexamined,socareshouldbetakentominimizetheimpactonproductionsystemsandproductionnetworks.

NetworkscannersareessentiallytheequivalentofaSwissarmyknifeforassessments.Theydolotsoftasksandareextremelyusefultohavearound—theymaynotbeasgoodasatooldedicatedtoexaminingonespecifictypeofservice,butifyoucanonlyrunasingletooltoexamineyournetworkforvulnerabilities,you’llwantthattooltobeanetworkvulnerabilityscanner.Figure14.19showsascreenshotofNessusfromTenableNetworkSecurity,averypopularnetworkvulnerabilityscanner.

•Figure14.19Nessus—anetworkvulnerabilityscanner

Bottomline:Ifyouneedtoperformabroadsweepforvulnerabilitiesononeormorehostsacrossthenetwork,anetworkvulnerabilityscanneristherighttoolforthejob.Hostvulnerabilityscannersaredesignedtorunonaspecifichostand

lookforvulnerabilitiesandmisconfigurationsonthathost.Hostscannerstendtobemorespecializedbecausethey’relookingforissuesassociatedwithaspecificoperatingsystemorsetofoperatingsystems.AgoodexampleofahostscanneristheMicrosoftBaselineSecurityAnalyzer(MBSA),showninFigure14.20.MBSAisdesignedtoexaminethesecuritystateofaWindowshostandofferguidancetoaddressanyvulnerabilities,misconfigurations,ormissingpatches.AlthoughMBSAcanberunagainstremotesystemsacrossthenetwork,itistypicallyrunonthehostbeingexaminedandrequiresyoutohaveaccesstothatlocalhost(attheAdministratorlevel).Theprimarythingtorememberabouthostscannersisthattheyaretypicallylookingforvulnerabilitiesonthesystemtheyarerunningon.

•Figure14.20MicrosoftBaselineSecurityAnalyzer

ExamTip:Ifyouwanttoscanaspecifichostforvulnerabilities,weakpasswordpolicies,orunchangedpasswords,andyouhavedirectaccesstothehost,ahostvulnerabilityscannermightbejustthetooltouse.

Selectingtherighttypeofvulnerabilityscannerisn’tthatdifficult.Justfocusonwhattypesofvulnerabilitiesyouneedtoscanforandhowyouwillbeaccessingthehost/services/applicationsbeingscanned.It’salsoworthnotingthattodoathoroughjob,youwilllikelyneedbothnetwork-basedandhost-basedscanners—particularlyforcriticalassets.Host-andnetwork-basedscannersperformdifferenttestsandprovidevisibilityintodifferenttypesofvulnerabilities.Ifyouwanttoensurethebestcoverage,you’llneedtorunboth.Applicationvulnerabilityscannersaredesignedtolookfor

vulnerabilitiesinapplicationsorcertaintypesofapplications.Applicationscannersaresomeofthemostspecializedscanners—eventhoughtheycontainhundredsoreventhousandsofchecks,theyonlylookformisconfigurationsorvulnerabilitiesinaspecifictypeofapplication.Arguablythemostpopulartypeofapplicationscannersaredesignedtotestforweaknessesandvulnerabilitiesinweb-basedapplications.Webapplicationsaredesignedtobevisible,interactwithusers,andacceptandprocessuserinput—allthingsthatmakethemattractivetargetsforattackers.MoredetailsonapplicationvulnerabilityscannerscanbefoundinChapter18.

ExamTip:Ifyouwanttoexamineaspecificapplicationormultipleinstancesofthesametypeofapplication(suchasawebsite),anapplicationscanneristhetoolofchoice.

GroupPoliciesMicrosoftdefinesagrouppolicyas“aninfrastructureusedtodeliverandapplyoneormoredesiredconfigurationsorpolicysettingstoasetoftargetedusersandcomputerswithinanActiveDirectoryenvironment.ThisinfrastructureconsistsofaGroupPolicyengineandmultipleclient-sideextensions(CSEs)responsibleforwritingspecificpolicysettingsontargetclientcomputers.”IntroducedwiththeWindows2000operatingsystem,grouppoliciesareagreatwaytomanageandconfiguresystemscentrallyinanActiveDirectoryenvironment(WindowsNThadpolicies—buttechnicallynot“grouppolicies”).Grouppoliciescanalsobeusedtomanageusers,makingthesepoliciesvaluabletoolsinanylargeenvironment.WithintheWindowsenvironment,grouppoliciescanbeusedtorefine,

set,ormodifyasystem’sRegistrysettings,auditingandsecuritypolicies,userenvironments,logon/logoffscripts,andsoon.Policysettingsarestoredinagrouppolicyobject(GPO)andarereferencedinternallybytheOSusingagloballyuniqueidentifier(GUID).Asinglepolicycanbelinkedtoasingleuser,agroupofusers,agroupofmachines,oranentireorganizationalunit(OU),whichmakesupdatingcommonsettingsonlargegroupsofusersorsystemsmucheasier.UsersandsystemscanhavemorethanoneGPOassignedandactive,whichcancreateconflictsbetweenpoliciesthatmustthenberesolvedatanattributelevel.Grouppoliciescanalsooverwritelocalpolicysettings.Grouppoliciesshouldnotbeconfusedwithlocalpolicies.Localpoliciesarecreatedandappliedtoaspecificsystem(locally),arenotuserspecific(youcan’thavelocalpolicyXforuserAandlocalpolicyYforuserB),andareoverwrittenbyGPOs.Furtherconfusingsomeadministratorsandusers,policiescanbeappliedatthelocal,site,domain,andOUlevel.Policiesareappliedinhierarchicalorder—local,thensite,thendomain,andsoon.Thismeanssettingsinalocalpolicycanbeoverriddenorreversedbysettingsinthedomainpolicyifthereisaconflictbetweenthetwopolicies.Ifthereisnoconflict,thepolicysettingsareaggregated.

TryThis!WindowsLocalSecurityPoliciesOpenacommandpromptaseitheradministratororauserwithadministratorprivilegesonaWindowssystem.TypethecommandsecpolandpressENTER(thisshouldbringuptheLocalSecurityPolicyutility).ExpandAccountPoliciesontheleftsideoftheLocalSecurityPolicywindow(whichshouldhavea+nexttoit).ClickPasswordPolicy.LookintherightsideoftheLocalSecurityPolicywindow.Whatistheminimumpasswordlength?Whatisthemaximumpasswordageindays?Nowexploresomeofthepolicysettings—butbecareful!Changesmadetothelocalsecuritypolicycanaffectthefunctionalityorusabilityofyoursystem.

CreatingGPOsisusuallydonethrougheithertheGroupPolicyObjectEditor,showninFigure14.21,ortheGroupPolicyManagementConsole(GPMC).TheGPMCisamorepowerfulGUI-basedtoolthatcansummarizeGPOsettings;simplifysecurityfilteringsettings;backup,clone,restore,andeditGPOs;andperformothertasks.AftercreatingaGPO,administratorswillassociateitwiththedesiredtargets.Afterassociation,grouppoliciesoperateonapullmodel.Atasemi-randominterval,theGroupPolicyclientwillcollectandapplyanypoliciesassociatedtothesystemandthecurrentlylogged-onuser.

•Figure14.21GroupPolicyObjectEditor

Microsoftgrouppoliciescanprovidemanyusefuloptionsincluding:

NetworklocationawarenessSystemsarenow“aware”ofwhichnetworktheyareconnectedtoandcanapplydifferentGPOsasneeded.Forexample,asystemcanhaveaveryrestrictiveGPOwhenconnectedtoapublicnetworkandalessrestrictiveGPOwhenconnectedtoaninternal,trustednetwork.

AbilitytoprocesswithoutICMPOldergrouppolicyprocesseswouldoccasionallytimeoutorfailcompletelyifthetargetedsystemdidnotrespondtoICMPpackets.CurrentimplementationsinWindowsVistaandWindows7donotrelyonICMPduringtheGPOupdateprocess.

VPNcompatibilityAsasidebenefitofnetworklocationawareness,mobileuserswhoconnectthroughVPNscanreceiveaGPOupdateinthebackgroundafterconnectingtothecorporatenetworkviaVPN.

PowermanagementStartingwithWindowsVista,powermanagementsettingscanbeconfiguredusingGPOs.

DeviceaccessblockingUnderWindowsVistaandWindows7,policysettingshavebeenaddedthatallowadministratorstorestrictuseraccesstoUSBdrives,CD-RWdrives,DVD-RWdrives,andotherremovablemedia.

Location-basedprintingUserscanbeassignedtovariousprintersbasedontheirlocation.Asmobileusersmove,theirprinterlocationscanbeupdatedtotheclosestlocalprinter.

InWindows,policiesareappliedinhierarchicalorder.Localpoliciesgetappliedfirst,thensite

policies,thendomainpolicies,andfinallyOUpolicies.Ifasettingfromalaterpolicyconflictswithasettingfromanearlierpolicy,thesettingfromthelaterpolicy“wins”andisapplied.Keepthisinmindwhenbuildinggrouppolicies.

SecurityTemplatesAsecuritytemplateissimplyacollectionofsecuritysettingsthatcanbeappliedtoasystem.WithintheWindowsOSs,securitytemplatescancontainhundredsofsettingsthatcontrolormodifysystemsettingssuchaspasswordlength,auditingofuseractions,orrestrictionsonnetworkaccess.Securitytemplatescanbestandalonefilesthatareappliedmanuallytoeachsystem,buttheycanalsobepartofagrouppolicy,allowingcommonsecuritysettingstobeappliedtosystemsonamuchwiderscale.

ExamTip:Asecuritytemplateisacollectionofsecuritysettingsthatcanbeappliedtoasystem.Microsoftsecuritytemplatefileshavean.infextensionandareusuallystoredinC:\WINDOWS\security\templates.

Asanadministrator,whenyouarecreatingasecuritytemplate,allsettingsareinitially“notconfigured,”whichmeansthetemplatewillmakenochangestowhateversettingsarealreadyinplace.Byselectingthesettingsyouwanttomodify,youcanfine-tunethetemplatetocreateamore(orless)securesystem.Securitytemplatestypicallyconfiguresettingsinthefollowingareas:

AccountpoliciesSettingsforuseraccounts,suchaspasswordlength,complexityrequirements,accountlockouts,andsoon.

EventlogsettingsSettingsthatapplytothethreemainauditlogswithinWindows(Application,System,andSecurity),suchaslogfilesize,retentionofolderentries,andsoon.

FilepermissionsSettingsthatapplytofilesandfolders,suchaspermissioninheritance,lockingpermissions,andsoon.

RegistrypermissionsSettingsthatcontrolwhocanaccesstheRegistryandhowitcanbeaccessed.

RestrictedgroupsSettingsthatcontrolwhoshouldbeallowedtojoinorbepartofcertaingroups.Iftheuserisnotalreadyamemberofagroupasdefinedinthepolicy,youwillnotbeabletoaddthatusertothecorrespondinggrouponthelocalsystem.

SystemservicesSettingsforservicesthatrunonthesystem,suchasstartupmode,whetherornotuserscanstop/starttheservice,andsoon.

UserrightsSettingsthatcontrolwhatausercanandcannotdoonthesystem.

TechTip

AGoodAdministrator’sWorkIsNeverDoneOnceasystemornetworkdeviceisbaselined,anadministrator’sworkisfarfromover.Continuoussecuritymonitoringisthenever-endingprocessofcollectingdatapointsandmetrics,analyzingthem,andusingthecollecteddatatoadjustsecurityposturesasneeded.Whenthesecuritymonitoringuncoversanissueorvulnerability,theprocessofremediationbegins.Remediationistheprocessofaddressingasecurityflaw,vulnerability,orsimilarissue.Youmightsaythatagoodadministrator’sworkisneverdone.

Youcancreateand/ormodifysecuritytemplatesonyourlocalsystemthroughtheMicrosoftManagementConsole(ifyouhavetheSecurityTemplatessnap-ininstalled).Microsoftincludesaseriesofpredefinedsecuritytemplates(usuallystoredin\WINDOWS\security\templates)thatwillappearunderSecurityTemplatesinyourMMCwindow.Thesetemplatesrangefromminimaltomaximalsecurityandcanallbeappliedas-isormodifiedasneeded.Youcanalsocreateacompletelynewsecurity

templateandthencustomizeeachofthesettingstoyourspecifications.Figure14.22showstheMMCwiththeSecurityTemplatessnap-inenabled.

•Figure14.22MMCwithSecurityTemplatessnap-in

AlternativeEnvironmentsAlternativeenvironmentsarethosethatarenottraditionalcomputersystemsinacommonITenvironment.Thisisnottosaythattheseenvironmentsarerare;infact,therearemillionsofsystems,composedofhundredsofmillionsofdevices,allacrosssociety.Computersexistinmanysystemswheretheyperformcriticalfunctionsspecificallytiedtoaparticularsystem.Thesealternativesystemsarefrequentlystaticinnature;thatis,theirsoftwareisunchangingoverthecourseofitsfunction.Updatesandrevisionsarefewandfarbetween.Whilethismayseemtobecountertocurrentsecuritypractices,itisn’t:becausethesealternativesystemsareconstrainedtoalimited,definedsetoffunctionality,theriskfromvulnerabilitiesislimited.Examplesofthesealternativeenvironmentsincludeembeddedsystems,SCADAsystems,mobiledevices,mainframes,gameconsoles,andin-vehiclecomputers.

SCADASCADAisanacronymforsupervisorycontrolanddataacquisition,asystemdesignedtocontrolautomatedsystemsincyber-physicalenvironments.SCADAsystemscontrolmanufacturingplants,trafficlights,refineries,energynetworks,waterplants,buildingautomationandenvironmentalcontrols,andahostofothersystems.SCADAisalsoknownbynamessuchasdistributedcontrolsystems(DCS)andindustrialcontrolsystems(ICS),thevariationsdependingontheindustryandtheconfiguration.Wherecomputerscontrolaphysicalprocessdirectly,aSCADAsystemlikelyisinvolved.MostSCADAsystemsinvolvemultiplecomponentsnetworkedtogether

toachieveasetoffunctionalobjectives.Thesesystemsfrequentlyincludeahumanmachineinterface(HMI),whereanoperatorcanexertaformofdirectivecontrolovertheoperationofthesystemundercontrol.SCADAsystemshistoricallyhavebeenisolatedfromothersystems,buttheisolationisdecreasingasthesesystemsarebeingconnectedacross

traditionalnetworkstoimprovebusinessfunctionality.ManyolderSCADAsystemswereairgappedfromthecorporatenetwork;thatis,theysharednodirectnetworkconnections.Thismeantthatdataflowsinandoutwerehandledmanuallyandtooktimetoaccomplish.ModernsystemswishedtoremovethisconstraintandaddeddirectnetworkconnectionsbetweentheSCADAnetworksandtheenterpriseITnetwork.Theseconnectionsincreasetheattacksurfaceandtherisktothesystem,andthemoretheyresembleanITnetworkedsystem,thegreatertheneedforsecurityfunctions.SCADAsystemshavebeendrawnintothesecurityspotlightwiththe

StuxnetattackonIraniannuclearfacilities,initiallyreportedin2010.StuxnetismalwaredesignedtospecificallyattackaspecificSCADAsystemandcausefailuresresultinginplantequipmentdamage.Thisattackwascomplexandwelldesigned,cripplingnuclearfuelprocessinginIranforasignificantperiodoftime.ThisattackraisedawarenessoftherisksassociatedwithSCADAsystems,whetherconnectedtotheInternetornot(Stuxnetcrossedanairgaptohititstarget).

EmbeddedSystemsEmbeddedsystemisthenamegiventoacomputerthatisincludedasanintegralpartofalargersystem.Fromcomputerperipheralslikeprinters,tohouseholddeviceslikesmartTVsandthermostats,tothecaryoudrive,embeddedsystemsareeverywhere.Embeddedsystemscanbeassimpleasamicrocontrollerwithfullyintegratedinterfaces(asystemonachip)orascomplexasthetensofinterconnectedembeddedsystemsinamodernautomobile.Embeddedsystemsaredesignedwithasinglecontrolpurposeinmindandhavevirtuallynoadditionalfunctionality,butthisdoesnotmeanthattheyarefreeofriskorsecurityconcerns.Thevastmajorityofsecurityexploitsinvolvegettingadeviceorsystemtodosomethingitiscapableofdoing,andtechnicallydesignedtodo,eveniftheresultingfunctionalitywasneveranintendeduseofthedeviceorsystem.Thedesignersofembeddedsystemstypicallyarefocusedon

minimizingcosts,withsecurityseldomseriouslyconsideredaspartofeitherthedesignortheimplementation.Becausemostembeddedsystemsoperateasisolatedsystems,theriskshavenotbeensignificant.However,ascapabilitieshaveincreased,andthesedeviceshavebecomenetworkedtogether,theriskshaveincreasedsignificantly.Forexample,smartprintershavebeenhackedasawayintoenterprises,andasawaytohidefromdefenders.Andwhennext-generationautomobilesbegintotalktoeachother,passingtrafficandotherinformationbetweenthem,andbegintohavenavigationandotherinputsbeingbeamedintosystems,theriskswillincreaseandsecuritywillbecomeanissue.Thishasalreadybeenseenintheairlineindustry,wheretheseparationofin-flightWi-Fi,in-flightentertainment,andcockpitdigitalflightcontrolnetworkshasbecomeasecurityissue.

ExamTip:Understandstaticenvironments,systemsinwhichthehardware,OS,applications,andnetworksareconfiguredforaspecificfunctionorpurpose.Thesesystemsaredesignedtoremainunalteredthroughtheirlifecycle,rarelyrequiringupdates.

Building-automationsystems,climatecontrolsystems,HVACsystems,elevatorcontrolsystems,andalarmsystemsarejustsomeoftheexamplesofsystemsthataremanagedbyembeddedsystems.Althoughthesesystemsusedtobeindependentandstandalonesystems,theriseofhyperconnectivityhasshownvalueinintegratingthem.Havinga“smartbuilding”thatreducesbuildingresourcesinaccordancewiththenumberanddistributionofpeopleinsideincreasesefficiencyandreducescosts.InterconnectingthesesystemsandaddinginInternet-basedcentralcontrolmechanismsdoesincreasetheriskprofilefromoutsideattacks.

PhonesandMobileDevicesMobiledevicesmayseemtobeastaticenvironment,onewheretheOS

rarelychangesorisrarelyupdated,butasthesedevicesbecomemoreandmoreubiquitousincapability,thisisnotturningouttobethecase.MobiledeviceshaveregularsoftwareupdatestotheOS,andusersaddapplications,makingmostmobiledevicesacompletesecuritychallenge.MobiledevicesfrequentlycomewithBluetoothconnectivitymechanisms.ProtectionofthedevicesfromattacksagainsttheBluetoothconnection,suchasbluejackingandbluesnarfing,isanimportantmitigation.Toprotectagainstunauthorizedconnections,aBluetoothdeviceshouldalwayshavediscoverablemodeturnedoffunlesstheuserisdeliberatelypairingthedevice.Therearemanydifferentoperatingsystemsusedinmobiledevices,the

mostcommonofthesebymarketsharebeingAndroidandiOSfromApple.Androidisbyfarthelargestfootprint,followeddistantlybyApple’siOS.MicrosoftandBlackberryhavetheirownOSs,butneitherhasmajornumbersofusers.

AndroidAndroidisagenericnameassociatedwiththemobileOSthatisbasedonLinux.GoogleacquiredtheAndroidplatform,madeitopensource,andbeganshippingdevicesin2008.Androidhasundergoneseveralupdatessince,andmostsystemshavesomedegreeofcustomizationaddedforspecificmobilecarriers.Androidhashadnumeroussecurityissuesovertheyears,rangingfromvulnerabilitiesthatallowattackersaccesstotheOS,tomalware-infectedapplications.TheAndroidplatformcontinuestoevolveasthecodeiscleanedupandthenumberofvulnerabilitiesisreduced.Theissueofmalware-infectedapplicationsismuchtoughertoresolve,astheabilitytocreatecontentandaddittotheappstore(GooglePlay)isconsiderablylessregulatedthanintheAppleandMicrosoftecosystems.Theuseofmobiledevicemanagement(MDM)systemsisadvisedin

enterprisedeployments,especiallywhenBYODoccurs.ThisandothersecurityaspectsspecifictomobiledevicesarecoveredinChapter12.

iOSiOSisthenameofApple’sproprietaryoperatingsystemforitsmobileplatforms.BecauseAppledoesnotlicensethesoftwareforuseotherthanonitsowndevices,AppleretainsfullandcompletecontrolovertheOSandanyspecificcapabilities.Applehasalsoexertedsignificantcontroloveritsapplicationstore,whichhasdramaticallylimitedtheincidenceofmalwareintheAppleecosystem.

JailbreakingAcommonhackassociatedwithiOSdevicesisthejailbreak.Jailbreakingisaprocessbywhichtheuserescalatestheirprivilegelevel,bypassingtheoperatingsystem’scontrolsandlimitations.Theuserstillhasthecompletefunctionalityofthedevice,butalsohasadditionalcapabilities,bypassingtheOS-imposeduserrestrictions.Thereareseveralschoolsofthoughtconcerningtheutilityofjailbreaking,buttheimportantissuefromasecuritypointofviewisthatrunninganydevicewithenhancedprivilegescanresultinerrorsthatcausemoredamage,becausenormalsecuritycontrolsaretypicallybypassed.

MainframeMainframesrepresentthehistoryofcomputing,andalthoughmanypeoplethinktheyhavedisappeared,theyarestillverymuchaliveinenterprisecomputing.Mainframesarehigh-performancemachinesthatofferlargequantitiesofmemory,computingpower,andstorage.Mainframeshavebeenusedfordecadesforhigh-volumetransactionsystemsaswellashigh-performancecomputing.Thesecurityassociatedwithmainframesystemstendstobebuiltintotheoperatingsystemonspecific-purposemainframes.Mainframeenvironmentstendtohaveverystrongconfigurationcontrolmechanisms,andveryhighlevelsofstability.Mainframeshavebecomeacost-effectivesolutionformanyhigh-

volumeapplicationsbecausemanyinstancesofvirtualmachinescanrun

onthemainframehardware.Thisopensthedoorformanynewsecurityvulnerabilities—notonthemainframehardwareperse,butratherthroughvulnerabilitiesintheguestOSinthevirtualenvironment.

GameConsolesComputer-basedgameconsolescanbeconsideredatypeofembeddedsystemdesignedforentertainment.TheOSinagameconsoleisnottherefortheuser,butrathertheretosupportthespecificapplicationsorgame.TheretypicallyisnouserinterfacetotheOSonagameconsoleforausertointeractwith;rather,theOSisdesignedforasolepurpose.Withtheriseofmultifunctionentertainmentconsoles,theattacksurfaceofagamingconsolecanbefairlylarge,butitisstillconstrainedbytheclosednatureofthegamingecosystem.UpdatesforthefirmwareandOS-levelsoftwareareprovidedbytheconsolemanufacturer.Thisclosedenvironmentoffersareasonablelevelofriskassociatedwiththesecurityofthesystemsthatareconnected.Asgameconsolesbecomemoregeneralinpurposeandincludefeaturessuchaswebbrowsing,therisksincreasetolevelscommensuratewithanyothergeneralcomputingplatform.

In-vehicleComputingSystemsMotorvehicleshavehadembeddedcomputersinthemforyears,regulatingenginefunctions,environmentalcontrols,anddashboarddisplays.Recentlythefunctionalityhasexpandedtoonscreenentertainmentandnavigationsystems.Asthefunctionalityofthesystemsisexpanding,withtheadditionofnetworkingcapability,thesamesecurityrisksassociatedwithothernetworkedsystemsemerge.Asthein-vehiclecomputingsystemscontinuetointegratewithmobileelectronics,andwiththecomingvehicle-to-vehicleandvehicle-to-roadwaycommunications,securityriskswillincreaseandbecomeapressingissue.

AlternativeEnvironmentMethods

Manyofthealternativeenvironmentscanbeconsideredstaticsystems.Staticsystemsarethosethathaveadefinedscopeandpurposeanddonotregularlychangeinadynamicmanner,unlikemostPCenvironments.Staticsystemstendtohaveclosedecosystems,withcompletecontroloverallfunctionalitybyasinglevendor.Awiderangeofsecuritytechniquescanbeemployedinthemanagementofalternativesystems.Networksegmentation,securitylayers,wrappers,andfirewallsassistinthesecuringofthenetworkconnectionsbetweenthesesystems.Manualupdates,firmwarecontrol,andcontrolredundancyassistinthesecurityofthedeviceoperation.

NetworkSegmentationNetworksegmentationistheuseofthenetworkarchitecturetolimitcommunicationbetweendevices.Avarietyofnetworkingmechanismscanbeusedtolimitaccesstodevicesatthenetworklevel.LogicalnetworksegmentationcanbedoneviaVLANs,MACandIPaddressrestrictionsatroutersandswitches,firewallfiltering,andaccesscontrolmechanisms.Oneofthechallengeswithalternativesystemsisthatthedevicesthemselvesmaynothavetypicalsecuritycontrolssuchasaccesscontrolsorencryptionincludedintheirfunctionsets.Thismakesexternalcontrolssuchasnetworksegmentationevenmorecriticalaspartofasecuritysolution.

SecurityLayersTheuseofdifferentlayerstoperformdifferentfunctionshasbeenastapleofcomputersciencefordecades.Employinglayerstoenforcesecurityaspectshasalsobeenalong-standingconcept.Notalllayershavethesameinformationorprocessingcapability,andusingeachlayertoachieveapartofthesecuritysolutionleadstomorerobustsecuritysolutions.Whileanetworkcanmanagetrafficbasedonnetworkinginformation,thisisnotacompletesecuritysolution.Addingadditionallayers,suchasapplication

layerfirewallsandauthenticationservices,addsadditionalsecurityfunctionsthatfurtherreducetheriskassociatedwiththesystem.

ApplicationFirewallsApplicationfirewallsarepolicy-enforcementmechanismsthatoperateattheapplicationlayertoenforceasetofcommunicationrules.Whileanetworkfirewallexaminesnetworktrafficandenforcesrulesbasedonaddresses,anapplicationfirewalladdssignificantlygreaterabilitytocontrolanapplication’scommunicationsacrossthenetwork.

ManualUpdatesAllsystemseventuallyrequireupdatestofixissues,patchvulnerabilities,andevenchangefunctionality.Inalternativeenvironments,thesechangesareinmanycasesdoneinamanualmanner.Manualupdatescanbeusedtorestricttheaccesstothesystem,preventingunauthorizedchangestoasystem.Insomecases,becauseofscale,anautomatedsystemmaybeusedtopushouttheupdates,buttheprincipleoftightlycontrollingaccesstosystemupdatefunctionalityneedstobepreserved.

FirmwareVersionControlFirmwareispresentinvirtuallyeverysystem,butinmanyembeddedsystemsitplaysanevenmorecriticalrole,asitmayalsocontaintheOSandapplication.Maintainingstrictcontrolmeasuresoverthechangingoffirmwareisessentialtoensuringtheauthenticityofthesoftwareonasystem.Firmwareupdatesrequireextremequalitymeasurestoensurethaterrorsarenotintroducedaspartofanupdateprocess.Updatingfirmware,althoughonlyoccasionallynecessary,isaverysensitiveevent,forfailurecanleadtosystemmalfunction.Ifanunauthorizedpartyisabletochangethefirmwareofasystem,asdemonstratedinanattackagainstATMs,anadversarycangaincompletefunctionalcontroloverasystem.

WrappersTCPwrappersarestructuresusedtoencloseorcontainsomeothersystem.Wrappershavebeenusedinavarietyofways,includingtoobscureorhidefunctionality.ATrojanhorseisaformofwrapper.Wrappersalsocanbeusedtoencapsulateinformation,suchasintunnelingorVPNsolutions.Wrapperscanactasaformofchannelcontrol,includingintegrityandauthenticationinformationthatanormalsignalcannotcarry.ItiscommontoseewrappersusedinalternativeenvironmentstopreparecommunicationsforIPtransmission.

ControlRedundancyandDiversityDefenseindepthisoneoftheunderlyingsecurityfundamentals,andthisisespeciallyneededinalternativeenvironments.Manyalternativeenvironmentsarenotequippedwithon-boardencryption,accesscontrol,orauthenticationservices.Thismakesthecontrolsthatsurroundthedeviceevenmorecriticalinensuringsecureoperation.Designingoverlappingcontrolssuchthateachassiststheothersbutdoes

notduplicatethemaddssignificantstrengthtoasecuritysolution.Theobjectiveistoraisebarrierstoentry,preventingunauthorizedpartiesfromreachingvulnerabilities,andtomitigatethosevulnerabilitiestheycanreachsuchthattheattackercannotproceedfurther.Thereisnosuchthingasperfectsecurity,butaseriesofoverlappingcontrolscanmakeexploitationnearlyimpossible.Whenthesystemisinanalternativeenvironment,whetherstaticornot,

theprinciplesofsecuritystillapply.Infact,inmanycases,theyareevenmorecriticalbecausethedevicesthemselveshavelittletonosecurityfunctionalityandthusdependonthesupportingenvironmenttobesecure.Adiversityofcontrolsinredundant,overlappingstructuresisthebestmethodofprovidingthislevelofmitigation.

ExamTip:Understandstaticenvironmentsecuritymethods.Staticsystemsrequiresecurityandtechniquessuchasnetworksegmentation,securitylayers,firewalls,wrappers,andothersecuritycontrols.

Chapter14Review

ForMoreInformationMicrosoft’sSafety&SecurityCenterwww.microsoft.com/security/default.mspx

SANSReadingRoom:ApplicationandDatabaseSecuritywww.sans.org/reading_room/whitepapers/application/

LabManualExercisesThefollowinglabexercisesfromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providepracticalapplicationofmaterialcoveredinthischapter:

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingabouthardeningsystemsandbaselines.

Hardenoperatingsystemsandnetworkoperatingsystems

Securitybaselinesarecriticaltoprotectinginformationsystems,particularlythoseallowingconnectionsfromexternalusers.

Theprocessofestablishingasystem’ssecuritystateiscalledbaselining,andtheresultingproductisasecuritybaselinethatallowsthesystemtorunsafelyandsecurely.

Hardeningistheprocessbywhichoperatingsystems,networkresources,andapplicationsaresecuredagainstpossibleattacks.

Securingoperatingsystemsconsistsofremovingordisablingunnecessaryservices,restrictingpermissionsonfilesanddirectories,removingunnecessarysoftware(ornotinstallingitinthefirstplace),applyingthelatestpatches,removingunnecessaryuseraccounts,andensuringstrongpasswordguidelinesareinplace.

Securingnetworkresourcesconsistsofdisablingunnecessaryfunctions,restrictingaccesstoportsandservices,ensuringstrong

passwordsareused,andensuringthecodeonthenetworkdevicesispatchedanduptodate.

Securingapplicationsdependsheavilyontheapplicationinvolvedbuttypicallyconsistsofremovingsamplesanddefaultmaterials,preventingreconnaissanceattempts,andensuringthesoftwareispatchedanduptodate.

Implementhost-levelsecurity

Anti-malware/spyware/virusprotectionsareneededonhostmachinestopreventmaliciouscodeattacks.

Whitelistingcanprovidestrongprotectionsagainstmalwareonkeysystems.

Host-basedfirewallscanprovidespecificprotectionsfromsomeattacks.

Hardenapplications

Patchmanagementisadisciplinedapproachtotheacquisition,testing,andimplementationofOSandapplicationpatches.

Ahotfixisasinglepackagedesignedtoaddressaspecific,typicallysecurity-related,probleminanoperatingsystemorapplication.

Apatchisafixorcollectionoffixesthataddressesvulnerabilitiesorerrorsinoperatingsystemsorapplications.

Aservicepackisalargecollectionoffixes,corrections,andenhancementsforanoperatingsystem,application,orgroupofapplications.

Establishgrouppolicies

Grouppoliciesareamethodformanagingthesettingsand

configurationsofmanydifferentusersandsystemsinanActiveDirectoryenvironment.

Grouppoliciescanbeusedtorefine,set,ormodifyasystem’sRegistrysettings,auditingandsecuritypolicies,userenvironments,logon/logoffscripts,andsoon.

Securitytemplatesarecollectionsofsecuritysettingsthatcanbeappliedtoasystem.Securitytemplatescancontainhundredsofsettingsthatcontrolormodifysettingsonasystem,suchaspasswordlength,auditingofuseractions,orrestrictionsonnetworkaccess.

Securealternativeenvironments

Alternativeenvironmentsincludeprocesscontrol(SCADA)networks,embeddedsystems,mobiledevices,mainframes,gameconsoles,transportationsystems,andmore.

Alternativeenvironmentsrequiresecurity,butarenotuniversallyequivalenttoITsystems,sothespecificscanvarytremendouslyfromsystemtosystem.

KeyTermsantispam(430)antivirus(AV)(427)applicationhardening(444)applicationvulnerabilityscanner(449)baseline(409)baselining(409)blacklisting(434)firmwareupdate(442)globallyuniqueidentifier(GUID)(450)grouppolicy(450)

grouppolicyobject(GPO)(450)hardening(408)hardwaresecuritymodule(HSM)(438)heuristicscanning(427)hostvulnerabilityscanner(448)hotfix(423)networkoperatingsystem(NOS)(410)networksegmentation(457)networkvulnerabilityscanner(448)operatingsystem(OS)(409)patch(424)patchmanagement(445)PluggableAuthenticationModules(PAM)(419)pop-upblocker(433)processidentifier(PID)(418)referencemonitor(410)runlevels(418)securitykernel(410)securitytemplate(452)servicepack(424)shadowfile(418)TCPwrappers(419)TrustedOperatingSystem(434)TrustedPlatformModule(TPM)(438)whitelisting(434)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1._______________istheprocessofestablishingasystem’ssecuritystate.

2.Securingandpreparingasystemfortheproductionenvironmentiscalled_____________.

3.A(n)_______________isasmallsoftwareupdatedesignedtoaddressaspecific,oftenurgent,problem.

4.Thebasicsoftwareonacomputerthathandlesinputandoutputiscalledthe_______________.

5.____________istheuseofthenetworkarchitecturetolimitcommunicationbetweendevices.

6.A(n)_______________isabundledsetofsoftwareupdates,fixes,andadditionalfunctionscontainedinaself-installingpackage.

7.InmostUNIXoperatingsystems,eachrunningprogramisgivenauniquenumbercalleda(n)_______________.

8.Whenauserorprocesssuppliesmoredatathanwasexpected,a(n)_______________mayoccur.

9._______________areusedtodescribethestateofinitandwhatsystemservicesareoperatinginUNIXsystems.

10.A(n)_______________isacollectionofsecuritysettingsthatcanbeappliedtoasystem.

Multiple-ChoiceQuiz1.Asmallsoftwareupdatedesignedtoaddressanurgentorspecific

problemiscalleda:

A.Hotfix

B.Servicepack

C.Patch

D.Noneoftheabove

2.InaUNIXoperatingsystem,whichrunleveldescribessingle-usermode?

A.0

B.6

C.4

D.1

3.TCPwrappersdowhat?A.Helpsecurethesystembyrestrictingnetworkconnections

B.Helpprioritizenetworktrafficforoptimalthroughput

C.Encryptoutgoingnetworktraffic

D.Stripoutexcessinputtodefeatbufferoverflowattacks

4.FilepermissionsunderUNIXconsistofwhatthreetypes?A.Modify,read,andexecute

B.Read,write,andexecute

C.Fullcontrol,read-only,andrun

D.Write,read,andopen

5.ThemechanismthatallowsforcentralizedmanagementandconfigurationofcomputersandremoteusersinanActiveDirectoryenvironmentiscalled:

A.Baseline

B.Grouppolicies

C.SimpleNetworkManagementProtocol

D.Securitytemplates

6.WhatfeatureinWindowsServer2008controlsaccesstonetworkresourcesbasedonaclientcomputer’sidentityandcompliancewithcorporategovernancepolicy?

A.BitLocker

B.NetworkAccessProtection

C.inetd

D.Processidentifiers

7.TostopaparticularserviceorprogramrunningonaUNIXoperatingsystem,youmightusethe______command.

A.netstat

B.ps

C.kill

D.inetd

8.UpdatingthesoftwareloadedonnonvolatileRAMiscalled:A.Abufferoverflow

B.Afirmwareupdate

C.Ahotfix

D.Aservicepack

9.TheshadowfileonaUNIXsystemcontains:A.Thepasswordassociatedwithauseraccount

B.Grouppolicyinformation

C.Filepermissionsforsystemfiles

D.Networkservicesstartedwhenthesystemisbooted

10.OnaUNIXsystem,ifafilehasthepermissionsrwxr-xrw-,whatpermissionsdoestheownerofthefilehave?

A.Readonly

B.Readandwrite

C.Read,write,andexecute

D.None

EssayQuiz1.Explainthedifferencebetweena“hotfix”anda“servicepack”and

describewhybotharesoimportant.

2.Anewadministratorneedssomehelpcreatingasecuritybaseline.Createachecklist/templatethatcoversthebasicstepsincreatingasecuritybaselinetoassistthem,andexplainwhyeachstepisimportant.

LabProjects

•LabProject14.1UsealabsystemrunningLinuxwithatleastoneopenservicesuchasFTP,Telnet,orSMTP.Fromanotherlabsystem,connecttotheLinuxsystemandobserveyourresults.ConfigureTCPwrappersontheLinuxsystemtorejectallconnectionattemptsfromtheotherlabsystem.Nowtrytoreconnect,andobserveyourresults.DocumentyourstepsandexplainhowTCPwrapperswork.

•LabProject14.2UsingasystemrunningWindows,experimentwiththePasswordPolicysettingsundertheLocalSecurityPolicy(Settings|ControlPanel|AdministrativeTools|LocalSecurityPolicy).FindthesettingforPasswordsMustMeetComplexityRequirementsandmakesureitis

disabled.Setthepasswordontheaccountyouareusingtobob.NowenablethePasswordsMustMeetComplexityRequirementssettingsandattempttochangeyourpasswordtojane.Wereyouabletochangeitto“jane”?Explainwhyorwhynot.Setyourpasswordtosomethingthesystemwillallowandexplainhowyouselectedthatpasswordandhowitmeetsthecomplexityrequirements.

chapter15 TypesofAttacksandMaliciousSoftware

Ifyouknowtheenemyandknowyourselfyouneednotfeartheresultsofahundredbattles.

—SUNTZU

A

Inthischapter,youwilllearnhowto

Describethevarioustypesofcomputerandnetworkattacks,includingdenial-of-service,spoofing,hijacking,andpasswordguessing

Identifythedifferenttypesofmalicioussoftwarethatexist,includingviruses,worms,Trojanhorses,logicbombs,timebombs,androotkits

Explainhowsocialengineeringcanbeusedasameanstogainaccesstocomputersandnetworks

Describetheimportanceofauditingandwhatshouldbeaudited

ttackscanbemadeagainstvirtuallyanylayerorlevelofsoftware,fromnetworkprotocolstoapplications.Whenanattackerfindsavulnerabilityinasystem,heexploitstheweaknesstoattackthe

system.Theeffectofanattackdependsontheattacker’sintentandcanresultinawiderangeofeffects,fromminortosevere.Anattackononesystemmightnotbevisibleontheuser’ssystembecausetheattackisactuallyoccurringonadifferentsystem,andthedatatheattackerwillmanipulateonthesecondsystemisobtainedbyattackingthefirstsystem.

AvenuesofAttackAcomputersystemisattackedforoneoftwogeneralreasons:itisspecificallytargetedbyanattacker,oritisatargetofopportunity.Inthefirstcase,theattackerhaschosenthetargetnotbecauseofthehardwareorsoftwaretheorganizationisrunningbutforanotherreason,suchasapoliticalreason.Forexample,anindividualinonecountrymightattackagovernmentsysteminanothercountrytogathersecretinformation.Ortheattackermighttargetanorganizationaspartofa“hacktivist”attack—theattackercoulddefacethewebsiteofacompanythatsellsfurcoatsbecausetheattackerbelievesusinganimalsinthiswayisunethical,forexample.Perpetratingsomesortofelectronicfraudisanotherreasonaspecificsystemmightbetargetedforattack.Whateverthereason,the

attackerusuallybeginsanattackofthisnaturebeforeheknowswhichhardwareandsoftwaretheorganizationuses.Thesecondtypeofattack,anattackagainstatargetofopportunity,is

launchedagainstasitethathashardwareorsoftwarethatisvulnerabletoaspecificexploit.Theattacker,inthiscase,isnottargetingtheorganization;hehasinsteadlearnedofaspecificvulnerabilityandissimplylookingforanorganizationwiththisvulnerabilitythathecanexploit.Thisisnottosaythatanattackermightnotbetargetingagivensectorandlookingforatargetofopportunityinthatsector.Forexample,anattackerwhowantstoobtaincreditcardorotherpersonalinformationmaysearchforanyexploitablecompanythatstorescreditcardinformationonitssystemtoaccomplishtheattack.Targetedattacksaremoredifficultandtakemoretimeandeffortthan

attacksonatargetofopportunity.Thelattertypeofattacksimplyreliesonthefactthat,withanypieceofwidelydistributedsoftware,somebodyintheorganizationwillnothavepatchedthesystemastheyshouldhave.

TechTip

DefenseBeginswithEliminatingVulnerabilitiesDefenseagainstattacksbeginswitheliminationofvulnerabilities.Vulnerabilitiesareexploitedbyattackerstogainaccesstoasystem.Minimizationofvulnerabilitiesisoneofthefoundationalelementsofdefense.

CrossCheckAnatomyofanAttackHackersuseaprocesswhenattacking,andthisiscoveredindetailinChapter22.

MinimizingPossibleAvenuesofAttack

Byunderstandingthestepsanattackercantake,youcanlimittheexposureofyoursystemandminimizethepossibleavenuesanattackercanexploit.Yourfirststeptominimizepossibleattacksistoensurethatallpatchesfortheoperatingsystemandapplicationsareinstalled.Manysecurityproblems,suchasvirusesandworms,exploitknownvulnerabilitiesforwhichpatchesactuallyexist.Theseattacksaresuccessfulonlybecauseadministratorshavenottakentheappropriateactionstoprotecttheirsystems.Thenextstepistolimittheservicesthatarerunningonthesystem.As

mentionedinearlierchapters,limitingthenumberofservicestothosethatareabsolutelynecessaryprovidestwosafeguards:itlimitsthepossibleavenuesofattack(thepossibleservicesforwhichavulnerabilitymayexistandbeexploited),anditreducesthenumberofservicestheadministratorhastoworryaboutpatchinginthefirstplace.

CrossCheckBaselineAnalysisandPatchingofSystemsKeepingasystempatchedanduptodatefortheoperatingsystemandapplicationsisthebestdefenseagainstexposedvulnerabilities.Howuptodateisthesystemyouarecurrentlyusing?Howdoyouknow?Chapter14coversthebaseliningandpatchingofsystemstounderstandandremovevulnerabilities.Refertothatchapterformorein-depthinformationonhowtoperformtheseactivities.

Anotherstepistolimitpublicdisclosureofprivateinformationaboutyourorganizationanditscomputingresources.Sincetheattackerisafterthisinformation,don’tmakeiteasytoobtain.

MaliciousCodeMaliciouscode,ormalware,referstosoftwarethathasbeendesignedforsomenefariouspurpose.Suchsoftwarecanbedesignedtocausedamagetoasystem,suchasbydeletingallfiles,oritcanbedesignedtocreatea

backdoorinthesystemtograntaccesstounauthorizedindividuals.Mostmalwareinstancesattackvulnerabilitiesinprogramsoroperatingsystems.Thisiswhypatchingofvulnerabilitiesissoimportant,foritclosesthepointofentryformostmalware.Generallytheinstallationofmaliciouscodeisdoneinsuchawaythatitisnotobvioustotheauthorizedusers.Severaldifferenttypesofmalicioussoftwarecanbeused,suchasviruses,Trojanhorses,logicbombs,spyware,andworms,andtheydifferinthewaystheyareinstalledandtheirpurposes.Malwarecanbefairlycomplexinitsconstruction,withspecificfeatures

designedtoassistmalwareinavoidingdetection.Modernmalwarecanbemultipartinconstruction,whereseveralpiecesworktogethertoachieveadesiredeffect.Whenmalwarehasmultipledifferentobjectsthatitspecificallyattacks,itiscalledmultipartite.Manytypesofmalwarecanincludeachangingencryptionlayertoresistpattern-matchingdetection.Thesearecalledpolymorphic.Ifthemalwareactuallychangesthecodeattimeofinfection,thispropertyiscalledmetamorphic.

VirusesThebest-knowntypeofmaliciouscodeisthevirus.Muchhasbeenwrittenaboutvirusesasaresultofseveralhigh-profilesecurityeventsthatinvolvedthem.Avirusisapieceofmaliciouscodethatreplicatesbyattachingitselftoanotherpieceofexecutablecode.Whentheotherexecutablecodeisrun,thevirusalsoexecutesandhastheopportunitytoinfectotherfilesandperformanyothernefariousactionsitwasdesignedtodo.Thespecificwaythatavirusinfectsotherfiles,andthetypeoffilesitinfects,dependsonthetypeofvirus.Thefirstvirusescreatedwereoftwotypes—bootsectorvirusesandprogramviruses.

BootSectorVirusAbootsectorvirusinfectsthebootsectorportionofeitherafloppydiskoraharddrive(yearsago,notallcomputershadharddrives,andmanybootedfromafloppy).Whenacomputerisfirstturnedon,asmallportion

oftheoperatingsystemisinitiallyloadedfromhardware.Thissmalloperatingsystemthenattemptstoloadtherestoftheoperatingsystemfromaspecificlocation(sector)oneitherthefloppyortheharddrive.Abootsectorvirusinfectsthisportionofthedrive.AnexampleofthistypeofviruswastheStonedvirus,whichmovedthe

trueMasterBootRecord(MBR)fromthefirsttotheseventhsectorofthefirstcylinderandreplacedtheoriginalMBRwiththeviruscode.Whenthesystemwasturnedon,theviruswasfirstexecuted,whichhadaone-in-sevenchanceofdisplayingamessagestatingthecomputerwas“stoned”;otherwise,itwouldnotannounceitselfandwouldinsteadattempttoinfectotherbootsectors.Thisviruswasrathertameincomparisontoothervirusesofitstime,whichwereoftendesignedtodeletetheentireharddriveafteraperiodoftimeinwhichtheywouldattempttospread.

ProgramVirusAsecondtypeofvirusistheprogramvirus,whichattachesitselftoexecutablefiles—typicallyfilesendingin.exeor.comonWindows-basedsystems.Thevirusisattachedinsuchawaythatitisexecutedbeforetheprogramexecutes.Mostprogramvirusesalsohideanefariouspurpose,suchasdeletingtheharddrivedata,whichistriggeredbyaspecificevent,suchasadateorafteracertainnumberofotherfilesareinfected.Likeothertypesofviruses,programvirusesareoftennotdetecteduntilaftertheyexecutetheirmaliciouspayload.Onemethodthathasbeenusedtodetectthissortofvirusbeforeithasanopportunitytodamageasystemistocalculatechecksumsforcommonlyusedprogramsorutilities.Shouldthechecksumforanexecutableeverchange,itisquitelikelythatitisduetoavirusinfection.

TechTip

ModernVirusandWormThreatsEarlyvirusandwormattackswouldcausedamagetoPCs,buttheyweregenerallyvisibleto

users.Manymodernvirusesandwormsareusedtodeliverpayloadsthatleadtomachinesbecomingzombiesinabotnet,controlledbyanattacker.Thistypeofattackistypicallyinvisibletotheenduser,soasnottoalertthemtothemalware.

MacroVirusInthelate1990s,anothertypeofvirusappearedthatnowaccountsforthemajorityofviruses.Assystemsandoperatingsystemsbecamemorepowerful,thebootsectorvirus,whichonceaccountedformostreportedinfections,becamelesscommon.Systemsnolongercommonlybootedfromfloppies,whichwerethemainmethodforbootsectorvirusestospread.Instead,theproliferationofsoftwarethatincludedmacro-programminglanguagesresultedinanewbreedofvirus—themacrovirus.TheConceptviruswasthefirstknownexampleofthisnewbreed.It

appearedtobecreatedtodemonstratethepossibilityofattachingavirustoadocumentfile,somethingthathadbeenthoughttobeimpossiblebeforetheintroductionofsoftwarethatincludedpowerfulmacrolanguagecapabilities.Bythistime,however,MicrosoftWorddocumentscouldincludesegmentsofcodewritteninaderivativeofVisualBasic.Furtherdevelopmentofotherapplicationsthatallowedmacrocapability,andenhancedversionsoftheoriginalmacrolanguage,hadthesideeffectofallowingtheproliferationofvirusesthattookadvantageofthiscapability.Thistypeofvirusissocommontodaythatitisconsideredasecurity

bestpracticetoadviseusersnevertoopenadocumentattachedtoane-mailifitseemsatallsuspicious.ManyorganizationsnowroutinelyhavetheirmailserverseliminateanyattachmentscontainingVisualBasicmacros.

AvoidingVirusInfectionAlwaysbeingcautiousaboutexecutingprogramsoropeningdocumentssenttoyouisagoodsecuritypractice.“Ifyoudon’tknowwhereitcamefromorwhereithasbeen,don’topenorrunit”shouldbethebasicmantraforallcomputerusers.Anothersecuritybestpracticeforprotectingagainstvirusinfectionistoinstallandrunanantivirusprogram.Sincethese

programsaredesignedtoprotectagainstknownviruses,itisalsoimportanttomaintainanup-to-datelistingofvirussignaturesforyourantivirussoftware.Antivirussoftwarevendorsprovidethisinformation,andadministratorsshouldstayontopofthelatestupdatestothelistofknownviruses.Twoadvancesinviruswritinghavemadeitmoredifficultforantivirus

softwaretodetectviruses.Theseadvancesaretheintroductionofstealthvirustechniquesandpolymorphicviruses.Astealthyvirusemploystechniquestohelpevadebeingdetectedbyantivirussoftwarethatuseschecksumsorothertechniques.Polymorphicvirusesalsoattempttoevadedetection,buttheydosobychangingthevirusitself(thevirus“evolves”).Becausetheviruschanges,signaturesforthatvirusmaynolongerbevalid,andthevirusmayescapedetectionbyantivirussoftware.

ArmoredVirusWhenanewformofmalware/virusisdiscovered,antiviruscompaniesandsecurityresearcherswilldecompiletheprograminanattempttoreverse-engineeritsfunctionality.Muchcanbedeterminedfromreverseengineering,suchaswherethemalwarecamefrom,howitworks,howitcommunicates,howitspreads,andsoforth.Armoringmalwarecanmaketheprocessofdeterminingthisinformationmuchmoredifficult,ifnotimpossible.Somemalware,suchasZeus,comesencryptedinwaystopreventcriminalsfromstealingtheintellectualpropertyoftheverymalwarethattheyuse.

Modernviruseshaveawholehostofdefensesfromdetectionandanalysis.Polymorphicviruseschangetheirappearance,makingsignaturematchesdifficult.Armoredvirusesresistbeingreverse-engineeredtodeterminehowtheyoperate.Virusesaredesignedtobequiet,avoiddetection,avoidanalysis,andstillwork—theyaresignificantthreats.

VirusHoaxes

ViruseshavecausedsomuchdamagetosystemsthatmanyInternetusersbecomeextremelycautiousanytimetheyheararumorofanewvirus.ManyuserswillnotconnecttotheInternetwhentheyhearaboutavirusoutbreak,justtobesuretheirmachinesdon’tgetinfected.Thishasgivenrisetovirushoaxes,inwhichwordisspreadaboutanewvirusandtheextremedangeritposes.ItmaywarnuserstonotreadcertainfilesorconnecttotheInternet.Hoaxescanactuallybeevenmoredestructivethanjustwastingtimeand

bandwidth.Somehoaxeswarningofadangerousvirushaveincludedinstructionstodeletecertainfilesifthey’refoundontheuser’ssystem.Unfortunatelyforthosewhofollowtheadvice,thefilesmayactuallybepartoftheoperatingsystem,anddeletingthemcouldkeepthesystemfrombootingproperly.Thissuggestsanothergoodpieceofsecurityadvice:makesureoftheauthenticityandaccuracyofanyvirusreportbeforefollowingsomebody’sadvice.Antivirussoftwarevendorsareagoodsourceoffactualdataforthissortofthreataswell.

WormsItwasonceeasytodistinguishbetweenawormandavirus.Recently,withtheintroductionofnewbreedsofsophisticatedmaliciouscode,thedistinctionhasblurred.Wormsarepiecesofcodethatattempttopenetratenetworksandcomputersystems.Onceapenetrationoccurs,thewormwillcreateanewcopyofitselfonthepenetratedsystem.Reproductionofawormthusdoesnotrelyontheattachmentofthevirustoanotherpieceofcodeortoafile,whichisthedefinitionofavirus.Virusesweregenerallythoughtofasasystem-basedproblem,and

wormswerenetwork-based.Ifthemaliciouscodeissentthroughoutanetwork,itmaysubsequentlybecalledaworm.Theimportantdistinction,however,iswhetherthecodehastoattachitselftosomethingelse(avirus)orifitcan“survive”onitsown(aworm).SomeexamplesofwormsthathavehadhighprofilesincludetheSobig

wormof2003,theSQLSlammerwormof2003,the2001attacksofCode

RedandNimba,andthe2005Zotobworm,whichtookdownCNNLive.Nimbawasparticularlyimpressiveinthatitusedfivedifferentmethodstospread:viae-mail,viaopennetworkshares,frombrowsinginfectedwebsites,usingthedirectory-traversalvulnerabilityofMicrosoftIIS4.0/5.0,and,mostimpressively,throughtheuseofbackdoorsleftbyCodeRedIIandsadmindworms.TheConfickerworm,discoveredin2008,spawnedsucharesponsethatitearneditsownworkinggroup.Manymodernmalwareitems,suchasGameoverZeus,werespreadasviruses.

TechTip

SocialMediaWormsIn2005,acleverMySpaceuserlookingtoexpandhisfriendslistcreatedthefirstself-propagatingcross-sitescripting(XSS)worm.Inlessthanaday,theworm,nowknownastheSamyworm(orMySpaceworm),hadgoneviralanduserSamyhadamassedmorethan1millionfriendsonthepopularonlinecommunity.MySpacewastakendownbecausethewormreplicatedtooefficiently,eventuallysurpassingseveralthousandreplicationspersecond.In2008,Koobfaceappeared,anditspreadviaFacebook,Skype,andothersocialmedia

platforms.Koobfacegivesanattackeraccesstoyourpersonalinformation,suchasyourbankinginformation,passwords,orotherpersonaldetails.Itthenmakesthecomputerpartofabotnet.

ProtectionAgainstWormsHowyouprotectyoursystemagainstwormsdependsonthetypeofworm.Thoseattachedandpropagatedthroughe-mailcanbeavoidedbyfollowingthesameguidelinesaboutnotopeningfilesandnotrunningattachmentsunlessyouareabsolutelysureoftheiroriginandintegrity.Protectingagainstwormsinvolvessecuringsystemsandnetworksagainstpenetrationinthesamewayyouwouldprotectyoursystemsagainsthumanattackers:installpatches,eliminateunusedandunnecessaryservices,enforcegoodpasswordsecurity,andusefirewallsandintrusiondetectionsystems.Moresophisticatedattacks,suchastheSamyworm,arealmostimpossibletoavoid.

PolymorphicMalwareThedetectionofmalwarebyantimalwareprogramsisprimarilydonethroughtheuseofasignature.Filesarescannedforsectionsofcodeintheexecutablethatactasmarkers,uniquepatternsofcodethatenabledetection.Justasthehumanbodycreatesantigensthatmatchmarkerproteins,antimalwareprogramsdetectmalwarethroughuniquemarkerspresentinthecodeofthemalware.Malwarewritersareawareofthisfunctionalityandhaveadapted

methodstodefeatit.Oneoftheprimarymeansofavoidingdetectionbysensorsistheuseofpolymorphiccode,whichiscodethatchangesonaregularbasis.Thesechangesormutationsaredesignednottoaffectthefunctionalityofthecode,butrathertomaskanysignaturefromdetection.Polymorphicprogramscanchangetheircodingaftereachuse,makingeachreplicantdifferentfromadetectionpointofview.

TrojanHorsesATrojanhorse,orsimplyTrojan,isapieceofsoftwarethatappearstodoonething(andmay,infact,actuallydothatthing)buthidessomeotherfunctionality.Theanalogytothefamousstoryofantiquityisveryaccurate.Intheoriginalcase,theobjectappearedtobealargewoodenhorse,andinfactitwas.Atthesametime,ithidsomethingmuchmoresinisteranddangeroustotheoccupantsofthecityofTroy.Aslongasthehorsewasleftoutsidethecitywalls,itcouldcausenodamagetotheinhabitants.Ithadtobetakeninbytheinhabitants,anditwasinsidethatthehiddenpurposewasactivated.AcomputerTrojanworksinmuchthesameway.Unlikeavirus,whichreproducesbyattachingitselftootherfilesorprograms,aTrojanisastandaloneprogramthatmustbecopiedandinstalledbytheuser—itmustbe“broughtinside”thesystembyanauthorizeduser.Thechallengefortheattackerisenticingtheusertocopyandruntheprogram.Thisgenerallymeansthattheprogrammustbedisguisedassomethingthattheuserwouldwanttorun—aspecialutility

orgame,forexample.Onceithasbeencopiedandisinsidethesystem,theTrojanwillperformitshiddenpurpose,withtheuseroftenstillunawareofitstruenature.ThesinglebestmethodtopreventtheintroductionofaTrojantoyour

systemisnevertorunsoftwareifyouareunsureofitsorigin,security,andintegrity.Avirus-checkingprogrammayalsobeusefulindetectingandpreventingtheinstallationofknownTrojans.

TechTip

FamousTrojansTherehavebeenmany“famous”Trojansthathavecausedsignificanthavocinsystems.BackOrifice(BO),createdin1999,wasofferedinseveralversions.BOcanbeattachedtoanumberoftypesofprograms.KoobfaceisaTrojanthataffectsFacebookusers.ZeusisafinancialTrojan/malwarethathasawiderangeoffunctionality.

RootkitsArootkitisaformofmalwarethatisspecificallydesignedtomodifytheoperationoftheoperatingsysteminsomefashiontofacilitatenonstandardfunctionality.ThehistoryofrootkitsgoesbacktothebeginningoftheUNIXoperatingsystem,wheretheyweresetsofmodifiedadministrativetools.Originallydesignedtoallowaprogramtotakegreatercontroloveroperatingsystemfunctionwhenitfailsorbecomesunresponsive,thetechniquehasevolvedandisusedinavarietyofways.

Inonehigh-profilecase,SonyBMGCorporationusedrootkittechnologytoprovidecopyprotectiontechnologyonsomeofthecompany’sCDs.TwomajorissuesledtothisbeingacompletedebacleforSony:first,thesoftwaremodifiedsystemswithouttheuser’sapproval;andsecond,thesoftwareopenedasecurityholeonWindows-basedsystems,creatinganexploitablevulnerabilityattherootkitlevel.ThisledtheSonycasetobelabeledasmalware,whichisthemostcommonuseofrootkits.

Arootkitcandomanythings—infact,itcandovirtuallyanythingthattheoperatingsystemdoes.Rootkitsmodifytheoperatingsystemkernelandsupportingfunctions,changingthenatureofthesystem’soperation.Rootkitsaredesignedtoavoid,eitherbysubversionorevasion,thesecurityfunctionsoftheoperatingsystemtoavoiddetection.Rootkitsactasaformofmalwarethatcanchangethreadprioritiestoboostanapplication’sperformance,performkeylogging,actasasniffer,hideotherfilesfromotherapplications,orcreatebackdoorsintheauthenticationsystem.Theuseofrootkitfunctionalitytohideotherprocessesandfilesenablesanattackertouseaportionofacomputerwithouttheuserorotherapplicationsknowingwhatishappening.Thishidesexploitcodefromantivirusandantispywareprograms,actingasacloakofinvisibility.

ExamTip:Fivetypesofrootkitsexist:

FirmwareAttacksfirmwareonasystemVirtualAttacksatthevirtualmachinelevel

KernelAttacksthekerneloftheOSLibraryAttackslibrariesusedonasystem

ApplicationlevelAttacksspecificapplications

Rootkitscanloadbeforetheoperatingsystemloads,actingasavirtualizationlayer,asinSubVirtandBluePill.Rootkitscanexistinfirmware,andthesehavebeendemonstratedinbothvideocardsandPCIexpansioncards.Rootkitscanexistasloadablelibrarymodules,effectivelychangingportionsoftheoperatingsystemoutsidethekernel.Furtherinformationonspecificrootkitsinthewildcanbefoundatwww.antirootkit.com.Oncearootkitisdetected,itneedstoberemovedandcleanedup.

Becauseofrootkits’invasivenature,andthefactthatmanyaspectsof

rootkitsarenoteasilydetectable,mostsystemadministratorsdon’tevenattempttocleanuporremovearootkit.Itisfareasiertouseapreviouslycapturedcleansystemimageandreimagethemachinethantoattempttodeterminethedepthandbreadthofthedamageandfixindividualfiles.

LogicBombsLogicbombs,unlikevirusesandTrojans,areatypeofmalicioussoftwarethatisdeliberatelyinstalled,generallybyanauthorizeduser.Alogicbombisapieceofcodethatsitsdormantforaperiodoftimeuntilsomeeventinvokesitsmaliciouspayload.Anexampleofalogicbombmightbeaprogramthatissettoloadandrunautomatically,andthatperiodicallychecksanorganization’spayrollorpersonneldatabaseforaspecificemployee.Iftheemployeeisnotfound,themaliciouspayloadexecutes,deletingvitalcorporatefiles.

Iftheeventinvokingthelogicbombisaspecificdateortime,theprogramwilloftenbereferredtoasatimebomb.Inonefamousexampleofatimebomb,adisgruntledemployeeleftatimebombinplacejustpriortobeingfiredfromhisjob.Twoweekslater,thousandsofclientrecordsweredeleted.Policewereeventuallyabletotrackthemaliciouscodetothedisgruntledex-employee,whowasprosecutedforhisactions.Hehadhopedthatthetwoweeksthathadpassedsincehisdismissalwouldhavecausedinvestigatorstoassumehecouldnothavebeentheindividualwhohadcausedthedeletionoftherecords.

Logicbombsaredifficulttodetectbecausetheyareofteninstalledbyauthorizedusersand,inparticular,byadministratorswhoarealsooftenresponsibleforsecurity.Thisdemonstratestheneedforaseparationofdutiesandaperiodicreviewofallprogramsandservicesthatarerunningonasystem.Italsoillustratestheneedtomaintainanactivebackupprogramsothatifyourorganizationlosescriticalfilestothissortofmaliciouscode,itlosesonlytransactionsthatoccurredsincethemostrecentbackupandnopermanentlossofdataresults.

SpywareSpywareissoftwarethat“spies”onusers,recordingandreportingontheiractivities.Typicallyinstalledwithoutuserknowledge,spywarecandoawiderangeofactivities.Itcanrecordkeystrokes(commonlycalledkeylogging)whentheuserlogsintospecificwebsites.Itcanmonitorhowauserusesaspecificpieceofsoftware(forexample,monitorattemptstocheatatgames).

Keyloggingisoneoftheholygrailsforattackers,foriftheycangetakeyloggeronamachine,thecapturingofuser-typedcredentialsisaquickwinfortheattacker.

Manyusesofspywareseeminnocuousatfirst,buttheunauthorizedmonitoringofasystemcanbeabusedveryeasily.Inothercases,thespywareisspecificallydesignedtostealinformation.Manystateshavepassedlegislationbanningtheunapprovedinstallationofsoftware,butmanycasesofspywarecircumventthisissuethroughcomplexandconfusingend-userlicenseagreements.

AdwareThebusinessofsoftwaredistributionrequiresaformofrevenuestreamtosupportthecostofdevelopmentanddistribution.Oneformofrevenuestreamisadvertising.Softwarethatissupportedbyadvertisingiscalledadware.Adwarecomesinmanydifferentforms.Withlegitimateadware,theuserisawareoftheadvertisingandagreestothearrangementinreturnforfreeuseofthesoftware.Thistypeofadwareoftenoffersanalternative,ad-freeversionforafee.Adwarecanalsorefertoaformofmalware,whichischaracterizedbysoftwarethatpresentsunwantedads.Theseadsaresometimesanirritant,andatothertimesrepresentanactualsecuritythreat.Frequentlytheseadsareintheformofpop-upbrowserwindows,

andinsomecasestheycascadeuponanyuseraction.

BotnetsMalwarecanhaveawiderangeofconsequencesonamachine,fromrelativelybenigntoextremelyserious.Oneformofmalwarethatisseeminglybenigntoauserisabotnetzombie.Hackerscreatearmiesofmachinesbyinstallingmalwareagentsonthemachines,whichthenarecalledzombies.Thesecollectionsofmachinesarecalledbotnets.Thesezombiesmachinesareusedtoconductotherattacksandtospreadspamandothermalware.Botnetshavegrownintonetworksofoveramillionnodesandareresponsiblefortensofmillionsofspammessagesdaily.

TechTip

FamousBotnetsThefollowingaresomefamousbotnetsandtheircurrentstatus:

Sometimebefore2007,theFBIbeganananti-botnetoperationdubbedBotRoast.Theoperationdismantledseveralbotnetsandledtoseveralconvictionsofbotnetoperators.Othersuccessfulanti-botnetoperationsincludetheMcColotakedown,whichdecimatedRustock,andcoordinatedeffortsbyindustry,academia,andlawenforcementthathaveledtothedismantlingofBredoLabs,Mariposa,andsignificantinroadsagainstConfickerandZeus.

BackdoorsandTrapdoorsBackdoorswereoriginally(andsometimesstillare)nothingmorethanmethodsusedbysoftwaredeveloperstoensurethattheycouldgainaccesstoanapplicationevenifsomethingweretohappeninthefuturetopreventnormalaccessmethods.Anexamplewouldbeahard-codedpasswordthatcouldbeusedtogainaccesstotheprogramintheeventthatadministratorsforgottheirownsystempassword.Theobviousproblemwiththissortofbackdoor(alsosometimesreferredtoasatrapdoor)isthat,sinceitishard-coded,itcannotberemoved.Shouldanattackerlearnofthebackdoor,allsystemsrunningthatsoftwarewouldbevulnerabletoattack.Thetermbackdoorisalso,andmorecommonly,usedtoreferto

programsthatattackersinstallaftergainingunauthorizedaccesstoasystemtoensurethattheycancontinuetohaveunrestrictedaccesstothesystem,eveniftheirinitialaccessmethodisdiscoveredandblocked.Backdoorscanalsobeinstalledbyauthorizedindividualsinadvertently,shouldtheyrunsoftwarethatcontainsaTrojanhorse(introducedearlier).Avariationonthebackdooristherootkit,discussedintheprevioussection,whichisestablishednottogainrootaccessbutrathertoensurecontinuedrootaccess.

CommonbackdoorsincludeZeus,NetBus,andBackOrifice.Anyofthese,ifrunningonyoursystem,canallowanattackerremoteaccesstoyoursystem—accessthatallowsthemtoperformanyfunctiononyoursystem.

Ransomware

Ransomwareisaformofmalwarethatperformssomeactionandextractsransomfromauser.Themostcommonformofransomwareisonethatencryptsakeyfileorsetoffiles,renderingasystemunusable,ordatasetunavailable.Theattackerreleasestheinformationafterbeingpaid,typicallyinanontraceablemeanssuchasbitcoin.

Acurrentransomwarethreat,appearingin2013,isCryptoLocker.CryptoLockerisaTrojanhorsethatwillencryptcertainfilesusingRSApublickeyencryption.Whentheuserattemptstogetthefiles,theyareprovidedwithamessageinstructingthemhowtopurchasethedecryptionkey.BecauseCryptoLockeruses2048-bitRSAencryption,brute-forcedecryptionisoutoftherealmofrecoveryoptions.Thesystemishighlyautomatedandusershaveashorttimewindowtogettheprivatekey.Failuretogetthekeywillresultinthelossofthedata.

MalwareDefensesMalwareinallforms—virus,worm,spyware,botnet,andsoon—canbedefendedagainstinacoupleofsimplesteps:

UseanantivirusprogramMostmajor-vendorantivirussuitesaredesignedtocatchmostwidespreadformsofmalware.Insomemarkets,theantivirussoftwareisbeingreferredtoasanti-xsoftware,indicatingthatitcoversmorethanviruses.Butbecausethethreatenvironmentchangesliterallydaily,thesignaturefilesforthesoftwareneedregularupdates,whichmostantivirusprogramsoffertoperformautomatically.

KeepyoursoftwareuptodateManyformsofmalwareachievetheirobjectivesthroughexploitationofvulnerabilitiesinsoftware,bothintheoperatingsystemandapplications.Althoughoperatingsystemvulnerabilitieswerethemainsourceofproblems,todayapplication-levelvulnerabilitiesposethegreatestrisk.Unfortunately,whileoperatingsystemvendorsarebecomingmoreandmoreresponsivetopatching,mostapplicationvendorsarenot,andsome,likeAdobe,haveverylargefootprintsacrossmostmachines.

Oneofthechallengesinkeepingasystemuptodateiskeepingtrackofthesoftwarethatisonthesystem,andkeepingtrackofallvendorupdates.Therearesoftwareproducts,suchasSecunia’sPersonalSoftwareInspector(PSI)program,thatcanscanyourmachinetoenumerateallthesoftwareinstalledandverifythevendorstatusofeachproduct.Forstandalonemachines,suchastheoneinyourhome,thistypeofprogramisagreattime-savingitem.Inevensmallenterprises,thesetoolsareessentialtomanagethecomplexityofpatchesneededacrossthemachines.

TechTip

MalwareDefensesTherearetwoprimarydefensemechanismsagainstmalware:backupsandupdates.Malwareactsagainstvulnerabilities,whicharepatchedviakeepingsoftwareuptodate.Oneoftheprimarysourcesoflossisfrominabilitytorecover,somethingcoveredbybackups.

Application-LevelAttacksAttacksagainstasystemcanoccuratthenetworklevel,attheoperatingsystemlevel,attheapplicationlevel,orattheuserlevel(socialengineering).Earlyattackpatternswereagainstthenetwork,butmostoftoday’sattacksareaimedattheapplications.Thisisprimarilybecausethisiswheretheobjectiveofmostattacksresides;intheinfamouswordsofbankrobberWillieSutton,“becausethat’swherethemoneyis.”Infact,manyoftoday’sattacksonsystemsarecombinationsofusingvulnerabilitiesinnetworks,operatingsystems,andapplications,allmeanstoanendtoobtainthedesiredobjectiveofanattack,whichisusuallysomeformofdata.Application-levelattackstakeadvantageofseveralfactsassociatedwith

computerapplications.First,mostapplicationsarelargeprogramswrittenbygroupsofprogrammersand,bytheirnature,haveerrorsindesignandcodingthatcreatevulnerabilities.Foralistoftypicalvulnerabilities,seetheCommonVulnerabilityandExposures(CVE)listmaintainedbyMitre,

http://cve.mitre.org.Second,evenwhenvulnerabilitiesarediscoveredandpatchedbysoftwarevendors,endusersareslowtoapplypatches,asevidencedbytheSQLSlammerincidentinJanuary2003.Thevulnerabilityexploitedwasabufferoverflow,andthevendorsuppliedapatchsixmonthspriortotheoutbreak,yetthewormstillspreadquicklyduetothemultitudeofunpatchedsystems.

CrossCheckApplicationVulnerabilitiesApplicationsareacommontargetofattacks,asattackershaveshiftedtoeasiertargetsasthenetworkandOShavebecomemorehardened.WhatapplicationsarenotuptodateonthePCyouuseeveryday?Howwouldyouknow?Howwouldyouupdatethem?AmorecompleteexaminationofcommonapplicationvulnerabilitiesispresentedinChapter18.

AttackingComputerSystemsandNetworksFromahigh-levelstandpoint,attacksoncomputersystemsandnetworkscanbegroupedintotwobroadcategories:attacksonspecificsoftware(suchasanapplicationortheoperatingsystem)andattacksonaspecificprotocolorservice.Attacksonaspecificapplicationoroperatingsystemaregenerallypossiblebecauseofanoversightinthecode(andpossiblyinthetestingofthatcode)orbecauseofaflaw,orbug,inthecode(againindicatingalackofthoroughtesting).Attacksonspecificprotocolsorservicesareattemptseithertotakeadvantageofaspecificfeatureoftheprotocolorserviceortousetheprotocolorserviceinamannerforwhichitwasnotintended.Thissectiondiscussesvariousformsofattacksofwhichsecurityprofessionalsneedtobeaware.

Denial-of-ServiceAttacksAdenial-of-service(DoS)attackisanattackdesignedtopreventasystemorservicefromfunctioningnormally.ADoSattackcanexploita

knownvulnerabilityinaspecificapplicationoroperatingsystem,oritcanattackfeatures(orweaknesses)inspecificprotocolsorservices.InaDoSattack,theattackerattemptstodenyauthorizedusersaccesseithertospecificinformationortothecomputersystemornetworkitself.Thiscanbeaccomplishedbycrashingthesystem—takingitoffline—orbysendingsomanyrequeststhatthemachineisoverwhelmed.ThepurposeofaDoSattackcanbesimplytopreventaccesstothe

targetsystem,ortheattackcanbeusedinconjunctionwithotheractionstogainunauthorizedaccesstoacomputerornetwork.Forexample,aSYNfloodattackcanbeusedtopreventservicetoasystemtemporarilyinordertotakeadvantageofatrustedrelationshipthatexistsbetweenthatsystemandanother.SYNfloodingisanexampleofaDoSattackthattakesadvantageofthe

wayTCP/IPnetworksweredesignedtofunction,anditcanbeusedtoillustratethebasicprinciplesofanyDoSattack.SYNfloodingusestheTCPthree-wayhandshakethatestablishesaconnectionbetweentwosystems.Undernormalcircumstances,thefirstsystemsendsaSYNpackettothesystemwithwhichitwantstocommunicate.ThesecondsystemrespondswithaSYN/ACKifitisabletoaccepttherequest.WhentheinitialsystemreceivestheSYN/ACKfromthesecondsystem,itrespondswithanACKpacket,andcommunicationcanthenproceed.ThisprocessisshowninFigure15.1.

•Figure15.1TheTCPthree-wayhandshake

ASYN/ACKisactuallytheSYNpacketsenttothefirstsystemcombinedwithanACKpacketacknowledgingthefirstsystem’sSYNpacket.

InaSYNfloodingattack,theattackersendsfakecommunicationrequeststothetargetedsystem.Eachoftheserequestswillbeansweredbythetargetsystem,whichthenwaitsforthethirdpartofthehandshake.Sincetherequestsarefake(anonexistentIPaddressisusedintherequests,sothetargetsystemisrespondingtoasystemthatdoesn’texist),thetargetwillwaitforresponsesthatnevercome,asshowninFigure15.2.Thetargetsystemwilldroptheseconnectionsafteraspecifictime-outperiod,butiftheattackersendsrequestsfasterthanthetime-outperiodeliminatesthem,thesystemwillquicklybefilledwithrequests.Thenumberofconnectionsasystemcansupportisfinite,sowhenmorerequestscomeinthancanbeprocessed,thesystemwillsoonbereservingallitsconnectionsforfakerequests.Atthispoint,anyfurtherrequestsaresimplydropped(ignored),andlegitimateuserswhowanttoconnecttothetargetsystemwillnotbeabletodoso,becauseuseofthesystemhasbeendeniedtothem.

•Figure15.2ASYNflooding–basedDoSattack

AnothersimpleDoSattackistheinfamouspingofdeath(POD),anditillustratestheothertypeofattack—onetargetedataspecificapplicationoroperatingsystem,asopposedtoSYNflooding,whichtargetsaprotocol.InthePODattack,theattackersendsanInternetControlMessageProtocol(ICMP)pingpacketequalto,orexceeding,64KB.Certainoldersystemsarenotabletohandlethissizeofpacket,andthesystemwillhangorcrash.

DistributedDenial-of-ServiceDoSattacksareconductedusingasingleattackingsystem.ADoSattackemployingmultipleattackingsystemsisknownasadistributeddenial-of-service(DDoS)attack.ThegoalofaDDoSattackisalsotodenytheuseoforaccesstoaspecificserviceorsystem.DDoSattacksweremadefamousin2000withthehighlypublicizedattacksoneBay,CNN,Amazon,andYahoo!.

ExamTip:Abotnetisanetworkofmachinescontrolledbyamalicioususer.Eachofthesecontrolledmachinesiscommonlyreferredtoasazombie.

InaDDoSattack,serviceisdeniedbyoverwhelmingthetargetwithtrafficfrommanydifferentsystems.Anetworkofattackagents(sometimescalledzombies)iscreatedbytheattacker,anduponreceivingtheattackcommandfromtheattacker,theattackagentscommencesendingaspecifictypeoftrafficagainstthetarget.Iftheattacknetworkislargeenough,evenordinarywebtrafficcanquicklyoverwhelmthelargestofsites.CreatingaDDoSattacknetworkisnotasimpletask.Theattackagents

arenotwillingagents—theyaresystemsthathavebeencompromisedandonwhichtheDDoSattacksoftwarehasbeeninstalled.Tocompromise

theseagents,theattackerhastohavegainedunauthorizedaccesstothesystemortrickedauthorizeduserstorunaprogramthatinstalledtheattacksoftware.Thecreationoftheattacknetworkmayinfactbeamultistepprocessinwhichtheattackerfirstcompromisesafewsystemsandthenusesthosesystemsashandlersormasters,whichinturncompromiseothersystems.Oncethenetworkhasbeencreated,theagentswaitforanattackmessage,whichwillincludedataonthespecifictarget,beforelaunchingtheattack.OneimportantaspectofaDDoSattackisthatwithjustafewmessagestotheagents,theattackercanhaveafloodofmessagessentagainstthetargetedsystem.Figure15.3illustratesaDDoSnetworkwithagentsandhandlers.

•Figure15.3DDoSattack

TechTip

EdgeBlockingofICMPBlockingICMPattheedgedeviceofthenetworkwillpreventICMP-basedattacksfromexternalsiteswhilestillallowingfullICMPfunctionalityfortrafficinsidethenetwork.CommonpracticeistoblockICMPattheedgeofIPv4networks,althoughinIPv6,ICMPisamust-carryitemandcannotbeblocked.

AfinaloptionyoushouldconsiderthatwilladdressseveralformsofDoSandDDoSattacksistoblockICMPpacketsatyourborder,sincemanyattacksrelyonICMP.BlockingICMPpacketsattheborderdevicespreventsexternalICMPpacketsfromenteringyournetwork,andwhilethismayblocksomefunctionality,itwillleaveinternalICMPfunctionalityintact.ItisalsopossibletoblockspecificformsofICMP;blockingType8,forinstance,willblockICMP-basedpingsweeps.ItisworthnotingthatnotallpingsoccurviaICMP;sometools,suchashping2,useTCPandUDPtocarrypingmessages.

SmurfAttackInaspecificDoSattackknownasasmurfattack,theattackersendsaspoofedpackettothebroadcastaddressforanetwork,whichdistributesthepackettoallsystemsonthatnetwork.FurtherdetailsarelistedintheIPAddressSpoofingsection.

DefendingAgainstDOS-TypeAttacksHowcanyoustopormitigatetheeffectsofaDoSorDDoSattack?Oneimportantprecautionistoensurethatyouhaveappliedthelatestpatchesandupgradestoyoursystemsandtheapplicationsrunningonthem.Onceaspecificvulnerabilityisdiscovered,itdoesnottakelongbeforemultipleexploitsarewrittentotakeadvantageofit.Generallyyouwillhaveasmallwindowofopportunityinwhichtopatchyoursystembetweenthetimethevulnerabilityisdiscoveredandthetimeexploitsbecomewidelyavailable.

Avulnerabilitycanalsobediscoveredbyhackers,andexploitsprovidethefirstcluesthatasystemhasbeencompromised.Attackerscanalsoreverse-engineerpatchestolearnwhatvulnerabilitieshavebeenpatched,allowingthemtoattackunpatchedsystems.Anotherapproachinvolveschangingthetime-outoptionforTCP

connectionssothatattackssuchastheSYNfloodingattackaremoredifficulttoperform,becauseunusedconnectionsaredroppedmorequickly.ForDDoSattacks,muchhasbeenwrittenaboutdistributingyourown

workloadacrossseveralsystemssothatanyattackagainstyoursystemwouldhavetotargetseveralhoststobecompletelysuccessful.WhilethisiseffectiveagainstsomeDDoSattacks,iflargeenoughDDoSnetworksarecreated(withtensofthousandsofzombies,forexample),anynetwork,nomatterhowmuchtheloadisdistributed,canbesuccessfullyattacked.Suchanapproachalsoinvolvesadditionalcoststoyourorganizationtoestablishthisdistributedenvironment.Addressingtheprobleminthismannerisactuallyanattempttomitigatetheeffectoftheattack,ratherthanpreventingorstoppinganattack.TopreventaDDoSattack,youmusteitherbeabletointerceptorblock

theattackmessagesorkeeptheDDoSnetworkfrombeingestablishedinthefirstplace.Toolshavebeendevelopedthatwillscanyoursystems,searchingforsleepingzombieswaitingforanattacksignal.Manyofthecurrentantivirus/spywaresecuritysuitetoolswilldetectknownzombie-typeinfections.Theproblemwiththistypeofpreventionapproach,however,isthatitisnotsomethingyoucandotopreventanattackonyournetwork—itissomethingyoucandotokeepyournetworkfrombeingusedtoattackothernetworksorsystems.Youhavetorelyonthecommunityofnetworkadministratorstotesttheirownsystemstopreventattacksonyours.

War-DialingandWar-DrivingWar-dialingisthetermusedtodescribeanattacker’sattempttodiscoverunprotectedmodemconnectionstocomputersystemsandnetworks.The

term’soriginisthe1983movieWarGames,inwhichthestarhashismachinesystematicallycallasequenceofphonenumbersinanattempttofindacomputerconnectedtoamodem.Inthecaseofthemovie,theintentwastofindamachinewithgamestheattackercouldplay,thoughobviouslyanattackercouldhaveotherpurposesonceaccessisobtained.War-dialingwassurprisinglysuccessful,mostlybecauseofrogue

modems—unauthorizedmodemsattachedtocomputersonanetworkbyauthorizedusers.Generallythereasonforattachingthemodemisnotmalicious—anindividualmaysimplywanttobeabletogohomeandthenconnecttotheorganization’snetworktocontinueworking.ThishasbecomehistorywiththeriseofremotedesktoptechnologyandubiquitousInternetconnectivity.Anotheravenueofattackoncomputersystemsandnetworkshasseena

tremendousincreaseoverthelastfewyearsbecauseoftheincreaseintheuseofwirelessnetworks.War-drivingistheunauthorizedscanningforandconnectingtowirelessaccesspoints,frequentlydonewhiledrivingnearafacility.Wirelessnetworkshavesomeobviousadvantages—theyfreeemployeesfromthecableconnectiontoaportontheirwall,allowingthemtomovethroughoutthebuildingwiththeirlaptopsandstillbeconnected.

CrossCheckWirelessVulnerabilitiesWirelesssystemshavetheirownvulnerabilitiesuniquetothewirelessprotocols.Wirelesssystemsarebecomingverycommon.Ifyourmachineiswirelesscapable,howmanywirelessaccesspointscanyouseefromyourcurrentlocation?Securingwirelesssystemsfromunauthorizedaccessisanessentialelementofacomprehensivesecurityprogram.ThismaterialiscoveredindepthinChapter12.

SocialEngineeringSocialengineeringreliesonliesandmisrepresentation,whichanattackerusestotrickanauthorizeduserintoprovidinginformationoraccesstheattackerwouldnotnormallybeentitledto.Theattackermight,for

example,contactasystemadministratorandpretendtobeanauthorizeduser,askingtohaveapasswordreset.Anothercommonployistoposeasarepresentativefromavendorwhoneedstemporaryaccesstoperformsomeemergencymaintenance.Socialengineeringalsoappliestophysicalaccess.Simpletechniquesincludeimpersonatingpizzaorflowerdeliverypersonneltogainphysicalaccesstoafacility.Attackersknowthat,duetopoorsecuritypractices,iftheycangain

physicalaccesstoanoffice,thechancesaregoodthat,givenalittleunsupervisedtime,auserIDandpasswordpairmightbefoundonanotepadorstickynote.Unsupervisedaccessmightnotevenberequired,dependingonthequalityofthesecuritypracticesoftheorganization.Oneoftheauthorsofthisbookwasonceconsideringopeninganaccountatabanknearhishome.Ashesatdownatthedeskacrossfromthebankemployeetakinghisinformation,theauthornoticedoneoftheinfamouslittleyellownotesattachedtothecomputermonitortheemployeewasusing.Thenoteread“passwordforJuneisjunejune.”Itprobablyisn’ttoohardtoguesswhatJuly’spasswordmightbe.Unfortunately,thisisalltoooftenthestateofsecuritypracticesinmostorganizations.Withthatinmind,itiseasytoseehowsocialengineeringmightworkandmightprovidealltheinformationanattackerneedstogainunauthorizedaccesstoasystemornetwork.

NullSessionsMicrosoftWindowssystemspriortoXPandServer2003exhibitedavulnerabilityintheirServerMessageBlock(SMB)systemthatalloweduserstoestablishnullsessions.AnullsessionisaconnectiontoaWindowsinterprocesscommunicationsshare(IPC$).ThegoodnewsisthatWindowsXP,Server2003,andbeyondarenotsusceptibletothisvulnerabilitybydefault.

Sniffing

ThegroupofprotocolsthatmakesuptheTCP/IPsuitewasdesignedtoworkinafriendlyenvironmentinwhicheverybodywhoconnectedtothenetworkusedtheprotocolsastheyweredesigned.Theabuseofthisfriendlyassumptionisillustratedbynetwork-trafficsniffingprograms,sometimesreferredtoassniffers.SniffingiswhensomeoneexaminesallthenetworktrafficthatpassestheirNIC,whetheraddressedforthemornot.Anetworksnifferisasoftwareorhardwaredevicethatisusedto

observetrafficasitpassesthroughanetworkonsharedbroadcastmedia.Thedevicecanbeusedtoviewalltraffic,oritcantargetaspecificprotocol,service,orevenstringofcharacters(lookingforlogins,forexample).Normally,thenetworkdevicethatconnectsacomputertoanetworkisdesignedtoignorealltrafficthatisnotdestinedforthatcomputer.Networksniffersignorethisfriendlyagreementandobservealltrafficonthenetwork,whetherdestinedforthatcomputerorothers,asshowninFigure15.4.Somenetworksniffersaredesignednotjusttoobservealltrafficbuttomodifytrafficaswell.Networksniffingismoredifficultinswitchednetworkenvironmentsduetothewaycollisiondomainsareeliminatedinfull-duplexswitching,butcertaintechniquescanbeused(spanningports,ARPpoisoning,andattacksforcingaswitchtofailandactasahub)tocircumventthis.

•Figure15.4Networksnifferslistentoallnetworktraffic.

Networksnifferscanbeusedbynetworkadministratorstomonitornetworkperformance.Theycanbeusedtoperformtrafficanalysis,forexample,todeterminewhattypeoftrafficismostcommonlycarriedonthenetworkandtodeterminewhichsegmentsaremostactive.Theycan

alsobeusedfornetworkbandwidthanalysisandtotroubleshootcertainproblems(suchasduplicateMACaddresses).

ExamTip:Anetworkinterfacecard(NIC)thatislisteningtoallnetworktrafficandnotjustitsownissaidtobein“promiscuousmode.”

Networksnifferscanalsobeusedbyattackerstogatherinformationthatcanbeusedinpenetrationattempts.Informationsuchasanauthorizedusernameandpasswordcanbeviewedandrecordedforlateruse.Thecontentsofe-mailmessagescanalsobeviewedasthemessagestravelacrossthenetwork.Itshouldbeobviousthatadministratorsandsecurityprofessionalswillnotwantunauthorizednetworksniffersontheirnetworksbecauseofthesecurityandprivacyconcernstheyintroduce.Fortunately,fornetworksnifferstobemosteffective,theyneedtobeontheinternalnetwork,whichgenerallymeansthatthechancesforoutsiderstousethemagainstyouareextremelylimited.Thisisanotherreasonthatphysicalsecurityisanimportantpartofinformationsecurityintoday’senvironment.

CrossCheckPhysicalAccessandSecurityOneofthechallengesinamodernnetworkisgettingaconnectiontoapointinthenetworkwhereyoursniffingwillresultinthediscoveryofinterestinginformation.Gettingaccesstoanopenport,ortoanequipmentroomwhereroutersandswitchesaremaintained,isafailureofphysicalsecurity.Physicalsecurityisanimportantcomponentofacomprehensiveinformationsecurityprogram.Atthispointaskyour-self—wherecanIconnectintomycompanynetwork?CanIgetconnectionsnearhigh-valuetargetssuchasdatabaseservers?DetailsonphysicalsecuritymeasuresarecoveredinChapter8.

Spoofing

Spoofingisnothingmorethanmakingdatalooklikeithascomefromadifferentsource.ThisispossibleinTCP/IPbecauseofthefriendlyassumptionsbehindtheprotocols.Whentheprotocolsweredeveloped,itwasassumedthatindividualswhohadaccesstothenetworklayerwouldbeprivilegeduserswhocouldbetrusted.

TechTip

WhatIsSpoofing?Spoofingiswhenyouassemblepacketswithfalseheaderinformationtodeceivethereceiverastothetrueaddressofthesender.Thiscanbedonetomanipulatereturnpacketsinthecaseofpingsweeps,ortoprovideanonymityfore-mails.

Whenapacketissentfromonesystemtoanother,itincludesnotonlythedestinationIPaddressandportbutthesourceIPaddressaswell.Youaresupposedtofillinthesourcewithyourownaddress,butnothingstopsyoufromfillinginanothersystem’saddress.Thisisoneoftheseveralformsofspoofing.

SpoofingE-MailIne-mailspoofing,amessageissentwithaFromaddressthatdiffersfromthatofthesendingsystem.Thiscanbeeasilyaccomplishedinseveraldifferentwaysusingseveralprograms.Todemonstratehowsimpleitistospoofane-mailaddress,youcanTelnettoport25(theportassociatedwithe-mail)onamailserver.Fromthere,youcanfillinanyaddressfortheFromandTosectionsofthemessage,whetherornottheaddressesareyoursorevenactuallyexist.Youcanuseseveralmethodstodeterminewhetherane-mailmessage

wassentbythesourceitclaimstohavebeensentfrom,butmostusersdonotquestiontheire-mailandwillacceptasauthenticwhereitappearstohaveoriginated.Avariationone-mailspoofing,thoughnottechnicallyspoofing,isfortheattackertoacquireaURLsimilartotheURLtheywant

tospoofsothate-mailsentfromtheirsystemappearstohavecomefromtheofficialsite—untilyoureadtheaddresscarefully.Forexample,ifattackerswanttospoofXYZCorporation,whichownsXYZ.com,theattackersmightgainaccesstotheURLXYZ.Corp.com.Anindividualreceivingamessagefromthespoofedcorporationsitewouldnotnormallysuspectittobeaspoofbutwouldtakeittobeofficial.Thissamemethodcanbe,andhasbeen,usedtospoofwebsites.If,however,theattackersmadetheirspoofedsiteappearsimilartotheofficialone,theycouldeasilyconvincemanypotentialviewersthattheywereattheofficialsite.Today,many.comandotherdomainsofcommonsites,aswellascommontyposofURLs,arepurchasedanddirectedtothelegitimatesite.

CrossCheckE-mailSpoofingE-mailwascreatedinanerawithadifferentsecurityenvironment,onewhereattributionwasnotevenanafterthought.Thishasledtoissuesassociatedwithtrustregardinge-mails.Fulldetailsofsecuringe-mailsiscoveredinChapter16.

IPAddressSpoofingIPisdesignedtoworksothattheoriginatorsofanyIPpacketincludetheirownIPaddressintheFromportionofthepacket.Whilethisistheintent,nothingpreventsasystemfrominsertingadifferentaddressintheFromportionofthepacket.ThisisknownasIPaddressspoofing.AnIPaddresscanbespoofedforseveralreasons.InaspecificDoSattackknownasasmurfattack,theattackersendsaspoofedpackettothebroadcastaddressforanetwork,whichdistributesthepackettoallsystemsonthatnetwork.Inthesmurfattack,thepacketsentbytheattackertothebroadcastaddressisanechorequestwiththeFromaddressforgedsothatitappearsthatanothersystem(thetargetsystem)hasmadetheechorequest.Thenormalresponseofasystemtoanechorequestisanechoreply,anditisusedinthepingutilitytoletauserknowwhetheraremotesystemisreachableandisresponding.Inthesmurfattack,therequestissenttoallsystemson

thenetwork,soallwillrespondwithanechoreplytothetargetsystem,asshowninFigure15.5.Theattackerhassentonepacketandhasbeenabletogenerateasmanyas254responsesaimedatthetarget.Shouldtheattackersendseveralofthesespoofedrequests,orsendthemtoseveraldifferentnetworks,thetargetcanquicklybecomeoverwhelmedwiththevolumeofechorepliesitreceives.

•Figure15.5SmurfingusedinasmurfDOSattack

ExamTip:Asmurfattackallowsanattackertouseanetworkstructuretosendlargevolumesofpacketstoavictim.BysendingICMPrequeststoabroadcastIPaddress,withthevictimasthesourceaddress,themultitudesofreplieswillfloodthevictimsystem.

SpoofingandTrustedRelationshipsSpoofingcanalsotakeadvantageofatrustedrelationshipbetweentwosystems.Iftwosystemsareconfiguredtoaccepttheauthenticationaccomplishedbyeachother,anindividualloggedontoonesystemmightnotbeforcedtogothroughanauthenticationprocessagaintoaccesstheothersystem.Anattackercantakeadvantageofthisarrangementbysendingapackettoonesystemthatappearstohavecomefromatrustedsystem.Sincethetrustedrelationshipisinplace,thetargetedsystemmayperformtherequestedtaskwithoutauthentication.Sinceareplywilloftenbesentonceapacketisreceived,thesystem

thatisbeingimpersonatedcouldinterferewiththeattack,sinceitwouldreceiveanacknowledgmentforarequestitnevermade.TheattackerwillofteninitiallylaunchaDoSattack(suchasaSYNfloodingattack)totemporarilytakeoutthespoofedsystemfortheperiodoftimethattheattackerisexploitingthetrustedrelationship.Oncetheattackiscompleted,theDoSattackonthespoofedsystemwouldbeterminated,andthesystemadministrators,apartfromhavingatemporarilynonresponsivesystem,mightnevernoticethattheattackoccurred.Figure15.6illustratesaspoofingattackthatincludesaSYNfloodingattack.

•Figure15.6Spoofingtotakeadvantageofatrustedrelationship

Becauseofthistypeofattack,administratorsareencouragedtostrictlylimitanytrustedrelationshipsbetweenhosts.FirewallsshouldalsobeconfiguredtodiscardanypacketsfromoutsideofthefirewallthathaveFromaddressesindicatingtheyoriginatedfrominsidethenetwork(asituationthatshouldnotoccurnormallyandthatindicatesspoofingisbeingattempted).

SpoofingandSequenceNumbersHowcomplicatedthespoofingisdependsheavilyonseveralfactors,includingwhetherthetrafficisencryptedandwheretheattackerislocatedrelativetothetarget.Spoofingattacksfrominsideanetwork,forexample,aremucheasiertoperformthanattacksfromoutsideofthenetwork,becausetheinsideattackercanobservethetraffictoandfromthetargetandcandoabetterjobofformulatingthenecessarypackets.Formulatingthepacketsismorecomplicatedforexternalattackers

becauseasequencenumberisassociatedwithTCPpackets.Asequence

numberisa32-bitnumberestablishedbythehostthatisincrementedforeachpacketsent.Packetsarenotguaranteedtobereceivedinorder,andthesequencenumbercanbeusedtohelpreorderpacketsastheyarereceivedandtorefertopacketsthatmayhavebeenlostintransmission.IntheTCPthree-wayhandshake,twosetsofsequencenumbersare

created,asshowninFigure15.7.ThefirstsystemchoosesasequencenumbertosendwiththeoriginalSYNpacket.ThesystemreceivingthisSYNpacketacknowledgeswithaSYN/ACK.Itsendsanacknowledgmentnumberback,whichisbasedonthefirstsequencenumberplusone(thatis,itincrementsthesequencenumbersenttoitbyone).Itthenalsocreatesitsownsequencenumberandsendsthatalongwithit.TheoriginalsystemreceivestheSYN/ACKwiththenewsequencenumber.ItincrementsthesequencenumberbyoneandusesitastheacknowledgmentnumberintheACKpacketwithwhichitresponds.

•Figure15.7Three-wayhandshakewithsequencenumbers

Thedifferenceinthedifficultyofattemptingaspoofingattackfrominsideanetworkandfromoutsideinvolvesdeterminingthesequencenumber.Iftheattackerisinsideofthenetworkandcanobservethetrafficwithwhichthetargethostresponds,theattackercaneasilyseethesequencenumberthesystemcreatesandcanrespondwiththecorrectsequencenumber.Iftheattackerisexternaltothenetworkandthesequencenumberthetargetsystemgeneratesisnotobserved,itisnexttoimpossiblefortheattackertoprovidethefinalACKwiththecorrectsequencenumber.Sotheattackerhastoguesswhatthesequencenumber

mightbe.Sequencenumbersaresomewhatpredictable,basedontheoperating

systemsinquestion.Sequencenumbersforeachsessionarenotstartedfromthesamenumber,sothatdifferentpacketsfromdifferentconcurrentconnectionswillnothavethesamesequencenumbers.Instead,thesequencenumberforeachnewconnectionisincrementedbysomelargenumbertokeepthenumbersfrombeingthesame.Thesequencenumbermayalsobeincrementedbysomelargenumbereverysecond(orsomeothertimeperiod).Anexternalattackerhastodeterminewhatvaluesareusedfortheseincrements.Theattackercandothisbyattemptingconnectionsatvarioustimeintervalstoobservehowthesequencenumbersareincremented.Oncethepatternisdetermined,theattackercanattemptalegitimateconnectiontodeterminethecurrentvalue,andthenimmediatelyattemptthespoofedconnection.Thespoofedconnectionsequencenumbershouldbethelegitimateconnectionincrementedbythedeterminedvalueorvalues.Sequencenumbersarealsoimportantinsessionhijacking,whichis

discussedinthefollowingsection.Whenanattackerspoofsaddressesandimposeshispacketsinthemiddleofanexistingconnection,thisistheman-in-the-middleattack.

TCP/IPHijackingTCP/IPhijackingandsessionhijackingaretermsusedtorefertotheprocessoftakingcontrolofanalreadyexistingsessionbetweenaclientandaserver.Theadvantagetoanattackerofhijackingoverattemptingtopenetrateacomputersystemornetworkisthattheattackerdoesn’thavetocircumventanyauthenticationmechanisms,sincetheuserhasalreadyauthenticatedandestablishedthesession.Oncetheuserhascompletedtheauthenticationsequence,theattackercanthenusurpthesessionandcarryonasiftheattacker,andnottheuser,hadauthenticatedwiththesystem.Topreventtheuserfromnoticinganythingunusual,theattackercandecidetoattacktheuser’ssystemandperformaDoSattackonit,takingit

downsothattheuser,andthesystem,willnotnoticetheextratrafficthatistakingplace.HijackattacksgenerallyareusedagainstwebandTelnetsessions.

Sequencenumbersastheyapplytospoofingalsoapplytosessionhijacking,sincethehijackerwillneedtoprovidethecorrectsequencenumbertocontinuetheappropriatedsessions.

Man-in-the-MiddleAttacksAman-in-the-middleattack,asthenameimplies,generallyoccurswhenattackersareabletoplacethemselvesinthemiddleoftwootherhoststhatarecommunicating.Ideally,thisisdonebyensuringthatallcommunicationgoingtoorfromthetargethostisroutedthroughtheattacker’shost(whichcanbeaccomplishediftheattackercancompromisetherouterforthetargethost).Theattackercanthenobservealltrafficbeforerelayingitandcanactuallymodifyorblocktraffic.Tothetargethost,itappearsthatcommunicationisoccurringnormally,sinceallexpectedrepliesarereceived.Figure15.8illustratesthistypeofattack.

•Figure15.8Aman-in-the-middleattack

Therearenumerousmethodsofinstantiatingaman-in-the-middleattack;oneofthecommonmethodsisviasessionhijacking.Sessionhijackingcanoccurwheninformationsuchasacookieisstolen,allowingtheattackertoimpersonatethelegitimatesession.Thisattackcanbeasaresultofacross-sitescriptingattack,whichtricksauserintoexecutingcoderesultingincookietheft.Theamountofinformationthatcanbeobtainedinaman-in-the-middleattackwillobviouslybelimitedifthecommunicationisencrypted.Eveninthiscase,however,sensitiveinformationcanstillbeobtained,sinceknowingwhatcommunicationisbeingconducted,andbetweenwhichindividuals,may,infact,provideinformationthatisvaluableincertaincircumstances.

Man-in-the-MiddleAttacksonEncryptedTrafficTheterm“man-in-the-middleattack”issometimesusedtorefertoamorespecifictypeofattack—oneinwhichtheencryptedtrafficissueisaddressed.IfyouwantedtocommunicatesecurelywithyourfriendBob,youmightaskhimforhispublickeysoyoucouldencryptyourmessagestohim.You,inturn,wouldsupplyBobwithyourpublickey.Anattackercanconductaman-in-the-middleattackbyinterceptingyourrequestforBob’spublickeyandthesendingofyourpublickeytohim.Theattackerwouldreplaceyourpublickeywiththeirpublickey,andshewouldsendthisontoBob.Theattacker’spublickeywouldalsobesenttoyoubytheattackerinsteadofBob’spublickey.NowwheneitheryouorBobencryptsamessage,itwillbeencryptedusingtheattacker’spublickey,enablingtheattackertointerceptit,decryptit,andthensenditonbyre-encryptingitwiththeappropriatekeyforeitheryouorBob.Eachofyouthinksyouaretransmittingmessagessecurely,butinrealityyourcommunicationhasbeencompromised.Well-designedcryptographicproductsusetechniquessuchasmutualauthenticationtoavoidthisproblem.

CrossCheckEncryptionCryptographyandencryptionaretoolsthatcansolvemanyofoursecrecyproblems.Thechallengessolvedthroughencryptionandthenewproblemsassociatedwiththeuseofencryptionrequireanunderstandingofthetechnicaldetails.Publickeyencryption,discussedindetailinChapters5and6,usestwokeys:apublickey,whichanybodycanusetoencryptor“lock”yourmessage,andaprivatekey,whichonlyyouknowandwhichisusedto“unlock”ordecryptamessagelockedwithyourpublickey.Oneofthekeychallengesassociatedwiththeuseofpublickeysandcorrespondingprivatekeysisdeterminingwhohaswhatkeyvalues.Doyouhaveyourownkeypair?Ifso,doyouknowthepublickeyvaluethatyouneedtosharewithothers?

ReplayAttacksAreplayattackoccurswhentheattackercapturesaportionofacommunicationbetweentwopartiesandretransmitsitatalatertime.Forexample,anattackermightreplayaseriesofcommandsandcodesusedinafinancialtransactiontocausethetransactiontobeconductedmultipletimes.Generallyreplayattacksareassociatedwithattemptstocircumventauthenticationmechanisms,suchasthecapturingandreuseofacertificateorticket.

ExamTip:Thebestmethodfordefendingagainstreplayattacksisthroughtheuseofencryptionandshorttimeframesforlegaltransactions.Encryptioncanprotectthecontentsfrombeingunderstood,andashorttimeframeforatransactionpreventssubsequentuse.

Thebestwaytopreventreplayattacksiswithencryption,cryptographicauthentication,andtimestamps.Ifaportionofthecertificateorticketincludesadate/timestamporanexpirationdate/time,andthisportionisalsoencryptedaspartoftheticketorcertificate,replayingitatalatertimewillproveuseless,sinceitwillberejectedashavingexpired.

TransitiveAccessTransitiveaccessisameansofattackingasystembyviolatingthetrustrelationshipbetweenmachines.Asimpleexampleiswhenserversarewellprotectedandclientsarenot,andtheserverstrusttheclients.Inthiscase,attackingaclientcanprovidetransitiveaccesstotheservers.

ExamTip:Trustisanessentialpartofsecurity.IfBtrustsAandCtrustsB,thenCtrustsA.Atransitiveattacktakesadvantageofthistrustchainbyobtainingtrustfromoneelementinthechain(forexample,throughspoofing)andthenusingthattogaintransitiveaccesstoanothertrustedsystemviathechainoftrust.

SpamThoughnotgenerallyconsideredasocialengineeringissue,norasecurityissueforthatmatter,spamcan,however,beasecurityconcern.Spam,asjustabouteverybodyknows,isbulkunsolicitede-mail.Itcanbelegitimateinthesensethatithasbeensentbyacompanyadvertisingaproductorservice,butitcanalsobemaliciousandcouldincludeanattachmentthatcontainsmalicioussoftwaredesignedtoharmyoursystem,oralinktoamaliciouswebsitethatmayattempttoobtainpersonalinformationfromyou.

SpimThoughnotaswellknown,avariationonspamisspim,whichisbasicallyspamdeliveredviaaninstantmessagingapplicationsuchasYahoo!MessengerorAOLInstantMessenger(AIM).Thepurposeofhostilespimisthesameasthatofspam—thedeliveryofmaliciouscontentorlinks.

Phishing

Phishingistheuseoffraudulente-mailsorinstantmessagesthatappeartobegenuinebutaredesignedtotrickusers.Thegoalofaphishingattackistoobtainfromtheuserinformationthatcanbeusedinanattack,suchaslogincredentialsorothercriticalinformation.

TheAnti-PhishingWorkingGroup(APWG)is“anindustryassociationfocusedoneliminatingtheidentitytheftandfraudthatresultfromthegrowingproblemofphishingandemailspoofing.”APWGislocatedatwww.antiphishing.org.

SpearPhishingSpearphishingisthetermthathasbeencreatedtorefertoaphishingattackthattargetsaspecificgroupwithsomethingincommon.Bytargetingaspecificgroup,theratioofsuccessfulattacks(thatis,thenumberofresponsesreceived)tothetotalnumberofe-mailsormessagessentusuallyincreasesbecauseatargetedattackwillseemmoreplausiblethanamessagesenttousersrandomly.

VishingVishingisavariationofphishingthatusesvoicecommunicationtechnologytoobtaintheinformationtheattackerisseeking.Vishingtakesadvantageofthetrustthatsomepeopleplaceinthetelephonenetwork.Usersareunawarethatattackerscanspoof(simulate)callsfromlegitimateentitiesusingvoiceoverIP(VoIP)technology.Voicemessagingcanalsobecompromisedandusedintheseattempts.Generally,theattackersarehopingtoobtaincreditcardnumbersorotherinformationthatcanbeusedinidentitytheft.Theusermayreceiveane-mailaskinghimorhertocallanumberthatisansweredbyapotentiallycompromisedvoicemessagesystem.Usersmayalsoreceivearecordedmessagethatappearstocomefromalegitimateentity.Inbothcases,theuserwillbeencouragedtorespondquicklyandprovidethesensitiveinformationsothataccessto

theiraccountisnotblocked.Ifausereverreceivesamessagethatclaimstobefromareputableentityandasksforsensitiveinformation,theusershouldnotprovideitbutinsteadshouldusetheInternetorexaminealegitimateaccountstatementtofindaphonenumberthatcanbeusedtocontacttheentity.Theusercanthenverifythatthemessagereceivedwaslegitimateorreportthevishingattempt.

PharmingPharmingconsistsofmisdirectinguserstofakewebsitesthathavebeenmadetolookofficial.Usingphishing,individualsaretargetedonebyonebye-mails.Tobecomeavictim,therecipientmusttakeanaction(forexample,respondbyprovidingpersonalinformation).Inpharming,theuserwillbedirectedtothefakewebsiteasaresultofactivitysuchasDNSpoisoning(anattackthatchangesURLsinaserver’sdomainnametable)ormodificationoflocalhostfiles,whichareusedtoconvertURLstotheappropriateIPaddresses.Onceatthefakewebsite,theusermaysupplypersonalinformation,believingthattheyareconnectedtothelegitimatesite.Figure15.9illustrateshowpharmingoperates.ThefirststepisanattackerpoisonstheDNSsystem,sowhentheuserqueriesit(step2)theygetafalseaddress(step3).Thisresultsintheuserbeingdirectedtothefakewebsite(step4).

•Figure15.9Howpharmingworks

ScanningAttacksScannerscanbeusedtosendspecificallycraftedpacketsinanattempttodetermineTCP/UDPportstatus.AnXMASscan,namedbecausethe

alternatingbitsintheTCPheaderlooklikeChristmaslights,usestheURG,PSH,andFINflagstodetermineTCPportavailability.Iftheportisclosed,anRSTisreturned.Iftheportisopen,thereistypicallynoreturn.AnXMASscancanhelpdetermineOStypeandversion,baseduponTCP/IPstackresponses,andcanalsohelpdeterminefirewallrules.Theseattackscanalsobeusedtoconsumesystemresources,resultinginDoS.

TechTip

XMASAttackTheXMASattackorChristmasattackcomesfromaspecificsetofprotocoloptions.AChristmastreepacketisapacketthathasallofitsoptionsturnedon.ThenamecomesfromtheobservationthatthesepacketsarelituplikeaChristmastree.Whensentasascan,aChristmastreepackethastheFIN,URG,andPSHoptionsset.ManyOSsimplementtheircompliancewiththeRFCgoverningIPpackets,RFC791,inslightlydifferentmanners.TheirresponsetothepacketcantellthescannerwhattypeofOSispresent.AnotheroptionisinthecaseofaDoSattack,whereChristmaspacketscantakeupsignificantlygreaterprocessingonarouter,consumingresources.

SimplestatelessfirewallscheckfortheSYNflagsettopreventSYNfloods,andChristmaspacketsaredesignednottohaveSYNset,sotheypassrightbythesedevices.Newersecuritydevicessuchasadvancedfirewallscandetectthesepackets,alertingpeopletothescanningactivities.

AttacksonEncryptionEncryptionistheprocessoftransformingplaintextintoanunreadableformatknownasciphertextusingaspecifictechniqueoralgorithm.Mostencryptiontechniquesusesomeformofkeyintheencryptionprocess.Thekeyisusedinamathematicalprocesstoscrambletheoriginalmessagetoarriveattheunreadableciphertext.Anotherkey(sometimesthesameoneandsometimesadifferentone)isusedtodecryptorunscrambletheciphertexttore-createtheoriginalplaintext.Thelengthofthekeyoften

directlyrelatestothestrengthoftheencryption.Cryptanalysisistheprocessofattemptingtobreakacryptographic

system—itisanattackonthespecificmethodusedtoencrypttheplaintext.Cryptographicsystemscanbecompromisedinvariousways.

WeakKeysCertainencryptionalgorithmsmayhavespecifickeysthatyieldpoor,oreasilydecrypted,ciphertext.ImagineanencryptionalgorithmthatconsistssolelyofasingleXORfunction(anexclusiveORfunctionwheretwobitsarecomparedanda1isreturnedifeitheroftheoriginalbits,butnotboth,isa1),wherethekeyisrepeatedlyusedtoXORwiththeplaintext.Akeywhereallbitsare0’s,forexample,wouldresultinciphertextthatisthesameastheoriginalplaintext.Thiswouldobviouslybeaweakkeyforthisencryptionalgorithm.Infact,anykeywithlongstringsof0’swouldyieldportionsoftheciphertextthatwerethesameastheplaintext.Inthissimpleexample,manykeyscouldbeconsideredweak.Encryptionalgorithmsusedincomputersystemsandnetworksaremuch

morecomplicatedthanasimple,singleXORfunction,butsomealgorithmshavestillbeenfoundtohaveweakkeysthatmakecryptanalysiseasier.

CrossCheckCryptographyandEncryptionUnderstandingthebasicsofcryptographyisimportanttounderstandingvariousdefensesfrommalware.Ifyouarenotfamiliarwithencryption,decryption,hashes,andsignatures,itwouldbewisetoreviewthemnow.ThevariouselementsofcryptographyandencryptionarediscussedindetailinChapter5.

ExhaustiveSearchofKeySpaceEvenifthespecificalgorithmusedtoencryptamessageiscomplicatedandhasnotbeenshowntohaveweakkeys,thekeylengthwillstillplaya

significantroleinhoweasyitistoattackthemethodofencryption.Generallyspeaking,thelongerakey,theharderitwillbetoattack.Thus,a40-bitencryptionschemewillbeeasiertoattackusingabrute-forcetechnique(whichtestsallpossiblekeys,onebyone)thana256-bitbasedscheme.Thisiseasilydemonstratedbyimaginingaschemethatemploysa2-bitkey.Eveniftheresultingciphertextwerecompletelyunreadable,performingabrute-forceattackuntilonekeyisfoundthatcandecrypttheciphertextwouldnottakelong,sinceonlyfourkeysarepossible.Everybitthatisaddedtothelengthofakeydoublesthenumberofkeysthathavetobetestedinabrute-forceattackontheencryption.Itiseasytounderstandwhyaschemeutilizinga40-bitkeywouldbemucheasiertoattackthanaschemethatutilizesa256-bitkey.Thebottomlineissimple:anexhaustivesearchofthekeyspacewill

decryptthemessage.Thestrengthoftheencryptionmethodisrelatedtothesheersizeofthekeyspace,whichwithmodernalgorithmsislargeenoughtoprovidesignificanttimeconstraintswhenusingthismethodtobreakanencryptedmessage.Algorithmiccomplexityisalsoanissuewithrespecttobruteforce,andyoucannotimmediatelycomparedifferentkeylengthsfromdifferentalgorithmsandassumerelativestrength.

IndirectAttacksOneofthemostcommonwaysofattackinganencryptionsystemistofindweaknessesinmechanismssurroundingthecryptography.Examplesincludepoorrandom-numbergenerators,unprotectedkeyexchanges,keysstoredonharddriveswithoutsufficientprotection,andothergeneralprogrammaticerrors,suchasbufferoverflows.Inattacksthattargetthesetypesofweaknesses,itisnotthecryptographicalgorithmitselfthatisbeingattacked,butrathertheimplementationofthatalgorithmintherealworld.

AddressSystemAttacksManyaspectsofacomputersystemarecontrolledbytheuseofaddresses.

IPaddressescanbemanipulatedasshownearlier,andtheotheraddressschemescanbemanipulatedaswell.Inthesummerof2008,muchwasmadeofaseriousDomainNameSystem(DNS)vulnerabilitythatrequiredthesimultaneouspatchingofsystemsbyover80vendors.Thiscoordinatedeffortwastocloseatechnicalloopholeinthedomainnameresolutioninfrastructurethatwouldallowthehijackingandman-in-the-middleattackontheDNSsystemworldwide.

ExamTip:Theprocessofusinganewdomainnameforthefive-day“test”periodandthenrelinquishingthename,onlytorepeattheprocessagain—inessence,obtainingadomainnameforfree—iscalledDNSkiting.

TheDNSsystemhasbeenthetargetofotherattacks.Oneattack,DNSkiting,isaneconomicattackagainstthetermsofusinganewDNSentry.NewDNSpurchasesareallowedafive-day“testperiod”duringwhichthenamecanberelinquishedfornofee.Creativeuserslearnedtoregisteraname,useitforlessthanfivedays,relinquishthename,andthengetthenameandbeginallover,repeatingthiscyclemanytimestouseanamewithoutpayingforit.Typicalregistrationversuspermanententryratiosof15:1occur,andinFebruary2007GoDaddyreportedthatoutof55.1millionrequestsonly3.6millionwerenotcanceled.Anothertwistonthisschemeistheconceptofdomainnamefront

running,wherearegistrarplacesanameonafive-dayholdaftersomeonesearchesforit,andthenoffersitforsaleatahigherprice.InJanuary2008,NetworkSolutionswasaccusedofviolatingthetrustasaregistrarbyforcingpeopletopurchasenamesfromthemaftertheyengagedindomainnametesting.

CachePoisoningManynetworkactivitiesrelyuponvariousaddressingschemestofunction

properly.Whenyoupointyourwebbrowseratyourbank,bytypingthebank’sURL,yourbrowserconsultsthesystem’sDNSsystemtoturnthewordsintoanumericaladdress.Whenapacketisbeingswitchedtoyourmachinebythenetwork,aseriesofaddresscachesisinvolved.WhetherthecacheisfortheDNSsystemortheARPsystem,itexistsforthesamereason:efficiency.Thesecachespreventrepeatedredundantlookups,savingtimeforthesystem.Buttheycanalsobepoisoned,sendingincorrectinformationtotheenduser’sapplication,redirectingtraffic,andchangingsystembehaviors.

ExamTip:Understandinghowhijackingattacksareperformedthroughpoisoningtheaddressingmechanismsisimportantfortheexam.

DNSPoisoningTheDNSsystemisusedtoconvertanameintoanIPaddress.ThereisnotasingleDNSsystem,butratherahierarchyofDNSservers,fromrootserversonthebackboneoftheInternet,tocopiesatyourISP,yourhomerouter,andyourlocalmachine,eachintheformofaDNScache.ToexamineaDNSqueryforaspecificaddress,youcanusethenslookupcommand.Figure15.10showsaseriesofDNSqueriesexecutedonaWindowsmachine.Inthefirstrequest,theDNSserverwaswithanISP,whileonthesecondrequest,theDNSserverwasfromaVPNconnection.Betweenthetworequests,thenetworkconnectionswerechanged,resultingindifferentDNSlookups.ThisisaformofDNSpoisoningattack.

•Figure15.10nslookupofaDNSquery

Attimes,nslookupwillreturnanonauthoritativeanswer,asshowninFigure15.11.Thistypicallymeanstheresultisfromacacheasopposedtoaserverthathasanauthoritative(thatis,knowntobecurrent)answer.

•Figure15.11CacheresponsetoaDNSquery

ThereareothercommandsyoucanusetoexamineandmanipulatetheDNScacheonasystem.InWindows,theipconfig/displaydnscommandwillshowthecurrentDNScacheonamachine.Figure15.12showsasmallDNScache.Thiscachewasrecentlyemptiedusingtheipconfig/flushdnscommandtomakeitfitonthescreen.

•Figure15.12CacheresponsetoaDNStablequery

LookingatDNSasacompletesystemshowsthattherearehierarchicallevelsfromthetop(rootserver)downtothecacheinanindividualmachine.DNSpoisoningcanoccuratanyoftheselevels,withtheeffectofthepoisoninggrowingwiderthehigherupitoccurs.In2010,aDNSpoisoningeventresultedinthe“GreatFirewallofChina”censoringinboundInternettrafficintoChinafromtheUnitedStatesuntilcacheswereresolved.Today,afterfurtherexamination,theattackwasshowntobemuchmorecomplex.TheeffortoftheChinesegovernmentactivelyseekstostrictlycontrolallaspectsofInternettrafficinChina.

DNSpoisoningisavariantofalargerattackclassreferredtoasDNSspoofing,inwhichanattackerchangesaDNSrecordthroughanyofamultitudeofmeans.TherearemanywaystoperformDNSspoofing,afewofwhichincludecompromisingaDNSserver,theuseoftheKaminskyattack,andtheuseofafalsenetworknodeadvertisingafalseDNSaddress.AnattackercanevenuseDNScachepoisoningtoresultinDNSspoofing.BypoisoninganupstreamDNScache,allofthedownstreamuserswillgetspoofedDNSrecords.BecauseoftheimportanceofintegrityonDNSrequestsandresponses,

aprojecthasbeguntosecuretheDNSinfrastructureusingdigitalsigningofDNSrecords.Thisproject,initiatedbytheU.S.governmentandcalledDomainNameSystemSecurityExtensions(DNSSEC),worksbydigitallysigningrecords.ThisisdonebyaddingrecordstotheDNSsystem,akeyandasignatureattestingtothevalidityofthekey.Withthisinformation,requestorscanbeassuredthattheinformationtheyreceiveiscorrect.Itwilltakeasubstantialamountoftime(years)forthisnewsystemtopropagatethroughtheentireDNSinfrastructure,butintheend,thesystemwillhavemuchgreaterassurance.

ARPPoisoningInmovingpacketsbetweenmachines,adevicesometimesneedstoknowwheretosendapacketusingtheMACorLayer2address.AddressResolutionProtocol(ARP)handlesthisproblemthroughfourbasicmessagetypes:

ARPrequest“WhohasthisIPaddress?”ARPreply“IhavethatIPaddress;myMACaddressis…”ReverseARPrequest(RARP)“WhohasthisMACaddress?”RARPreply“IhavethatMACaddress;myIPaddressis…”

Thesemessagesareusedinconjunctionwithadevice’sARPtable,whereaformofshort-termmemoryassociatedwiththesedataelements

resides.Thecommandsareusedasasimpleformoflookup.WhenamachinesendsanARPrequesttothenetwork,thereplyisreceivedandenteredintoalldevicesthathearthereply.Thisfacilitatesefficientaddresslookups,butalsomakesthesystemsubjecttoattack.WhentheARPtablegetsareply,itautomaticallytruststhereplyand

updatesthetable.SomeoperatingsystemswillevenacceptARPreplydataiftheyneverheardtheoriginalrequest.Thereisnomechanismtoverifytheveracityofthedatareceived.Anattackercansendmessages,corrupttheARPtable,andcausepacketstobemisrouted.ThisformofattackiscalledARPpoisoningandresultsinmaliciousaddressredirection,Thiscanallowamechanismwherebyanattackercaninjectthemselvesintothemiddleofaconversationbetweentwomachines,aman-in-the-middleattack.

ExamTip:ARPpoisoningisthealteringoftheARPcacheonthelocalsystem.

LocalMACaddressescanalsobepoisonedinthesamemanner,althoughitiscalledARPpoisoning.Thiscancausemiscommunicationslocally.Poisoningattackscanbeusedtostealinformation,establishman-in-the-middleattacks,andevencreateDoSopportunities.

PasswordGuessingThemostcommonformofauthenticationistheuserIDandpasswordcombination.Whileitisnotinherentlyapoormechanismforauthentication,thecombinationcanbeattackedinseveralways.Alltoooften,theseattacksyieldfavorableresultsfortheattackernotasaresultofaweaknessintheschemebutusuallyduetotheusernotfollowinggoodpasswordprocedures.

PoorPasswordChoicesTheleasttechnicalofthevariouspassword-attacktechniquesconsistsoftheattackersimplyattemptingtoguessthepasswordofanauthorizeduserofthesystemornetwork.Itissurprisinghowoftenthissimplemethodworks,andthereasonitdoesisbecausepeoplearenotoriousforpickingpoorpasswords.Usersneedtoselectapasswordthattheycanremember,sotheycreatesimplepasswords,suchastheirbirthday,theirmother’smaidenname,thenameoftheirspouseoroneoftheirchildren,orevensimplytheiruserIDitself.AllittakesisfortheattackertoobtainavaliduserID(oftenasimplematter,becauseorganizationstendtouseanindividual’snamesinsomecombination—firstletteroftheirfirstnamecombinedwiththeirlastname,forexample)andalittlebitofinformationabouttheuserbeforeguessingcanbegin.

DictionaryAttackAnothermethodofdeterminingpasswordsistouseapassword-crackingprogramthatusesalistofdictionarywordstotrytoguessthepassword.Thedictionarywordscanbeusedbythemselves,ortwoormoresmallerwordscanbecombinedtoformasinglepossiblepassword.Anumberofcommercialandpublic-domainpassword-crackingprogramsemployavarietyofmethodstocrackpasswords,includingusingvariationsontheuserID.Rulescanalsobedefinedsothatthecrackingprogramwillsubstitute

specialcharactersforothercharactersorcombinewords.Theabilityoftheattackertocrackpasswordsisdirectlyrelatedtothemethodtheuseremploystocreatethepasswordinthefirstplace,aswellasthedictionaryandrulesused.

Brute-ForceAttackIftheuserhasselectedapasswordthatisnotfoundinadictionary,evenifsimplybysubstitutingvariousnumbersorspecialcharactersforletters,theonlywaythepasswordcanbecrackedisforanattackertoattemptabrute-

forceattack,inwhichthepassword-crackingprogramattemptsallpossiblecharactercombinations.Thelengthofthepasswordandthesizeofthesetofpossiblecharacters

inthepasswordwillgreatlyaffectthetimeabrute-forceattackwilltake.Afewyearsago,thismethodofattackwasverytimeconsuming,sinceittookconsiderabletimetogenerateallpossiblecombinations.Withtheincreaseincomputerspeed,however,generatingpasswordcombinationsismuchfaster,makingitmorefeasibletolaunchbrute-forceattacksagainstcertaincomputersystemsandnetworks.

Modernmulticoreprocessorsandlargeon-chipcachememorieshavesignificantlyimprovedthespeedofpassword-crackingprograms,makingbrute-forcemethodspracticalinmanycases.

Abrute-forceattackonapasswordcantakeplaceattwolevels:Theattackercanuseapassword-crackingprogramtoattempttoguessthepassworddirectlyataloginprompt,ortheattackercanfirststealapasswordfile,useapassword-crackingprogramtocompilealistofpossiblepasswordsbasedonthelistofpasswordhashescontainedinthepasswordfile(offline),andthenusethatnarrowerlisttoattempttoguessthepasswordattheloginprompt.Thefirstattackcanbemademoredifficultiftheaccountlocksafterafewfailedloginattempts.Thesecondattackcanbethwartedifthepasswordfileissecurelymaintainedsothatotherscannotobtainacopyofit.

TechTip

OfflinePasswordAttacksBecauseanattackerwhoobtainsapasswordfilehasunlimitedtimeofflinetopreparefortheonlineattack,andcanpreparewithouttippingoffthetarget,allpasswordsshouldbeconsideredtobevulnerableoverextendedperiodsoftime.Forthisreason,evenbatch

passwords(usedforsystem-runbatchjobs)shouldbechangedperiodicallytopreventofflineattacks.

HybridAttackAhybridpasswordattackisanattackthatcombinestheprecedingdictionaryandbrute-forcemethods.Mostcrackingtoolshavethisoptionbuiltin,firstattemptingadictionaryattack,andthenmovingtobrute-forcemethods.Theprogramsoftenpermittheattackertocreatevariousrulesthattell

theprogramhowtocombinewordstoformnewpossiblepasswords.Userscommonlysubstitutecertainnumbersforspecificletters.Iftheuserwantedtousethewordsecretasabaseforapassword,forexample,shecouldreplacetheletterewiththenumber3,yieldings3cr3t.Thispasswordwillnotbefoundinthedictionary,soapuredictionaryattackwouldnotcrackit,butthepasswordisstilleasyfortheusertoremember.Iftheattackercreatedarulethatinstructedtheprogramtotryallwordsinthedictionaryandthentrythesamewordssubstitutingthenumber3forthelettere,however,thepasswordwouldbecracked.

BirthdayAttackThebirthdayattackisaspecialtypeofbrute-forceattackthatgetsitsnamefromsomethingknownasthebirthdayparadox,whichstatesthatinagroupofatleast23people,thechancethattwoindividualswillhavethesamebirthdayisgreaterthan50percent.Mathematically,theequationis1.25×k1/2,wherekequalsthesizeofthesetofpossiblevalues,whichinthebirthdayparadoxis365(thenumberofpossiblebirthdays).Thissamephenomenonappliestopasswords,withk(numberofpasswords)beingquiteabitlarger.

Pass-the-HashAttacksPassthehashisahackingtechniquewheretheattackercapturesthehash

usedtoauthenticateaprocess.Theycanthenusethishash,byinjectingitintoaprocessinplaceofthepassword.Thisisahighlytechnicalattack,targetingtheWindowsauthenticationprocess,injectingacopyofthepasswordhashdirectlyintothesystem.Theattackerdoesnotneedtoknowthepassword,butinsteadcanuseacapturedhashandinjectitdirectly,whichwillverifycorrectly,grantingaccess.Asthisisaverytechnicallyspecifichack,toolshavebeendevelopedtofacilitateitsoperation.

TechTip

MimikatzMimikatzisatoolsetthatcanprovideinsightandexplorationintoWindowssecurityelements,includingobtainingKerberoscredentialsandcreatinga“goldenticket,”auniversalKerberosticket.MimikatzhasbeenincludedinMetasploit,makingthisanawesomepost-exploitationtoolthatcanenabletremendousattackerfunctionalityonaWindowsmachine.

SoftwareExploitationAnattackthattakesadvantageofbugsorweaknessesinsoftwareisreferredtoassoftwareexploitation.Thesebugsandweaknessescanbetheresultofpoordesign,poortesting,orpoorcodingpractices.Theycanalsoresultfromwhataresometimescalled“features.”Anexampleofthismightbeadebuggingfeature,whichwhenusedduringdebuggingmightallowunauthenticatedindividualstoexecuteprogramsonasystem.Ifthisfeatureremainsintheprogramwhenthefinalversionofthesoftwareisshipped,itcreatesaweaknessthatisjustwaitingtobeexploited.Softwareexploitationisapreventableproblem.Throughtheuseofa

securedevelopmentlifecycleprocess,coupledwithtoolssuchasthreatmodeling,bugtracking,fuzzing,andautomatedcodeanalysis,manyofexploitableelementscanbeidentifiedandcorrectedbeforerelease.Fuzzingistheautomatedprocessofapplyinglargesetsofinputstoasystemandanalyzingtheoutputtodetermineexploitableweaknesses.This

techniquehasbeenusedbyhackerstodetermineexploitableissuesandisbeingadoptedbysavvytestteams.Identificationofpotentialvulnerabilitiesbythetestingteamisthebestdefenseagainstzero-dayattacks,whichareattacksagainstcurrentlyunknownvulnerabilities.Anotherelementthatcanbeexploitedistheerrormessagesfroman

application.Goodprogrammingpracticeincludespropererrorandexceptionhandling.Propererrorhandlingwithrespecttothetestingteamincludesthereturnofsignificantdiagnosticinformationtoenabletroubleshooting.Oncethecodegoestoproduction,thediagnosticinformationisnotasimportantasitdoesnothelpendusers,andanypotentialinformationthatcanassistanattackershouldbeblockedfrombeingpresentedtotheenduser.AprimeexampleofthisisinSQLinjectionattacks,where,throughcleverlycraftedinjects,adatabasecanbemappedandthedatacanevenbereturnedtoanattacker.

Buffer-OverflowAttackAcommonweaknessthathasoftenbeenexploitedisabufferoverflow,whichoccurswhenaprogramisprovidedmoredataforinputthanitwasdesignedtohandle.Forexample,whatwouldhappenifaprogramthatasksfora7-to10-characterphonenumberinsteadreceivesastringof150characters?Manyprogramswillprovidesomeerrorcheckingtoensurethatthiswillnotcauseaproblem.Someprograms,however,cannothandlethiserror,andtheextracharacterscontinuetofillmemory,overwritingotherportionsoftheprogram.Thiscanresultinanumberofproblems,includingcausingtheprogramtoabortorthesystemtocrash.Undercertaincircumstances,theprogramcanexecuteacommandsuppliedbytheattacker.Bufferoverflowstypicallyinheritthelevelofprivilegeenjoyedbytheprogrambeingexploited.Thisiswhyprogramsthatuseroot-levelaccessaresodangerouswhenexploitedwithabufferoverflow,asthecodethatwillexecutedoessoatroot-levelaccess.

ExamTip:Bufferoverflowswereoneofthemostcommonvulnerabilitiesoverthepasttenyears,althoughawarenessandeffortstoeradicatethemoverthepastcoupleofyearshasbeenverysuccessfulinnewcode.

IntegerOverflowAnintegeroverflowisaprogrammingerrorconditionthatoccurswhenaprogramattemptstostoreanumericvalue,aninteger,inavariablethatistoosmalltoholdit.Theresultsvarybylanguageandnumerictype.Insomecases,thevaluesaturatesthevariable,assumingthemaximumvalueforthedefinedtypeandnomore.Inothercases,especiallywithsignedintegers,itcanrolloverintoanegativevalue,asthemostsignificantbitisusuallyreservedforthesignofthenumber.Thiscancreatesignificantlogicerrorsinaprogram.Integeroverflowsareeasilytestedfor,andstaticcodeanalyzerscan

pointoutwheretheyarelikelytooccur.Giventhis,therearenotanygoodexcusesforhavingtheseerrorsendupinproductioncode.

Client-SideAttacksThewebbrowserhasbecomethemajorapplicationforuserstoengageresourcesacrosstheWeb.Thepopularityandtheutilityofthisinterfacehasmadeitaprimetargetforattackerstogainaccessandcontroloverasystem.Awidevarietyofattackscanoccurviaabrowser,typicallyresultingfromafailuretovalidateinputproperlybeforeuse.Unvalidatedinputcanresultinaseriesofinjectionattacks,headermanipulation,andotherformsofattack.

TechTip

AllInputIsEvilYoucannevertrustinputfromaclientmachine.Aclientcanmanipulatetheinput,itcanbechangedintransit,andsimpletransmissionerrorscanoccur.Thenetresultisthatinputscanbemanipulated,spoofed,orotherwisechanged.Thebottomlineisnevertrustinput—alwaysverifyitbeforeuse.

InjectionAttacksWhenuserinputisusedwithoutinputvalidation,thisgivesanattackertheopportunitytocraftinputtocreatespecificeventstooccurwhentheinputisparsedandusedbyanapplication.SQLinjectionattacksinvolvethemanipulationofinput,resultinginaSQLstatementthatisdifferentthanintendedbythedesigner.XMLandLDAPinjectionsaredoneinthesamefashion.AsSQL,XML,andLDAPareusedtostoredata,thesetypesofinjectionattackscangiveanattackeraccesstodataagainstbusinessrules.Commandinjectionattackscanoccurwheninputisusedinafashionthatallowscommand-linemanipulation,givinganattackercommand-lineaccessatthesameprivilegelevelastheapplication.

HeaderManipulationsWhenHTTPisbeingdynamicallygeneratedthroughtheuseofuserinputs,unvalidatedinputscangiveattackersanopportunitytochangeHTTPelements.Whenuser-suppliedinformationisusedinaheader,itispossibletodeployavarietyofattacks,includingcachepoisoning,cross-sitescripting,cross-userdefacement,pagehijacking,cookiemanipulation,andopenredirect.

TypoSquatting/URLHijackingTyposquattingisanattackformthatinvolvescapitalizinguponcommontypoerrors.IfausermistypesaURL,thentheresultshouldbea404error,or“resourcenotfound.”ButifanattackerhasregisteredthemistypedURL,thenyouwouldlandontheattacker’spage.ThisattackpatternisalsoreferredtoasURLhijacking,fakeURL,orbrandjackingifthe

objectiveistodeceivebasedonbranding.Thereareseveralreasonsthatanattackerwillpursuethisavenueof

attack.Themostobviousisoneofaphishingattack.Thefakesitecollectscredentials,passingthemontotherealsite,andthenstepsoutoftheconversationtoavoiddetectiononcethecredentialsareobtained.Itcanalsobeusedtoplantdrive-bymalwareonthevictimmachine.Itcanmovethepacketsthroughanaffiliatenetwork,earningclick-throughrevenuebasedonthetypos.TherearenumerousotherformsofattacksthatcanbeperpetratedusingafakeURLasastartingpoint.

Drive-byDownloadAttacksBrowsersareusedtonavigatetheInternet,usingHTTPandotherprotocolstobringfilestousers’computers.Someofthesefilesareimages,somearescripts,andsomearetextbased,andtogethertheyformthewebpagesthatwesee.Usersdon’taskforeachcomponent—itisthejobofthebrowsertoidentifytheneededfilesandfetchthem.Anewtypeofattacktakesadvantageofthismechanismbyinitiatingdownloadsofmalware,whetherauserclicksitornot.Thisautomateddownloadofmaterialsisreferredtoasadrive-bydownloadattack.

ExamTip:Drive-bydownloadscanoccurfromacoupleofdifferentmechanisms.Itispossibleforanadthatisrotatedintocontentonareputablesitetocontainadrive-bydownload.Usersdon’thavecontroloverwhatadsarepresented.Asecond,morecommonmethodisawebsitethattheusergetstoeitherbymistypingaURLorbyfollowingasearchlinkwithoutvettingwheretheyareclickingfirst.Justlikecitiescanhavebadneighborhoods,sotoodoestheInternet,andsurfinginabadneighborhoodcanresultinbadoutcomes.

WateringHoleAttackThemostcommonlyrecognizedattackvectorsarethosethataredirecttoatarget.Becauseoftheirincominganddirectnature,defensesarecraftedtodetectanddefendagainstthem.Butwhatiftheuser“asked”fortheattack

byvisitingawebsite?Justasahunterwaitsnearawateringholeforanimalstocomedrink,attackerscanplantmalwareatsiteswhereusersarelikelytofrequent.FirstidentifiedbyRSA,wateringholeattacksinvolvetheinfectingofatargetwebsitewithmalware.Insomeofthecasesdetected,theinfectionwasconstrainedtoaspecificgeographicalarea.Thesearenotsimpleattacks,yettheycanbeveryeffectiveatdeliveringmalwaretospecificgroupsofendusers.Wateringholeattacksarecomplextoachieveandappeartobebackedbynation-statesandotherhigh-resourceattackers.Inlightofthestakes,thetypicalattackvectorwillbeazero-dayattacktofurtheravoiddetection.

TechTip

WateringHoleAttacksWateringholeattackscanoccurfromeveninnocentwebsites.BrianKrebsgivesastronganalysisofwateringholeattacksonhisblog,KrebsonSecurity:http://krebsonsecurity.com/2012/09/espionage-hackers-target-watering-hole-sites.

AdvancedPersistentThreatTheadvancedpersistentthreat(APT)isamethodofattackthatprimarilyfocusesonstealthandcontinuouspresenceonasystem.APTisaveryadvancedmethod,requiringateamtomaintainaccessandtypicallyinvolveshigh-valuetargets.APTtypicallyinvolvesspeciallycraftedattackvectors,coupledwithphishingorspearphishingfortheinitialentry.Thentechniquesareemployedtodevelopbackdoorsandmultipleaccountaccessroutes.Theskillleveloftheattackersistypicallyexceedinglyhighandtheiraimistocompletelyownasystemwithoutbeingdetected.Oncetheattackershavecompletelypenetratedasystem,including

elementsliketheabilitytoreade-mailstowatchforreportsofdetection,theycanaccomplishtheirgoalofstealingmaterials.Theirlong-term

objectivesaretoremainhiddenandundetected,whileharvestinginformationovermonthsandyears.APTsaretheattackmethodofchoicefornation-statesandindustrialespionage.

TechTip

SignsofAPTAttackThefollowingareindicationsofanAPTattack:

Off-hoursactivityIflogsdemonstrate“normal”activityattimeswhenyourworkersareathome,thisisasignofcompromisedaccounts.Lookforlargenumbersofoccurrences,asAPTattackerstendtousemultipleaccounts.

FindingmultiplebackdoorTrojans/remoteaccessTrojansWhensecurityscansbegintofindalotofmalware,thiscanbeasignofAPTs.

FindingunknownfilesAPTstendtobundleexfiltrationdataandkeepitinencryptedformbeforeslowlysiphoningitout.Discoveryoflargefilesofunknownorigincanbethesebundles.

Findingspearphishinge-mailsandpass-the-hashtoolsTheseadvancedattackmethodsareindicationsofanadvancedadversary.

StrangedataflowsThisisthemosttelltalesign.Findingunusualdataflows,movementofdatanotinthenormalcourseofbusiness,indicatesleakage.

RemoteAccessTrojansRemoteaccessTrojans(RATs)aremalwaredesignedtoenableremoteaccesstoamachine.Thisfunctionalityissimilartoremotedesktopadministration,butratherthanbeingvisibletoauser,itishiddeninthesystem.RATsenableattackerstohaveawaybackintoasystem.TheprincipaluseofaRATistoenablere-entrytoasystemand/orcollectdataonasystem.CommondatacollectionfunctionsperformedbyRATsincludecaptureofwebcamimages,keystrokesandmousemovements,andimagecaptureofthescreen.Whenthesedataelementsarecombinedtheycandefeatimage-basedpasswordsystems.CompleteshellaccesstotheOSistypical,enablingtheattackerfullaccesstothesystemandprocesses.

AkeyfunctionofaRATistoprovideaperiodicbeaconout,soeveniffirewallsandothersecuritydevicesblockunrequestedpackets,thebeaconfunctionmakesthemrequested,bypassingmanysecuritychecks.RATshaveexistedforyears,andmorerecently,customRATs,whichavoidAVdetection,arebeingusedinAPT-styleattacks.

ToolsThereareavarietyoftoolsetsusedbysecurityprofessionalsthatcouldalsobeusedformaliciouspurposes.Thesetoolsetsareusedbypenetrationtesterswhentestingthesecuritypostureofasystem.Thesametoolsinthehandsofanadversarycanbeusedformaliciouspurposes.

MetasploitMetasploitisaframeworkthatenablesattackerstoexploitsystems(bypasscontrols)andinjectpayloads(attackcode)intoasystem.Metasploitiswidelydistributed,powerful,andoneofthemostpopulartoolsusedbyattackers.Whennewvulnerabilitiesarediscoveredinsystems,Metasploitexploitmodulesarequicklycreatedinthecommunity,makingthistoolthego-totoolformostprofessionals.

BackTrack/KaliBackTrackisaLinuxdistributionthatispreloadedwithmanysecuritytools.ThecurrentversioniscalledKaliLinux.Itincludesawholehostofpreconfigured,preloadedtools,includingMetasploit,Social-EngineeringToolkit,andothers.

Social-EngineeringToolkitTheSocial-EngineeringToolkit(SET)isasetoftoolsthatcanbeusedto

targetattackstowardthepeopleusingsystems.Ithasappletsthatcanbeusedtocreatephishinge-mails,Javaattackcode,andothersocialengineering–typeattacks.TheSETisincludedinBackTrack/Kaliandotherdistributions.

CobaltStrikeCobaltStrikeisapowerfulapplicationthatcanreplicateadvancedthreatsandassistintheexecutionoftargetedattacksonsystems.CobaltStrikeexpandstheArmitagetool’scapabilities,addingadvancedattackmethods.

CoreImpactCoreImpactisanexpensivecommercialsuiteofpenetrationtesttools.Ithasawidespectrumoftoolsandprovenattackabilitiesacrossanenterprise.Althoughexpensive,thelevelofautomationandintegrationmakesthisapowerfulsuiteoftools.

BurpSuiteBurpSuitebeganasaportscannertoolwithlimitedadditionalfunctionalityinthearenaofinterceptingproxies,webapplicationscanning,andweb-basedcontent.BurpSuiteisacommercialtool,butitisreasonablypricedandwelllikedandutilizedinthepen-testingmarketplace.

AuditingAuditing,inthefinancialcommunity,isdonetoverifytheaccuracyandintegrityoffinancialrecords.Manystandardshavebeenestablishedinthefinancialcommunityabouthowtorecordandreportacompany’sfinancialstatuscorrectly.Inthecomputersecurityworld,auditingservesasimilar

function.Itisaprocessofassessingthesecuritystateofanorganizationcomparedagainstanestablishedstandard.Theimportantelementsherearethestandards.Organizationsfrom

differentcommunitiesmayhavewidelydifferentstandards,andanyauditwillneedtoconsidertheappropriateelementsforthespecificcommunity.Auditsdifferfromsecurityorvulnerabilityassessmentsinthatassessmentsmeasurethesecuritypostureoftheorganizationbutmaydosowithoutanymandatedstandardsagainstwhichtocomparethem.Inasecurityassessment,generalsecurity“bestpractices”canbeused,buttheymaylacktheregulatoryteeththatstandardsoftenprovide.Penetrationtestscanalsobeencountered—thesetestsareconductedagainstanorganizationtodeterminewhetheranyholesintheorganization’ssecuritycanbefound.Thegoalofthepenetrationtestistopenetratethesecurityratherthanmeasureitagainstsomestandard.Penetrationtestsareoftenviewedaswhite-hathackinginthatthemethodsusedoftenmirrorthosethatattackers(oftencalledblackhats)mightuse.

Oneofthekeymanagementprinciplesinvolvesthemeasurementofaprocess.Whenreferringtosecurity,untilitismeasured,oneshouldtakeanswerswithagrainofsalt.Logginginformationisonlygoodifyouexaminethelogsandanalyzethem.Securitycontrolswork,butauditingtheiruseprovidesassuranceoftheirprotection.

Youshouldconductsomeformofsecurityauditorassessmentonaregularbasis.Yourorganizationmightspendquiteabitonsecurity,anditisimportanttomeasurehoweffectivetheeffortshavebeen.Incertaincommunities,auditscanberegulatedonaperiodicbasiswithveryspecificstandardsthatmustbemeasuredagainst.Evenifyourorganizationisnotpartofsuchacommunity,periodicassessmentsareimportant.Manyparticularscanbeevaluatedduringanassessment,butata

minimum,thesecurityperimeter(withallofitscomponents,includinghost-basedsecurity)shouldbeexamined,aswellastheorganization’spolicies,procedures,andguidelinesgoverningsecurity.Employeetraining

isanotheraspectthatshouldbestudied,sinceemployeesarethetargetsofsocial-engineeringandpassword-guessingattacks.Securityaudits,assessments,andpenetrationtestsareabigbusiness,

andanumberoforganizationscanperformthemforyou.Thecostsofthesevarywidelydependingontheextentofthetestsyouwant,thebackgroundofthecompanyyouarecontractingwith,andthesizeoftheorganizationtobetested.Apowerfulmechanismfordetectingsecurityincidentsistheuseof

securitylogs.Forlogstobeeffective,however,theyrequiremonitoring.Monitoringofeventlogscanprovideinformationconcerningtheeventsthathavebeenlogged.Thisrequiresmakingdecisionsinadvanceabouttheitemstobelogged.Loggingtoomanyitemsusesalotofspaceandincreasestheworkloadforpersonnelwhoareassignedthetaskofreadingthoselogs.Thesameistrueforsecurity,access,audit,andapplication-specificlogs.Thebottomlineisthat,althoughlogsarevaluable,preparationisneededtodeterminethecorrectitemstologandthemechanismsbywhichlogsarereviewed.SecurityInformationEventManagement(SIEM)softwarecanassistinlogfileanalysis.

PerformRoutineAuditsAspartofanygoodsecurityprogram,administratorsmustperformperiodicauditstoensurethings“areastheyshouldbe”withregardtousers,systems,policies,andprocedures.Installingandconfiguringsecuritymechanismsisimportant,buttheymustbereviewedonaregularlyscheduledbasistoensuretheyareeffective,uptodate,andservingtheirintendedfunction.Herearesomeexamples,butbynomeansacompletelist,ofitemsthatshouldbeauditedonaregularbasis:

UseraccessAdministratorsshouldreviewwhichusersareaccessingthesystems,whentheyaredoingso,whatresourcestheyareusing,andsoon.Administratorsshouldlookcloselyforusersaccessingresourcesimproperlyoraccessinglegitimateresourcesatunusual

times.UserrightsWhenauserchangesjobsorresponsibilities,shewilllikelyneedtobeassigneddifferentaccesspermissions;shemaygainaccesstonewresourcesandloseaccesstoothers.Toensurethatusershaveaccessonlytotheresourcesandcapabilitiestheyneedfortheircurrentpositions,alluserrightsshouldbeauditedperiodically.

StorageManyorganizationshavepoliciesgoverningwhatcanbestoredon“company”resourcesandhowmuchspacecanbeusedbyagivenuserorgroup.Periodicauditshelptoensurethatnoundesirableorillegalmaterialsexistonorganizationalresources.

RetentionInsomeorganizations,howlongaparticulardocumentorrecordisstoredcanbeasimportantaswhatisbeingstored.Arecordsretentionpolicyhelpstodefinewhatisstored,howitisstored,howlongitisstored,andhowitisdisposedofwhenthetimecomes.Periodicauditshelptoensurethatrecordsordocumentsareremovedwhentheyarenolongerneeded.

FirewallrulesPeriodicauditsoffirewallrulesareimportanttoensurethefirewallisfilteringtrafficasdesiredandtohelpensurethat“temporary”rulesdonotendupaspermanentadditionstotheruleset.

Chapter15Review

LabManualExercisesThefollowinglabexercisesfromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providepracticalapplicationofmaterialcoveredinthischapter:

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaspectsofattacksandmalware.

Describethevarioustypesofcomputerandnetworkattacks,includingdenial-of-service,spoofing,hijacking,andpasswordguessing

Understandhowdenial-of-service(DoS)anddistributeddenial-of-service(DDoS)attacksareperformedandthedefensesagainstthem.

Bothpacketheadersande-mailheaderscanbespoofedtotakeadvantageofthetrustusersplaceinthesedataelements,evenwhentheyarenotprotectedfromchange.

Understandhowsessionhijackingandman-in-the-middleattacksareperformedandwhatthedefensesareagainsttheseattacks.

Passwordsystemscanhavenumerousvulnerabilities,somebasedonthesystemandsomeonthechoiceofpassworditself.

Identifythedifferenttypesofmalicioussoftwarethatexist,includingviruses,worms,Trojanhorses,logicbombs,timebombs,androotkits

Virusesarepiecesofmalwarethatrequireafiletoinfectasystem.

Wormsarepiecesofmalwarethatcanexistwithoutinfectingafile.

Trojanhorsesarepiecesofmalwaredisguisedassomethingelse,somethingtheuserwantsorfindsuseful.

Logicbombstriggerwhenspecificeventsoccurincode,allowinganattacktobetimedagainstanevent.

Timebombsaredelayedmalwaredesignedtooccurafterasetperiodoftimeoronaspecificdate.

Rootkitsarepiecesofmalwaredesignedtoalterthelower-levelfunctionsofasysteminamannertoescapedetection.

Explainhowsocialengineeringcanbeusedasameanstogainaccesstocomputersandnetworks

Socialengineeringattacksareattacksagainsttheoperatorsandusersofasystem.

Trainingandawarenessisthebestdefensivemeasureagainstsocialengineering.

Describetheimportanceofauditingandwhatshouldbeaudited

Loggingisimportantbecauselogscanprovideinformationassociatedwithattacks.

Auditingisanessentialcomponentofacomprehensivesecuritysystem.

KeyTermsauditing(497)backdoor(472)birthdayattack(492)

botnet(472)bufferoverflow(493)denial-of-service(DoS)attack(474)distributeddenial-of-service(DDoS)attack(476)DNSkiting(488)drive-bydownloadattack(494)integeroverflow(493)logicbomb(471)malware(466)man-in-the-middleattack(483)nullsession(478)pharming(485)phishing(485)ransomware(473)replayattack(484)rootkit(470)sequencenumber(482)smurfattack(480)sniffing(479)spearphishing(485)spoofing(480)spyware(471)SYNflood(475)TCP/IPhijacking(483)Trojan(470)typosquatting(494)virus(466)worm(469)zombie(476)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.ChangingasourceIPaddressformaliciouspurposeisanexampleof_______________.

2.A(n)_______________isawaybackintoamachineviaanunauthorizedchannelofaccess.

3.Amaliciousproxycouldcreatea(n)_______________attack.4.AbusingtheTCPhandshakeinanefforttooveruseserverresources

canbedoneusinga(n)_______________.

5.ThemainTCP/IPdefenseagainstaman-in-the-middleattackistheuseofa(n)_______________.

6.HoldingaDNSnamewithoutpayingiscalled_______________.7.Whenakeyloggerisinstalledasmalware,itisreferredtoas

_______________.

8.Renderingaresourceuselessiscalleda(n)_______________.9.Anattackdesignedtomatchanyuser’spasswordasopposedtoa

specificuser’spasswordisanexampleofa(n)_______________.

10.ANICcanbesetinpromiscuousmodetoenable_______________.

Multiple-ChoiceQuiz1.ASYNfloodisanexampleofwhattypeofattack?

A.Maliciouscode

B.Denial-of-service

C.Man-in-the-middle

D.Spoofing

2.Anattackinwhichtheattackersimplylistensforalltrafficbeingtransmittedacrossanetwork,inthehopeofviewingsomethingsuchasauserIDandpasswordcombination,isknownas:

A.Aman-in-the-middleattack

B.Adenial-of-serviceattack

C.Asniffingattack

D.Abackdoorattack

3.Whichattacktakesadvantageofatrustedrelationshipthatexistsbetweentwosystems?

A.Spoofing

B.Passwordguessing

C.Sniffing

D.Brute-force

4.Inwhattypeofattackdoesanattackerresendtheseriesofcommandsandcodesusedinafinancialtransactiontocausethetransactiontobeconductedmultipletimes?

A.Spoofing

B.Man-in-the-middle

C.Replay

D.Backdoor

5.Rootkitsarechallengingsecurityproblemsbecause:A.Theycanbeinvisibletotheoperatingsystemandenduser.

B.Theirtruefunctionalitycanbecloaked,preventinganalysis.

C.Theycandovirtuallyanythinganoperatingsystemcando.

D.Alloftheabove.

6.Anattackinwhichanattackerattemptstolieandmisrepresenthimselfinordertogainaccesstoinformationthatcanbeusefulinanattackisknownas:

A.Socialscience

B.White-hathacking

C.Socialengineering

D.Socialmanipulation

7.Thefirststepinanattackonacomputersystemconsistsof:A.Gatheringasmuchinformationaboutthetargetsystemas

possible

B.Obtainingasmuchinformationabouttheorganizationinwhichthetargetliesaspossible

C.Searchingforpossibleexploitsthatcanbeusedagainstknownvulnerabilities

D.Searchingforspecificvulnerabilitiesthatmayexistinthetarget’soperatingsystemorsoftwareapplications

8.Thebestwaytominimizepossibleavenuesofattackforyoursystemisto:

A.Installafirewallandcheckthelogsdaily.

B.Monitoryourintrusiondetectionsystemforpossibleattacks.

C.LimittheinformationthatcanbeobtainedonyourorganizationandtheservicesthatarerunbyyourInternet-visiblesystems.

D.Ensurethatallpatcheshavebeenappliedfortheservicesthatareofferedbyyoursystem.

9.Awar-drivingattackisanattempttoexploitwhattechnology?A.Fiber-opticnetworks,whosecablesoftenrunalongroadsand

bridges

B.Cellulartelephones

C.Thepublicswitchedtelephonenetwork(PSTN)

D.Wirelessnetworks

10.Maliciouscodethatissettoexecuteitspayloadonaspecificdateorataspecifictimeisknownas:

A.Alogicbomb

B.ATrojanhorse

C.Avirus

D.Atimebomb

EssayQuiz1.Compareandcontrastportscanningandpingsweeps.2.Whatisthebestpracticetoemploytomitigatemalwareeffectsona

machine?

LabProjects

•LabProject15.1UsingtheInternet,researchpassword-crackingtools.Then,usingatoolofchoice,examinehoweasyitistocrackpasswordsonWindows-andUNIX-basedsystems.Createaseriesofaccounts

withdifferentcomplexitiesofpasswordsandseehowwelltheyfare.

•LabProject15.2Obtainacopyofthenmapscanningtool.Explorethevariouscommand-lineoptionstoscannetworks,fingerprintoperatingsystems,andperformothernetwork-mappingfunctions.

Note:Studentsshouldtrytheseoptions,butonlyinalabenvironment,notacrosstheInternetfromtheirhomeISP.

chapter16 E-MailandInstantMessaging

The“free”distributionofunwelcomeormisleadingmessagestothousandsofpeopleisanannoyingandsometimesdestructiveuseoftheInternet’sunprecedentedefficiency.

E

—BILLGATES,NEWYORKTIMES,1998

Inthischapter,youwilllearnhowto

Describesecurityissuesassociatedwithe-mail

Implementsecuritypracticesfore-mail

Detailthesecurityissuesofinstantmessagingprotocols

-mailisthemostpopularapplicationoncompanynetworks.Withover2.6billione-mailusers,4.3billione-mailaccountsandmorethan200billione-mailsperyear,theusagenumbersarestaggering.Thesplit

betweenbusinessandpersonalemailis55/45percent,respectively.Thetotalamountofspamisunknown,butevenafterextensivefiltering,spamaveragesnearly10percentofinboxtraffic.

HowE-MailWorksE-mailstartedwithmailboxprogramsonearlytime-sharingmachines,allowingresearcherstoleavemessagesforothersusingthesamemachine.Thefirstintermachinee-mailwassentin1972,andanewerainperson-to-personcommunicationwaslaunched.E-mailproliferated,butitremainedunsecured,onlypartlybecausemoste-mailissentinplaintext,providingnoprivacyinitsdefaultform.Currente-mailinitsuseisnotdifferentfromitsearlierversions;it’sstillasimplewaytosendarelativelyshorttextmessagetoanotheruser.Users’dependenceone-mailhasgrownwiththenumberofpeopleaccessingtheInternet.Internete-maildependsonthreeprimaryprotocols,SMTP,POP3,and

IMAP.SimpleMailTransferProtocol(SMTP)isthemethodbywhichmailissenttotheserveraswellasfromservertoserver.SMTPbydefaultusesTCPport25.POP3standsforPostOfficeProtocolversion3,whichbydefaultusesTCPport110.POP3isamethodbywhichaclientcomputermayconnecttoaserveranddownloadnewmessages.POP3has

beenpartlyreplacedbyIMAP,orInternetMessageAccessProtocol,whichusesportTCP143bydefault.IMAPissimilartoPOP3inthatitallowstheclienttoretrievemessagesfromtheserver,butIMAPtypicallyworksingreatersynchronization;forexample,e-mailsareleftontheserveruntiltheclientdeletesthemintheclient,atwhichtimeIMAPinstructstheservertodeletethem.Ase-mailservicesbecamemorestandardized,themethodsoftransmissionbecameeasiertoattackastheywerenotstrangeproprietaryprotocols.Also,astheworldbecamemoreconnected,thereweremanymoreavailabletargetsforthemalwareandcommerciale-mails.

TechTip

E-mailandFirewallsFore-mailapplicationstoworkwithe-mailservers,theyneedtocommunicateacrossspecificchannels.Toensurecommunication,TCPports25,110,and143needtobeopenonclientsthatneedtoconnecttomailservers.ThisisforSMTP,POP3,andIMAP,respectively.

SecureversionsofthecommoncommunicationprotocolsexistviatheSTARTTLSmethod.STARTTLSisameansofusingTransportLayerSecurity(TLS)tosecureacommunicationchannelfortext-basedcommunicationprotocols.Table16.1showstheportassignmentsassociatedwithSTARTTLS.

Table16.1 STARTTLSPortAssignments

E-mailappearstobeaclient-to-clientcommunication,betweensenderandreceiver.Inreality,alotofstepsareinvolved,asshowninFigure16.1anddescribedhere:

•Figure16.1Howe-mailworks

1.Ausercomposesandsendsane-mailfromtheuser’sclientmachine.2.Thee-mailissenttotheclient’se-mailserver.InanInternetserviceprovider(ISP)environment,thiscouldbeviatheISP.Inthecaseofwebmail,itisthemailservice(Gmail,Hotmail/Live,etc.).Inacorporateenvironmentitisthecorporatemailserver.

3.a.Thereceivinge-mailserverscansthee-mailforviruses,malware,andotherthreats.

b.ThemailserverusesDNStoobtaintherecipiente-mailserveraddressviaanMXrecord.

4.Themailserverpreparesthee-mailfortransitacrosstheInternettotherecipient’smailserver.

5.Thee-mailisroutedacrosstheInternet.6.Thereceivinge-mailserverscansthee-mailforviruses,malware,

andotherthreats.

7.Thee-mailispassedtotherecipient’sin-box,whereitcanberead.

Thislistofstepsleavesoutalotofdetails,butitprovidesthemainstepsine-mailtransference.Thestepsareremarkablysimilarforinstantmessagingapplicationsaswell.Ratherthanin-boxesande-mailasamedium,theinstantmessagingappsdeliverthetextmessagesdirectlytothescreenoftheapp.Intechnicalterms,theapplicationonthesender’smachineisreferredto

asamailuseragent(MUA),andthemailserverisamailtransferagent(MTA).Therecipient’smailserverisreferredtoasamaildeliveryagent(MDA).Thesetermsareusedwhendiscussingmailtransferstoprovideaccuracyintheconversation.ForcommunicationfromtheMUAtotheMTA,SMTP(port25)isused,andcommunicationfromMTAtoMTAisalsoSMTP.TheprotocolusedforcommunicationfromtheMDAtotheMUAontherecipientmachineistypicallyPOP/IMAP.

E-MailStructureE-mailisstructuredintwoelements,aheaderandthebody.TheentiremessageissentviaplainASCIItext,withattachmentsincludedusingBase64encoding.Thee-mailheaderprovidesinformationforthehandlingofthee-mailbetweenMUAs,MTAs,andMDAs.Thefollowingisasamplee-mailheader:

Thespecificelementsshowninthisheaderwillbeexaminedthroughoutthischapter.Whatisimportanttonoteisthattheformatofthemessageanditsattachmentsareinplaintext.

MIMEWhenamessagehasanattachment,theprotocolusedtodeliverthemessageisMultipurposeInternetMailExtensions(MIME).Thisprotocolallowstheexchangeofdifferentkindsofdataacrosstext-basede-mailsystems.WhenMIMEisused,itismarkedintheheaderofthee-mail,alongwithsupportingelementstofacilitatedecoding.ThefollowingisanexcerptfromaheaderthathasMIMEelements:

Thee-mailtexthasbeenreplacedwith<HTMLE-MAILmessagegoeshere>andtheJPEGimageistruncated,butthestructureofthesampleshowshowcontentcanbeencodedandincludedinane-mail.

SecurityofE-MailE-mailcanbeusedtomoveavarietyofthreatsacrossthenetwork.Fromspam,toviruses,toadvancedmalwareinspear-phishingattacks,e-mail

canactasatransmissionmedium.Spamisthemostcommonattackbutisnowjustanuisance;themajorityisnowmostlycleanedupbymailserverfiltersandsoftware.Thee-mailhoaxhasbecomeanotherregularoccurrence;Internet-based

urbanlegendsarespreadthroughe-mail,withusersforwardingtheminseeminglyendlessloopsaroundtheglobe.And,ofcourse,peoplestillhaven’tfoundagoodwaytoblockubiquitousspame-mails(asamplingofwhichisshowninFigure16.2),despitetheremarkableadvanceofeveryothertechnology.

•Figure16.2Atypicallistofspame-mails

E-mailsecurityisultimatelytheresponsibilityofusersthemselves,becausetheyaretheoneswhowillactuallybesendingandreceivingthemessages.However,securityadministratorscangiveusersthetoolsthey

needtofightmalware,spam,andhoaxes.Secure/MultipurposeInternetMailExtensions(S/MIME)andPrettyGoodPrivacy(PGP)aretwopopularmethodsusedforencryptinge-mail,asdiscussedlaterinthechapter.Server-basedanddesktop-basedvirusprotectioncanhelpagainstmaliciouscode,andspamfiltersattempttoblockallunsolicitedcommerciale-mail.E-mailusersneedtobeeducatedaboutsecurityaswell,however,becausethepopularityandfunctionalityofe-mailisonlygoingtoincreasewithtime.Instantmessaging(IM),whilenotpartofthee-mailsystem,issimilar

toe-mailinmanyrespects,particularlyinthesensethatitiscommonlyplaintextandcantransmitfiles.IM’shandlingoffilesopenstheapplicationtovirusexploitationjustlikee-mail.IMhasexperiencedaboominpopularityinthelastfewyears,sowewilllookatsomepopularIMprogramslaterinthischapter,suchasAOLInstantMessenger,showninFigure16.3.

•Figure16.3AOLInstantMessengerisapopularinstantmessagingprogram.

MaliciousCode

Virusesandwormsarepopularprogramsbecausetheymakethemselvespopular.Whenviruseswereconstrainedtoonlyonecomputer,theyattemptedtospreadbyattachingthemselvestoeveryexecutableprogramthattheycouldfind.Thisworkedoutverywellfortheviruses,becausetheycouldpiggybackontoafloppydiskwithaprogramthatwasbeingtransferredtoanothercomputer.Theviruswouldtheninfectthenextcomputer,andthenextcomputerafterthat.Whileoftensuccessful,viruspropagationwasslow,andfloppiescouldbescannedforviruses.

ExamTip:Virusesandwormsbothcancarrymaliciouspayloadsandcausedamage.Thedifferenceisinhowtheyaretransmitted:virusesrequireafiletoinfect,whereaswormscanexistindependentlyofafile.

Theadventofcomputernetworkswasacomputerviruswriter’sdream,allowingvirusestoattempttoinfecteverynetworksharetowhichthecomputerwasattached.Thisextendedthevirus’sreachfromasetofmachinesthatmightshareafloppydisktoeverymachineonthenetwork.Becausethee-mailprotocolpermitsuserstoattachfilestoe-mailmessages(seeFigure16.4),virusescantravelbye-mailfromonelocalnetworktoanother,anywhereontheInternet.Thischangedthenatureofvirusprograms,sincetheyoncewerelocalizedbutnowcouldspreadvirtuallyeverywhere.E-mailgavethevirusaglobalreach.

•Figure16.4Virusescommonlyspreadthroughe-mailattachments.

WhenactivecontentwasdesignedfortheWeb,intheformofJavaandActiveXscripts,thesescriptswereinterpretedandrunbythewebbrowser.E-mailprogramsalsowouldrunthesescripts,andthat’swhenthetrouble

began.Somee-mailprograms,mostnotablyMicrosoftOutlook,useapreviewpane,whichallowsuserstoreade-mailswithoutopeningtheminthefullscreen(seeFigure16.5).

•Figure16.5Thepreviewpaneontherightcanexecutecodeine-mails

withoutopeningthem.

TechTip

HTMLe-mailHTMLe-mailcancarryembeddedinstructionstodownloadorrunscriptsthatcanbelaunchedfromthepreviewpaneinsomee-mailprograms,withoutrequiringthattheuseractivelylaunchtheattachedprogram.

Unfortunately,thispreviewstillactivatesallthecontentinthee-mailmessage,andbecauseOutlooksupportsVisualBasicscripting,itisvulnerabletoe-mailworms.Auserdoesn’tneedtoruntheprogramorevenopenthee-mailtoactivatetheworm—simplypreviewingthee-mailinthepreviewpanecanlaunchthemaliciouscontent.ThisformofautomaticexecutionwastheprimaryreasonforthespreadoftheILOVEYOUworm.

TechTip

E-MailHygieneAlle-mailshouldbescannedformalware,spam,andotherunwanteditemsbeforeittrulyentersthee-mailsysteminanorganization.Thisreducesriskandalsoreducesthecostsofbackup.Withspamcomprisingthemajorityofreceivede-mails,nothavingtobackitupsavesalotofspace.

Allmalwareisasecuritythreat,withtheseveraldifferenttypeshavingdifferentcountermeasures.Theantivirussystemsthatwehaveusedforyearshaveprogressedtotryandstopallformsofmalicioussoftware,buttheyarenotapanacea.Wormpreventionalsoreliesonpatchmanagementoftheoperatingsystemandapplications.Virusesareuser-launched,andsinceoneofthemostcommontransfermethodsforvirusesisthroughe-mail,thepeopleusingthee-mailsystemcreatethefrontlineofdefense

againstviruses.Inadditiontoantivirusscanningoftheuser’ssystem,andpossiblyane-mailvirusfilter,usersneedtobeeducatedaboutthedangersofviruses.Althoughthegreatmajorityofusersarenowawareofvirusesandthe

damagetheycancause,moreeducationmaybeneededtoinstructthemonthespecificthingsthatneedtobeaddressedwhenavirusisreceivedviae-mail.Thesecanvaryfromorganizationtoorganizationandfrome-mailsoftwaretoe-mailsoftware;however,someusefulexamplesofgoodpracticesinvolveexaminingalle-mailsforaknownsourceaswellasaknowndestination,especiallyifthee-mailshaveattachments.Strangefilesorunexpectedattachmentsshouldalwaysbecheckedwithanantivirusprogrambeforeexecution.Usersalsoneedtoknowthatsomevirusescanbeexecutedsimplybyopeningthee-mailorviewingitinthepreviewpane.Educationandproperadministrationisalsousefulinconfiguringthee-mailsoftwaretobeasvirusresistantaspossible—turningoffscriptingsupportandthepreviewpanearegoodexamples.Manyorganizationsoutlinespecificuserresponsibilitiesfore-mail,similartonetworkacceptableusepolicies.Someexamplesincludeusinge-mailresourcesresponsibly,avoidingtheinstallationofuntrustedprograms,andusinglocalizedantivirusscanningprograms,suchasAVG.

Anotherprotectionistocarefullycreatevirus-scanningprocedures.Ifpossible,performvirusscansoneverye-mailasitcomesintothecompany’se-mailserver.Thisisactuallytheoneplacethatspammayproveuseful.Theexplosioninspammailhasdriventheadoptionofe-mailfilteringgatewaysdesignedtogreatlyreducespammessages.Thesespecializede-mailservershaveevolvedtoattempttoprotectagainstvirus

threatsaswellasspam.Someuserswillalsoattempttoretrievee-mailoffsitefromanormalISPaccount,whichcanbypasstheserver-basedvirusprotection,soeverymachineshouldalsobeprotectedwithahost-basedvirusprotectionprogramthatscansallfilesonaregularbasisandperformschecksoffilesupontheirexecution.Whilethesestepswillnoteliminatethesecurityrisksofmaliciouscodeine-mail,theywilllimitinfectionandhelptokeeptheproblemtomanageablelevels.

HoaxE-MailsE-mailhoaxesaremostlyanuisance,buttheydocosteveryone,notonlyinthetimewastedbyreceivingandreadingthee-mails,butalsointheInternetbandwidthandserverprocessingtimetheytakeup.E-mailhoaxesareglobalurbanlegends,perpetuallytravelingfromonee-mailaccounttothenext,andmosthaveacommonthemeofsomestoryyoumusttelltenotherpeopleaboutrightawayforgoodluckorsomevirusthatwillharmyourfriendsunlessyoutellthemimmediately.Hoaxesaresimilartochainletters,butinsteadofpromisingareward,thestoryinthee-mailistypicallywhatproducestheaction.

Forwardinghoaxe-mailsandotherjokes,funnymovies,andnon-work-relatede-mailsatworkcanbeaviolationofyourcompany’sacceptableusepolicyandresultindisciplinaryactions.

HoaxeshavebeencirclingtheInternetformanyyears,andmanywebsitesarededicatedtodebunkingthem,suchasSnopes.com(seeFigure16.6).

•Figure16.6Snopesisanonlinereferenceforurbanlegendscommoninhoaxe-mails.

Themostimportantthingtodointhiscaseiseducatee-mailusers:theyshouldbefamiliarwithahoaxortwobeforetheygoonline,andthey

shouldknowhowtosearchtheInternetforhoaxinformation.UsersneedtoapplythesamecommonsenseontheInternetthattheywouldinreallife:Ifitsoundstoooutlandishtobetrue,itprobablyisafabrication.Thegoalofeducationabouthoaxesshouldbetochangeuserbehaviortodeletethehoaxe-mailandnotsenditon.

UnsolicitedCommercialE-Mail(Spam)Everye-mailuserhasreceivedspam,andusuallydoesonadailybasis.Spamreferstounsolicitedcommerciale-mailwhosepurposeisthesameasthejunkmailyougetinyourphysicalmailbox—ittriestopersuadeyoutobuysomething.ThetermspamcomesfromaskitonMontyPython’sFlyingCircus,wheretwopeopleareinarestaurantthatservesonlythepottedmeatproduct.Thisconceptoftherepetitionofunwantedthingsisthekeytoe-mailspam.

ExamTip:Unsolicitedcommerciale-mailisreferredtoasspam.

Thefirstspame-mailwassentin1978byaDECemployee.However,thefirstspamthatreallycapturedeveryone’sattentionwasin1994,whentwolawyerspostedacommercialmessagetoeveryUsenetnewsgroup.ThiswastheoriginofusingtheInternettosendonemessagetoasmanyrecipientsaspossibleviaanautomatedprogram.Commerciale-mailprogramshavetakenover,resultinginthevarietyofspamthatmostusersreceiveintheirin-boxeseveryday.Botnetresearchershavereportedthatamillion–plusinfectedmachinessendmorethan100billionspame-mailseveryday.AccordingtotheSymantecmonthlyStateofSpamreportinJuly2009,over90percentofe-mailsentworldwideisspam.Theappealtothepeoplegeneratingthespamistheextremelylowcost

peradvertisingimpression.Thesendersofspame-mailcangenerallysendthemessagesforlessthanacentapiece.Thisismuchlessexpensivethan

moretraditionaldirectmailorprintadvertisements,andthislowcostwillensurethecontinuedgrowthofspame-mailunlesssomethingisdoneaboutit.Theamountofspambeingtransmittedeventuallyspurredfederalauthoritiesintoaction.Inlate2003theControllingtheAssaultofNon-SolicitedPornographyandMarketingAct(CAN-SPAM)wassignedintolaw.ThislawgavetheFederalTradeCommission(FTC)authoritytodefinethestandardsofspame-mailandenforcetheotherprovisionsoftheact.Whileseveralspammershavebeencaughtandprosecutedunderthisact,ithasnotbeenrestrictiveenoughtoseverelylimitspam.Thishasforcedmostpeopletoseekouttechnicalsolutionstothespamproblem.

TechTip

ControllingPort25onMailServersSMTPauthenticationforcestheuserswhouseyourservertoobtainpermissiontosendmailbyfirstsupplyingausernameandpassword.ThishelpstopreventopenrelayandabuseofyourserverandishighlyrecommendedwhenyourmailserverhasaroutedIPaddress.Thisensuresthatonlyknownaccountscanuseyourserver’sSMTPtosende-mail.ThenumberofconnectionstoanSMTPservershouldbelimitedbasedonthespecifications

oftheserverhardware(memory,NICbandwidth,CPU,etc.)anditsnominalloadperday.LimitingconnectionsisusefultomitigatespamfloodsandDoSattacksthattargetyournetworkinfrastructure.

Thefrontlineofthewaragainstspame-mailisfiltering.Almostalle-mailprovidersfilterspamatsomelevel;however,bandwidthisstillusedtosendthespam,andtherecipiente-mailserverstillhastoprocessthemessage.Toreducespam,itmustbefoughtonseveralfronts.Thefirstthingtodoiseducateusersaboutspam.AgoodwayforuserstofightspamistobecautiousaboutwhereontheInternettheyposttheire-mailaddress.However,youcan’tkeepe-mailaddressessecretjusttoavoidspam.OneofthestepsthatthemajorityofsystemadministratorsrunningInternete-mailservershavetakentoreducespam,andwhichisalsoagoode-mailsecurityprinciple,istoshutdownmailrelaying.Portscanningoccursacrossallhostsallthetime,typicallywithasinglehost

scanninglargesubnetsforasingleport,andsomeofthesepeoplecouldbeattemptingtosendspame-mail.WhentheyscanforTCPport25,theyarelookingforSMTPservers,andoncetheyfindahostthatisanopenrelay(amailserverthatwillacceptmailfromanyone),theycanusethathosttosendasmanycommerciale-mailsaspossible.Thereasonthattheylookforanopenrelayisthatspammerstypicallydonotwantthee-mailstracedbacktothem.Mailrelayingissimilartodroppingaletteroffatapostofficeinsteadoflettingthepostalcarrierpickitupatyourmailbox.OntheInternet,thatconsistsofsendinge-mailfromaseparateIPaddress,makingitmoredifficultforthemailtobetracedbacktoyou.SMTPserversoftwareistypicallyconfiguredtoacceptmailonlyfromspecifichostsordomains.AllSMTPsoftwarecanandshouldbeconfiguredtoacceptonlymailfromknownhosts,ortoknownmailboxes;thisclosesdownmailrelayingandhelpstoreducespam.

TechTip

OpenRelaysConfiguremailrelayoptionscarefullytoavoidbeinganopenrelay.AllmailservershaveanoptionwhereyoucanspecifywhichdomainsorIPaddressesyourmailserverwillrelaymailfor.It’sveryimportanttoconfigureyourmailrelayparametertobeveryrestrictivesothatyourserverdoesnotbecomeagatewayforspammingothers,possiblyresultinginyourservergettingblacklisted.

Sinceitmaynotbepossibletocloseallmailrelays,andbecausesomespammerswillmailfromtheirownmailservers,softwaremustbeusedtocombatspamattherecipient’send.Spamcanbefilteredattwoplaces:atthehostitselforattheserver.Filteringspamatthehostlevelisdonebythee-mailclientsoftwareandusuallyemploysbasicpatternmatching,focusingonthesender,subject,ortextofthee-mail.Thisfairlyeffectivesystemusesaninordinateamountofbandwidthandprocessingpoweronthehostcomputer,however.Theseproblemscanbesolvedbyfilteringspamatthemailserverlevel.Manycompaniesofferadedicatedappliance

designedasaspecialtye-mailserverwiththeprimarytaskoffilteringspam.Thisservertypicallyusesacombinationoftechniqueslistedhere.Italsoimplementsaninternaldatabasetoallowmoregranularfilteringbaseduponspamtheappliancehasalreadyseen.

TryThis!TestingYourMailServerforOpenRelayMakenoteofyoure-mailserversettings,andthentrytosendregularSMTPmailwhenyouareonadifferentnetwork,suchastheWi-FinetworkatacoffeeshoporothersimilaropenaccessInternetconnection.Youshouldgetanerrorrefusingrelaying.Ifthemailgoesthrough,thatservermighthaveamisconfiguration.

TechTip

DNSBLReferenceTheDNSBLprocessisdetailedmorethoroughlyatwww.dnsbl.com.

Theserver-basedapproachcanbebeneficialbecauseothermethodsoffilteringspamcanbeusedattheserver:patternmatchingisstillused,butSMTPsoftwarecanalsouseaprocesscalledDomainNameService(DNS)blacklisting,orDNSBL.TheReal-timeBlackholeList(RBL)wasthefirstlisttoutilizetheconceptofusingDNSrecordstofilter,or“blackhole,”spam-sendingIPaddressesanddomains.Startedin1997,thislistwasandismaintainedinrealtimespecificallyforblockingspame-mail.WhiletheRBLwasthefirstDNSBL,therearenowmanyblackholelists.TheDNSBLserviceissopopularthatmanyprograms,suchassendmail,Postfix,andEudoraInternetMailServer,includesupportforitbydefault.InadditiontotheRBL,multipleotherDNS-basedblacklistservicescan

assistfilteringbaseduponDNSsourcesofmail.Commercialpackagescanblockspamattheserverlevelusingbothmethodsmentioned,maintaining

theirownblacklistsandpattern-matchingalgorithms.Manyadditionaltechniquesexistforserver-basedspamfiltering—

enoughtofillanentirebookonthesubject.Onetechniqueistouseachallenge/responsesystem:onceane-mailisreceivedbya“new”contact,achallengeissentbacktotheoriginatingaddresstoconfirmthecontact.Sincespammerssende-mailsinbulk,theresponsemechanismistoocumbersomeandtheywillnotrespond.Anothertechniqueisknownasgreylisting.Whenane-mailisreceived,

itisbouncedasatemporaryrejection.SMTPserversthatareRFC5321–compliantwillwaitaconfigurableamountoftimeandattemptretransmissionofthemessage.Obviously,spammerswillnotretrysendingofanymessages,sospamisreduced.

Allthesetechniqueshaveadvantagesanddisadvantages,andmostpeoplewillrunsomecombinationoftechniquestoattempttofilterasmuchspamaspossiblewhilenotrejectinglegitimatemessages.Asidebenefitoffilteringspamatthereceivingserverisreducede-mail.

Inenterprises,performingbackupsofinformationisasignificanttask.Backupsaresizedependent,bothincostandtime,andreducinge-mailbyeliminatingspamcanhavesignificantimpactsone-mailbackups.Spamreductionwillalsohaveasignificantimpactonthee-discoveryprocess,asitreducesthequantityofmaterialthatneedstobesearched.E-discoveryisatermforelectronicdiscovery,theelectroniccomponentofalegaldiscoveryprocess.Thediscoveryprocessiscourtmandatedand,whenappliedtoacorporateenvironment,cancausetheshutdownofcorporateoperationsuntiltheprocessiscomplete.Forthisreason,anythingthatmakestheprocesseasierorfasterwillbenefitthecorporation.

TechTip

ActivateReverseDNStoBlockBogusSendersMessagingsystemsuseDNSlookupstoverifytheexistenceofe-maildomainsbeforeacceptingamessage.AreverseDNSlookupisanoptionforfightingoffbogusmailsenders,asitverifiesthesender’saddressbeforeacceptingthee-mail.ReverseDNSlookupactsbyhavingSMTPverifythatthesender’sIPaddressmatchesboththehostanddomainnamesthatweresubmittedbytheSMTPclientintheEHLO/HELOcommand.Thisworksbyblockingmessagesthatfailtheaddress-matchingtest,suggestingthattheydidnotcomefromwheretheysaytheycamefrom.

SpamURIReal-timeBlockListsSpamURIReal-timeBlockLists(SURBL)detectsunwantede-mailbasedoninvalidormaliciouslinkswithinamessage.UsingaSURBLfilterisavaluabletooltoprotectusersfrommalwareandphishingattacks.NotallmailserverssupportSURBL,butthistechnologyshowspromiseinthefightagainstmalwareandphishing.

SenderIDFrameworkMicrosoftoffersanotherserver-basedsolutiontospam,calledtheSenderIDFramework(SIDF).SIDFattemptstoauthenticatemessagesbycheckingthesender’sdomainnameagainstalistofIPaddressesauthorizedtosende-mailbythedomainnamelisted.Thislistismaintainedinatext(TXT)recordpublishedbytheDNS,calledaSenderPolicyFramework(SPF)record.Sowhenamailserverreceivesane-mail,itwillcheckthesender’sdomainnameintheDNS;iftheoutboundserver’sIPmatches,themessagegetsa“pass”ratingbySIDF.Thisissimilartotheideathatroutersshoulddropanyoutboundport25trafficthatdoesnotcomefromknowne-mailserversonthesubnetmanagedbytherouter.However,theSIDFsystemhandlestheauthenticationofthee-mailserverwhenitisreceived,notwhenitissent.Thissystemstillallowswastedbandwidthfromthesenderofthemessagetothereceiver,andsincebandwidthisincreasinglyameteredservice,thismeansthecostofspamisstillpaidbytherecipient.TheSPFcheckensuresthatthesendingMTAisallowedtosendmailonbehalfofthesender’sdomainname.WhenSPFisactivatedonyourserver,thesendingserver’sMXrecord(theDNSMailExchangerecord)isvalidatedbeforemessagetransmissiontakesplace.Thesemethodscantakecareofupto90percentofthejunkmail

cloggingournetworks,buttheycannotstopitentirely.Bettercontrolofport25trafficisrequiredtoslowthetideofspamhittingourin-boxes.Thiswouldstopspammersusingremoteopenrelaysand,hopefully,preventmanyusersfromrunningunauthorizede-mailserversoftheirown.Becauseofthelowcostofgeneratingspam,untilseriousactionistaken,orspamissomehowmadeunprofitable,itwillremainwithus.

DomainKeysIdentifiedMailDomainKeysIdentifiedMail(DKIM)isane-mailvalidationsystememployedtodetecte-mailspoofing.DKIMoperatesbyprovidinga

mechanismtoallowreceivingMTAstocheckthatincomingmailisauthorizedandthatthee-mail(includingattachments)hasnotbeenmodifiedduringtransport.Itdoesthisthroughadigitalsignatureincludedwiththemessagethatcanbevalidatedbytherecipientusingthesigner’spublickeypublishedintheDNS.DKIMistheresultofthemergingoftwopreviousmethods,DomainKeysandIdentifiedInternetMail.DKIMisthebasisforaseriesofIETFstandards-trackspecificationsandisusedbyAOL,Gmail,andYahoomail.AnymailfromtheseorganizationsshouldcarryaDKIMsignatureThefollowingisanexampleoftheDKIMinformationthatisinane-

mailheader:

Thetwosignatures,bandbh,areforthemessageitself,headerandbody,andtheheaderonly.

MailEncryptionThee-mailconcernsdiscussedsofarinthischapterareallglobalissuesinvolvingsecurity,bute-mailsuffersfromamoreimportantsecurityproblem—thelackofconfidentiality,or,asitissometimesreferredto,privacy.AswithmanyInternetapplications,e-mailhasalwaysbeenaplaintextprotocol.WhenmanypeoplefirstgotontotheInternet,theyheardastandardlectureaboutnotsendinganythingthroughe-mailthattheywouldn’twantpostedonapublicbulletinboard.Partofthereasonfor

thiswasthate-mailissentwiththecleartextofthemessageexposedtoanyonewhoissniffingthenetwork.Anyattackeratachokepointinthenetworkcouldreadalle-mailpassingthroughthatnetworksegment.Sometoolscanbeusedtosolvethisproblembyusingencryptionon

thee-mail’scontent.ThefirstmethodisS/MIMEandthesecondisPGP.

S/MIMESecure/MultipurposeInternetMailExtensions(S/MIME)isasecureimplementationoftheMIMEprotocolspecification.MIMEwascreatedtoallowInternete-mailtosupportnewandmorecreativefeatures.Theoriginale-mailRFCspecifiedonlytexte-mail,soanynontextdatahadtobehandledbyanewspecification—MIME.MIMEhandlesaudiofiles,images,applications,andmultiparte-mails.MIMEallowse-mailtohandlemultipletypesofcontentinamessage,includingfiletransfers.Everytimeyousendafileasane-mailattachment,youareusingMIME.S/MIMEtakesthiscontentandspecifiesaframeworkforencryptingthemessageasaMIMEattachment.

CrossCheckX.509CertificatesInChapter7youlearnedaboutX.509certificatestandards.Whyisitimportanttohaveastandardizedcertificateformat?

S/MIMEwasdevelopedbyRSADataSecurityandusestheX.509formatforcertificates.Thespecificationsupportsboth40-bitRC2and3DESforsymmetricencryption.Theprotocolcanaffectthemessageinoneoftwoways:thehostmailprogramcanencodethemessagewithS/MIME,ortheservercanactastheprocessingagent,encryptingallmessagesbetweenservers.Thehost-basedoperationstartswhentheuserclicksSend;themail

agentthenencodesthemessageusingthegeneratedsymmetrickey.Then

thesymmetrickeyisencodedwiththeremoteuser’spublickeyforconfidentialityorsignedwiththelocaluser’sprivatekeyforauthentication/nonrepudiation.Thisenablestheremoteusertodecodethesymmetrickeyandthendecrypttheactualcontentofthemessage.Ofcourse,allofthisishandledbytheuser’smailprogram,requiringtheusersimplytotelltheprogramtodecodethemessage.Ifthemessageissignedbythesender,itwillbesignedwiththesender’spublickey,guaranteeingthesourceofthemessage.Thereasonthatbothsymmetricandasymmetricencryptionareusedinthemailistoincreasethespeedofencryptionanddecryption.Asencryptionisbasedondifficultmathematicalproblems,ittakestimetoencryptanddecrypt.Tospeedthisup,themoredifficultprocess,asymmetricencryption,isusedonlytoencryptarelativelysmallamountofdata,thesymmetrickey.Thesymmetrickeyisthenusedtoencrypttherestofthemessage.TheS/MIMEprocessofencryptinge-mailsprovidesintegrity,privacy,

and,ifthemessageissigned,authentication.Severalpopulare-mailprogramssupportS/MIME,includingthepopularMicrosoftproductsOutlookandWindowsMail.TheybothmanageS/MIMEkeysandfunctionsthroughtheE-mailSecurityscreen,showninFigure16.7.ThisfigureshowsthedifferentsettingsthatcanbeusedtoencryptmessagesanduseX.509digitalcertificates.Thisallowsinteroperabilitywithwebcertificates,andtrustedauthoritiesareavailabletoissuethecertificates.Trustedauthoritiesareneededtoensurethesendersarewhotheyclaimtobe,animportantpartofauthentication.InWindowsMail,thewindowissimpler(seeFigure16.8),butthesamefunctionsofkeymanagementandsecuree-mailoperationareavailable.

•Figure16.7S/MIMEoptionsinOutlook

•Figure16.8S/MIMEoptionsinWindowsMail

CrossCheckSymmetricEncryptionInChapter5youlearnedaboutsymmetricencryption,includingRC2andthe3DESalgorithmssupportedbyS/MIME.WhatpartoftheCIAofsecuritydoessymmetricencryptionattempttoprovideinthisinstance?

WhileS/MIMEisagoodandversatileprotocolforsecuringe-mail,itsimplementationcanbeproblematic.S/MIMEallowstheusertoselectlow-strength(40-bit)encryption,whichmeansausercansendamessagethatisthoughttobesecurebutthatcanbemoreeasilydecodedthanmessagessentwith3DESencryption.Also,aswithanyprotocol,bugscanexistinthesoftwareitself.Justbecauseanapplicationisdesignedforsecuritydoesnotmeanthatit,itself,issecure.Despiteitspotentialflaws,however,S/MIMEisatremendousleapinsecurityoverregulare-mail.

PGPPrettyGoodPrivacy(PGP)implementse-mailsecurityinasimilarfashiontoS/MIME,butPGPusescompletelydifferentprotocols.Thebasicframeworkisthesame:Theusersendsthee-mail,andthemailagentappliesencryptionasspecifiedinthemailprogram’sprogramming.Thecontentisencryptedwiththegeneratedsymmetrickey,andthatkeyisencryptedwiththepublickeyoftherecipientofthee-mailforconfidentiality.Thesendercanalsochoosetosignthemailwithaprivatekey,allowingtherecipienttoauthenticatethesender.Currently,PGPsupportspublickeyinfrastructure(PKI)providedbymultiplevendors,includingX.509certificatesandLightweightDirectoryAccessProtocol(LDAP)keysourcessuchasMicrosoft’sActiveDirectory.InFigure16.9,youcanseehowPGPmanageskeyslocallyinitsown

software.Thisiswhereauserstoresnotonlylocalkeys,butalsoanykeysthatwerereceivedfromotherusers.AfreekeyserverisavailableforstoringPGPpublickeys.PGPcangenerateitsownkeysusingeither

Diffie-HellmanorRSA,anditcanthentransmitthepublickeystothePGPLDAPserversootherPGPuserscansearchforandlocateyourpublickeytocommunicatewithyou.Thiskeyserverisconvenient,aseachpersonusingPGPforcommunicationsdoesnothavetoimplementaservertohandlekeymanagement.Fortheactualencryptionofthee-mailcontentitself,PGPsupportsInternationalDataEncryptionAlgorithm(IDEA),3DES,andCarlisleAdamsandStaffordTavares(CAST)forsymmetricencryption.PGPprovidesprettygoodsecurityagainstbrute-forceattacksbyusinga3DESkeylengthof168bits,anIDEAkeylengthof128bits,andaCASTkeylengthof128bits.Allofthesealgorithmsaredifficulttobrute-forcewithexistinghardware,requiringwelloveramillionyearstobreakthecode.Whilethisisnotapromiseoffuturesecurityagainstbrute-forceattacks,thesecurityisreasonabletoday.

•Figure16.9PGPkeymanagement

PGPhasplug-insformanypopulare-mailprograms,includingOutlookandMozilla’sThunderbird.Theseplug-inshandletheencryptionanddecryptionbehindthescenes,andallthattheusermustdoisentertheencryptionkey’spassphrasetoensurethattheyaretheownerofthekey.InFigure16.10,youcanseethestringofencryptedtextthatmakesuptheMIMEattachment.Thistextincludestheencryptedcontentofthemessageandtheencryptedsymmetrickey.Youcanalsoseethattheprogramdoesnotdecryptthemessageuponreceipt;itwaitsuntilinstructedtodecryptit.PGPalsostoresencryptedmessagesintheencryptedformat,asdoesS/MIME.Thisisimportant,sinceitprovidesend-to-endsecurityforthemessage.

•Figure16.10DecodingaPGP-encodedmessage

LikeS/MIME,PGPisnotproblem-free.Youmustbediligentaboutkeepingthesoftwareuptodateandfullypatched,becausevulnerabilitiesareoccasionallyfound.Forexample,abufferoverflowwasfoundinthewayPGPwashandledinOutlook,causingtheoverwritingofheapmemoryandleadingtopossiblemaliciouscodeexecution.ThereisalsoalotofdiscussionaboutthewayPGPhandleskeyrecovery,orkeyescrow.PGPuseswhat’scalledanAdditionalDecryptionKey(ADK),whichisbasicallyanadditionalpublickeystackedupontheoriginalpublickey.AnADK,intheory,wouldgivetheproperorganizationaprivatekeythatwouldbeusedtoretrievethesecretmessages.Inpractice,theADKisnotalwayscontrolledbyaproperlyauthorizedorganization,andthedangerexistsforsomeonetoaddanADKandthendistributeittotheworld.Thiscreatesasituationinwhichotheruserswillbesendingmessagesthattheybelievecanbereadonlybythefirstparty,butthatcanactuallybereadbythethirdpartywhomodifiedthekey.Thesearejustexamplesofthecurrentvulnerabilitiesintheproduct,showingthatPGPisjustatool,nottheultimateanswertosecurity.

InstantMessagingInstantmessaging(IM)isanothertechnologythathasseenwidespreadacceptanceinrecentyears.WiththegrowthoftheInternetpullingcustomersawayfromAOL,oneofthelargestdial-upprovidersintheUnitedStates,thecompanyhadtolookatnewwaysofprovidingcontent.ItstartedAOLInstantMessenger(AIM),whichwasconceivedasawaytofindpeopleoflikeinterestsonline,anditwasmodeledafterearlierchatprograms.WithGUIfeaturesandenhancedeaseofuse,itquicklybecamepopularenoughforAOLtoreleasetoregularusersoftheInternet.Alongwithseveralcompetingprograms,AIMwasfeedingthetremendousgrowthoftheinstantmessagingsegment.Theprogramshadtoappealtoawidevarietyofusers,soeaseofuse

wasparamount,andsecuritywasnotapriority.NowthatpeopleareaccustomedtoIMapplications,theyseethebenefitofusingthemnotonlyforpersonalchattingontheInternet,butalsoforlegitimatebusinessuse.Whenpeopleinstalltheseapplications,theyunwittinglyexposethecorporatenetworktosecuritybreachesthroughmanyofthesamemalicioussoftwareproblemsase-mail.InstantmessagestraversetheInternetinplaintextandalsocrossthird-partyservers—beitYahoo,Skype,Google,orAOL.

IMprogramsaredesignedtoattachtoaserver,oranetworkofservers,andallowyoutotalkwithotherpeopleonthesamenetworkofserversinnearrealtime.Thenatureofthistypeofcommunicationopensseveralholesinasystem’ssecurity.First,theprogramhastoattachtoaserver,typicallyannouncingtheIPaddressoftheoriginatingclient.Thisisnotaprobleminmostapplications,butIMidentifiesaspecificuserassociated

withtheIPaddress,makingattacksmorelikely.Alsoassociatedwiththisfactisthatforotheruserstobeabletosendyoumessages,theprogramisforcedtoannounceyourpresenceontheserver.SonowauserisdisplayingthathisorhercomputerisonandispossiblybroadcastingthesourceIPaddresstoanyonewhoislooking.Thisproblemiscompoundedbythetendencyforpeopletoruntheseprogramsinthebackgroundsothattheydon’tmissanymessages.PopularIMclientswerenotimplementedwithsecurityinmind.All

supportsendingfilesasattachments,fewcurrentlysupportencryption,andcurrentlynonehaveavirusscannerbuiltintothefile-sharingutility.

Filesharinginanyformmustbeacarefullyhandledapplicationtopreventthespreadofvirusesandothermaliciouscode.Chatprogramsproducesecurityrisks,becausethesharingisdoneadhocbetweenendusers,administratorshavenocontroloverthequalityofthefilesbeingsent,andthereisnomonitoringoftheoriginalsourcesofthosefiles.The

onlyauthenticationforthefilesisthehumaninteractionbetweenthetwousersinquestion.ThiskindofvulnerabilitycoupledwithasocialengineeringattackcanproducedramaticenoughresultsthattheCERTCoordinationCenter(CERT/CC)wascompelledtoissueanincidentnote(CERTIncidentNoteIN-2002-03:SocialEngineeringAttacksviaIRCandInstantMessaging).Thispersonaltypeofauthenticationwasabused,trickingpeopleintodownloadingandexecutingbackdoororTrojanhorseprograms.Ausercanalsobepersuadedautonomouslytodownloadandrunafile

viaIM.Severalwormsexistthatattempt,viaIM,togetuserstodownloadandrunthepayload.W32.pipelineusesAIMtoinstallarootkit.Goner,runningviaICQ,anotherIMprogram,asksuserstodownloadascreensaver.Choke,spreadingviaMSN/WindowsLiveMessenger,attemptstogetuserstodownloadagame;ifthegameisdownloaded,thewormattemptstospreadtoanyusertheinfecteduserchatswith.Thesewormsandothersalldependonuserinteractiontorunthepayload.Thisfile-sharingmechanismbypassesalltheserver-sidevirusprotectionthatispartofmostorganizations’e-mailinfrastructure.Thispushesmoreoftheresponsibilityformalwareprotectionontothelocalusers’antivirussystem.Thiscanbeproblematicforuserswhodonotregularlyupdatetheirsystemsorwhofailtoperformregularantivirusscans.

TechTip

TrillianAnIMclientthatsupportsencryptionaswellasallthepopularnetworkslikeAIM,Yahoo,andSkypeisTrillian.Trillianisavailableatwww.trillian.im.

OneofthelargestproblemswithIMprogramsisthelackofsupportforencryption.AIM,ICQ,Skype,andYahooMessengerallcurrentlydonotnativelysupportencryptionofthetextmessagestravelingbetweenusers.However,somethird-partyprogramswilladdencryptionasaplug-in.The

lackofencryptionwasnotasignificantconcernwhiletheseIMprogramswerestillusedprimarilyforpersonalcommunication,butwithbusinessesmovingtoadoptthesystems,peoplearenotawareoftheinfrastructuredifferencebetweenIMande-mail.Intracompanye-mailneverleavesthecompany’snetwork,butanintracompanyinstantmessagetypicallywilldosounlesstheorganizationpurchasesaproductandoperatesaninternalIMserver.Thiscananddoesexposelargeamountsofconfidentialbusinessinformationtoanyonewhoisphysicallyinaspottomonitorandhasthedesiretocapturethetraffic.Ifyouthinkabouthowoftenclientinformationissentviae-mail

betweentwopeopleatacompany,youstarttoseethedangerthatsendingitviaIMcreates.IMisanapplicationthatistypicallyinstalledbytheenduser,withouttheknowledgeoftheadministrator.Thesetypesofrogueapplicationshavealwaysbeenadangertoanetwork’ssecurity,butadministratorshavetypicallybeenabletocontrolthembyeliminatingtheapplications’portsthroughthefirewall.TheprotocolsusedforthesechatapplicationshavedefaultTCPports—

AIMuses5190,Jabberuses5222and5269,YahooMessengeruses5050,andMSN/WindowsLiveMessengeruses1863.SomeIMapplicationshavebeenprogrammedforuseasrogueapps.Intheeventthattheycan’treachaserveronthedefaultports,theybegintoscanallportslookingforonethatisallowedoutofthefirewall.Astheseapplicationscanconnectonanyport,includingcommononessuchasTelnetport23andHTTPport80,theyareveryhardtocontrol.ThesetypesofsecurityrisksgoaboveandbeyondtheroutinesecurityholesgeneratedinIMsoftwarethatariseasinanyotherpieceofsoftware,throughcodingerrors.

TechTip

SecuringIMTipstohelpsecurecorporateIM:

RunacorporateIMserver

Avoidfiletransfers

Useencryption

ModernInstantMessagingSystemsInstantmessagingisanapplicationthatcanincreaseproductivitybysavingcommunicationtime,butit’snotwithoutrisks.Theprotocolsendsmessagesinplaintextandthusfailstopreservetheirconfidentiality.Italsoallowsforsharingoffilesbetweenclients,allowingabackdooraccessmethodforfiles.Therearesomemethodstominimizesecurityrisks,butmoredevelopmenteffortsarerequiredbeforeIMisreadytobeimplementedinasecurefashion.ThebestwaysinwhichtoprotectyourselfonanIMnetworkaresimilartothoseforalmostallInternetapplications:avoidcommunicationwithunknownpersons,avoidrunninganyprogramyouareunsureof,anddonotwriteanythingyouwouldn’twantpostedwithyournameonit.Instantmessagingalsoplaysaroleintoday’ssocialmedia–driven

world.Therearemanyverypopular“messagingsystems”thatareinpopularusetoday,includingSnapchat,Instagram,Jabber,Tumblr,WhatsApp,andmore.Theseareinstantsharingsystemsthatallowuserbasestosharefiles,pictures,andvideosbetweenusers.Eachofthesesystemshaslargenumbersofusersandliterallybillionsoftransferreditemseveryyear.AsthesocialaspectoftheWebgrows,sodotheinstantsharingsystemsconnectingusersinsocialwebs.Applehasitsownmessagingservice,asdoesAndroid,andappsexistforawiderangeofdifferent“messaging”systems.Anylistofmessagingappsisonethatwillbecomeoutdatedrather

rapidly,butatthetimethisbookgoestopressthelistwouldincludethefollowing:

LINE

Viber

WhatsApp(nowpartofFacebook)

FacebookMessenger

Snapchat

Kik

Tango

WeChat

Instagram

Jabber

Tumblr

Themainsecuritythreatonmostoftheseisinformationdisclosure.Astheycanbeusedfrommobiledevicesoutsideofanenterprisenetwork,thereisthepossibilityforinformationtobecapturedandreleasedacrosstheseplatforms.Forthisreason,oneofthesecuritypoliciesofhigh-securityfacilitiesistonotallowpersonaldevices.

Chapter16Review

LabManualExercisesThefollowinglabexercisesfromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providepracticalapplicationofmaterialcoveredinthischapter:

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboute-mailandIMsecurity.

Describesecurityissuesassociatedwithe-mail

Maliciouscodeiscodethatperformssomethingharmfultothecomputeritrunson.Maliciouscodeisoftensentthroughe-mail.

Virusesarepiecesofmaliciouscodethatrequireuseractiontospread.

Trojanprogramsdeceivetheuserintothinkingthataprogramissomethinginnocuous,whenitisactuallyapieceofmaliciouscode.

Wormsarepiecesofmaliciouscodethatuseautomatedmethodstospread.

Spam,orunsolicitedcommerciale-mail,ise-mailthatissenttoyouwithoutyourrequestingit,attemptingtosellyousomething.Itistheelectronicequivalentofatelemarketingcall.

Hoaxe-mailsaree-mailsthattravelfromusertouserbecauseofthecompellingstorycontainedinthem.

Implementsecuritypracticesfore-mail

Protectingyoure-mailsystemfromviruscoderequiresseveralmeasures:

Don’texecuteanyattachmentfromanunknownsource.

Useantivirusprogramsthatrunontheservertofilteralle-mails.

Useclient-sideantivirusprogramstocatchanyvirusesthatmightcomefromweb-basede-mailaccounts.

Keepingallsoftwareuptodatehelpstopreventwormpropagation.

Server-sidefilteringsoftwareandtheapplicationofspamblackholelistshelplimittheamountofunsolicitede-mail.

E-mailencryptionisagreatwaytoprotecttheprivacyofcommunicationsincee-mailisacleartextmedium.

PGP,orPrettyGoodPrivacy,isagoodspecificapplicationfore-mailencryption.

S/MIME,orSecure/MultipurposeInternetMailExtension,isthee-mailprotocolthatallowsencryptionapplicationstowork.

Antivirussoftwareisimportanttoprotectagainstmalware.

Detailthesecurityissuesofinstantmessagingprotocols

AOLInstantMessenger,ICQ,andSkypearealldifferentversionsofinstantmessagingprograms.

ThemostpopularIMprogramsallsendmessagesintheclear,withoutanativeencryptionbuiltintothedefaultclients.

AlltheIMclientsneedtoattachtoaservertocommunicate.Therefore,whenattachedtotheserver,theyannouncethesourceIPofaparticularuser.

Instantmessagingcanalsotransferfiles.Thisactivitytypicallybypassesanysecuritybuiltintothenetwork,especiallymailservervirusprotections.

KeyTerms

AOLInstantMessenger(AIM)(522)botnet(514)DomainKeysIdentifiedMail(DKIM)(517)e-mail(505)e-mailhoax(509)encryption(518)instantmessaging(IM)(510)maildeliveryagent(MDA)(506)mailrelaying(515)mailtransferagent(MTA)(506)mailuseragent(MUA)(506)MultipurposeInternetMailExtensions(MIME)(508)openrelay(515)PrettyGoodPrivacy(PGP)(520)Real-timeBlackholeList(RBL)(515)Secure/MultipurposeInternetMailExtensions(S/MIME)(518)SenderIDFramework(SIDF)(516)SenderPolicyFramework(SPF)(517)SimpleMailTransferProtocol(SMTP)(505)spam(514)unsolicitedcommerciale-mail(514)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.Spamisthepopulartermfor_______________.2._______________isamethodtodetecte-mailspoofing.3.Alargesourceofspamiszombiecomputersthatarepartofa(n)

_______________.

4.________istheprotocolusedtoattachattachmentstoanemail.5.A(n)_______________isacompilationofserversthatareblocked

becausetheyhavebeenknowntosendspam.

6._______________isoneofthemostpopularchatprograms.7._______________isaprotocolforverifyinge-mailaddresses

againstIPaddressestoreducespa,.

8.A(n)_______________isafalsee-mailthattellsacompellingstory,andtypicallypromptstheusertoforwardittootherusers.

9._______________canhavethesamevirusrisksase-mail.10.Themostprevalentprotocolthate-mailissentbyis

_______________.

Multiple-ChoiceQuiz1.Whatisoneofthebiggestreasonsspamisprevalenttoday?

A.Criminalsusezombiebotnets.

B.Regularmailistooslow.

C.Spamispopularamongrecipients.

D.Spamissentfromthegovernment.

2.Whatisspam?A.Unsolicitedcommerciale-mail

B.AUsenetarchive

C.Acomputervirus

D.Anencryptionalgorithm

3.Whyisanopene-mailrelaybad?

A.Itallowsanyonetoremotelycontroltheserver.

B.Itmakesthee-mailserverrebootonceaday.

C.Noe-mailwillgothrough.

D.Itwillallowanyonetosendspamthroughtheserver.

4.Whatmakese-mailhoaxespopularenoughtokeepthesamestoryfloatingaroundforyears?

A.Theyarewrittenbyaward-winningauthors.

B.Thestorypromptsactiononthereader’spart.

C.Thestorywillgranttheusergoodluckonlyifheorsheforwardsiton.

D.Thehoaxe-mailforwardsitself.

5.Whatisgreylisting?A.E-mailmessagesaretemporarilyrejectedsothatthesenderis

forcedtoresend.

B.E-mailmessagesarerunthroughastrongsetoffiltersbeforedelivery.

C.E-mailmessagesaresentthroughspecialsecureservers.

D.E-mailissentdirectlyfromthelocalhosttotheremotehost,bypassingserversentirely.

6.Whyareinstantmessagingprotocolsdangerousforfiletransfer?A.Theybypassserver-basedvirusprotections.

B.Filesharingisneverdangerous.

C.Theyalloweveryoneyouchatwithtoviewallyourfiles.

D.You’llendupreceivingmanyspamfiles.

7.WhydoPGPandS/MIMEneedpublickeycryptography?A.Publickeysarenecessarytodeterminewhetherthee-mailis

encrypted.

B.Thepublickeyisnecessarytoencryptthesymmetrickey.

C.Thepublickeyunlocksthepasswordtothee-mail.

D.Thepublickeyisuselessandgivesafalsesenseofprivacy.

8.WhyisHTMLe-maildangerous?A.Itcan’tbereadbysomee-mailclients.

B.Itsendsthecontentofyoure-mailstowebpages.

C.Itcanallowlaunchingofmaliciouscodefromthepreviewpane.

D.Itistheonlywayspamcanbesent.

9.Iftheyarebothtextprotocols,whyisinstantmessagingtrafficriskierthane-mail?

A.MorevirusesarecodedforIM.

B.IMhasnobusinesspurpose.

C.IMtraffichastotraveloutsideoftheorganizationtoaserver.

D.Emoticons.

10.Whatmakesspamsopopularasanadvertisingmedium?A.Itslowcostperimpression

B.Itshighrateofreturn

C.Itsabilitytocanvassmultiplecountries

D.Itsqualityofworkmanship

EssayQuiz1.Howwouldyouimplementasuccessfulspam-filteringpolicy?2.Draftamemodescribingmalwareriskstothecommonuserand

whattheusercandotoavoidinfection.

LabProjects

•LabProject16.1Showthatinstantmessagingisaninsecureprotocol.YouwillneedalabcomputerwithWindowsinstalled,anIMprogram,andasniffer.Thendothefollowing:

1.IfyouneedtoinstallanIMprogram,downloadAIMfromwww.aim.com.2.RuntheInstallerprogram.

3.Generateausernameandpasswordandlogin.4.Startthesnifferprogramandsetittocapturealltraffic.

5.Startachatsessionwithapartnerintheclass.6.Decodethesnifftracetoviewthecleartextmessagesofthechat.

•LabProject16.2Findatleasttenpiecesofspammailfromanyaccount,whetheritbehome,work,school,orsomethingelse.Usingthee-mailheaders,andanywebsitethatmightprovideinformation,attempttotracethespammailbacktoitsoriginalsource.

Youwillneedthefollowingmaterials:

1.Collectthee-mailsandviewthee-mailheaderinformationinyoure-mailprogram.2.Findthe“Received:”fieldintheheadersandwritedownasmanyDNSnamesorIPaddressesasyoucan.Alsolookforcommondetailsintheheaderelementsofthedifferentmessages,suchasthesamee-mailserversandspammers.

3.UsingtheInternet,researchthephysicallocationsoftheIPaddresses.4.Reportthedifferentlocationsfromwhichyourspame-mailoriginated.Whatdidyoulearnabouttracinge-mailandspam?

chapter17 WebComponents

UnderstandingthesecurityrisksassociatedwithawebapplicationisofcriticalimportancetoimprovingthesecurityoftheWeb.

T

—AARONC.NEWMAN

Inthischapter,youwilllearnhowto

DescribethefunctioningoftheSSL/TLSprotocolsuite

Explainwebapplications,plug-ins,andassociatedsecurityissues

Describesecurefiletransferoptions

Explaindirectoryusagefordataretrieval

ExplainscriptingandotherInternetfunctionsthatpresentsecurityconcerns

Usecookiestomaintainparametersbetweenwebpages

Examineweb-basedapplicationsecurityissues

heWorldWideWebwasinventedbyTimBerners-Leetogivephysicistsaconvenientmethodofexchanginginformation.Whatbeganin1990asaphysicstoolintheEuropeanLaboratoryforParticle

Physics(CERN,theacronymfortheoriginalFrenchname)hasgrownintoacomplexsystemthatisusedbymillionsofcomputerusersfortasksfrome-commerce,toe-mail,chatting,games,andeventheoriginalintendeduse—fileandinformationsharing.BeforetheWeb,plentyofmethodswereusedtoperformthesetasks,andtheywerealreadywidespreadinuse.FileTransferProtocol(FTP)wasusedtomovefiles,andTelnetallowedusersaccesstoothermachines.WhatwasmissingwasthecommonarchitecturebroughtbyBerners-Lee:first,acommonaddressingscheme,builtaroundtheconceptofaUniformResourceLocator(URL);second,theconceptoflinkingdocumentstootherdocumentsbyURLsthroughtheHypertextMarkupLanguage(HTML).Althoughtheseelementsmightseemminor,theyformedabasethat

spreadlikewildfire.Berners-Leedevelopedtwoprogramstodemonstratetheusefulnessofhisvision:awebservertoservedocumentstousers,andawebbrowsertoretrievedocumentsforusers.Bothofthesekeyelementscontributedtothespreadofthisnewtechnologicalinnovation.Thesuccessofthesecomponentsledtonetworkafternetworkbeingconnected

togetherina“networkofnetworks”knowntodayastheInternet.MuchofthisinterconnectionwasdevelopedandfundedthroughgrantsfromtheU.S.governmenttofurthertechnologicalandeconomicgrowth.

CurrentWebComponentsandConcernsTheusefulnessoftheWebisduenotjusttobrowsers,butalsotowebcomponentsthatenableservicesforendusersthroughtheirbrowserinterfaces.Thesecomponentsuseawiderangeofprotocolsandservicestodeliverthedesiredcontent.Fromasecurityperspective,theyofferusersaneasy-to-use,securemethodofconductingdatatransfersovertheInternet.Manyprotocolshavebeendevelopedtodeliverthiscontent,althoughformostusers,thebrowserhandlesthedetails.Fromasystemspointofview,manysecurityconcernshavearisen,but

theycanbegroupedintothreemaintasks:

SecuringaserverthatdeliverscontenttousersovertheWeb

SecuringthetransportofinformationbetweenusersandserversovertheWeb

Securingtheuser’scomputerfromattackoverawebconnection

ThischapterpresentsthecomponentsusedontheWebtorequestanddeliverinformationsecurelyovertheInternet.

WebProtocolsWhentwopeoplecommunicate,severalthingsmusthappenforthecommunicationtobeeffective:theymustusealanguagethatbothpartiesunderstand,andtheymustcorrectlyusethelanguage—thatis,structureandsyntax—toexpresstheirthoughts.Themodeofcommunicationisaseparateentityentirely,forthepreviousstatementsareimportantinbothspokenandwrittenformsofcommunication.Thesamerequirementsare

presentwithrespecttocomputercommunications,andtheyareaddressedthroughprotocols,agreed-uponsetsofrulesthatallowdifferentvendorstoproducehardwareandsoftwarethatcaninteroperatewithhardwareandsoftwaredevelopedbyothervendors.BecauseoftheworldwidenatureoftheInternet,protocolsareveryimportantandformthebasisbywhichalltheseparatepartscanworktogether.Thespecificinstantiationofprotocolsisdonethroughhardwareandsoftwarecomponents.ThemajorityofthischapterconcentratesonprotocolsrelatedtotheInternetasinstantiatedbysoftwarecomponents.

ExamTip:Knowtheports!HTTPS(HTTPoverSSL)usesTCPport443.FTPS(FTPoverSSL)usesTCPport990(control)andTCPport989(datainactivemode).HypertextTransferProtocol(HTTP)usesTCPport80,andFileTransferProtocol(FTP)usesTCPport21(control)andTCPport20(datainactivemode).

Encryption(SSLandTLS)SecureSocketsLayer(SSL)isageneral-purposeprotocoldevelopedbyNetscapeformanagingtheencryptionofinformationbeingtransmittedovertheInternet.ItbeganasacompetitivefeaturetodrivesalesofNetscape’swebserverproduct,whichcouldthensendinformationsecurelytoendusers.ThisearlyvisionofsecuringthetransmissionchannelbetweenthewebserverandthebrowserbecameanInternetstandard.Today,SSLisalmostubiquitouswithrespecttoe-commerce—allbrowserssupportitasdowebservers,andvirtuallyalle-commercewebsitesusethismethodtoprotectsensitivefinancialinformationintransitbetweenwebserversandbrowsers.TheInternetEngineeringTaskForce(IETF)embracedSSLin1996

throughaseriesofRFCsandnamedthegroupofRFCsTransportLayerSecurity(TLS).StartingwithSSL3.0,in1999,theIETFissuedRFC2246,“TLSProtocolVersion1.0,”followedbyRFC2712,whichaddedKerberosauthentication,andthenRFCs2817and2818,whichextended

TLStoHTTPversion1.1(HTTP/1.1).AlthoughSSLhasbeenthroughseveralversions,TLSbeginswithanequivalencytoSSL3.0,sotodaySSLandTLSareessentiallythesame,althoughnotinterchangeable.RecentattackshaveleftSSLvulnerable,andtheconsensusisthatSSLisdeadandTLSisthepathforward,althougheveryonecallsitSSL.

AllversionsofSSLhavebeenshowntobevulnerabletobreach.ThismeanstheentireSSLsuiteisnownolongerconsideredsecure.SSLv3felltothePOODLEattackin2014,leavingonlyTLSasasecuremethod.ItisimportantthatbothclientsandwebserversaswellasotherapplicationsbeupdatedtoonlyuseTLSinthefuture.

SSL/TLSisaseriesoffunctionsthatexistsintheOSI(OpenSystemInterconnection)modelbetweentheapplicationlayerandthetransportandnetworklayers.ThegoalofTCPistosendanunauthenticated,error-freestreamofinformationbetweentwocomputers.SSL/TLSaddsmessageintegrityandauthenticationfunctionalitytoTCPthroughtheuseofcryptographicmethods.Becausecryptographicmethodsareanever-evolvingfield,andbecausebothpartiesmustagreeonanimplementationmethod,SSL/TLShasembracedanopen,extensible,andadaptablemethodtoallowflexibilityandstrength.WhentwoprogramsinitiateanSSL/TLSconnection,oneoftheirfirsttasksistocompareavailableprotocolsandagreeonanappropriatecommoncryptographicprotocolforuseinthisparticularcommunication.AsSSL/TLScanuseseparatealgorithmsandmethodsforencryption,authentication,anddataintegrity,eachoftheseisnegotiatedanddetermineddependinguponneedatthebeginningofacommunication.BrowsersfromMozilla(Firefox)andMicrosoft(InternetExplorer11)

allowfairlyextensiveSSL/TLSsetupoptions(seeFigure17.1).

•Figure17.1IE11securityoptions

HowSSL/TLSWorksSSL/TLSusesawiderangeofcryptographicprotocols.Asof2014,SSLisnolongerconsideredsecure,withSSLv3fallingvictimtothePOODLE(PaddingOracleOnDowngradedLegacyEncryption)attack.Throughoutthebook,allreferencestoSSLshouldbeconsideredtobeforTLSonly.ItwilltakeagenerationorlongerforthetermSSLtofadeinfavorofTLS,ifever.Thequestionsaskedandansweredarewhichprotocolandwhich

cryptographicalgorithmwillbeused.Fortheclientandservertocommunicate,bothsidesmustagreeonacommonlyheldprotocol(SSLv1,v2,v3,orTLSv1,v1.1,v1.2).CommonlyavailablecryptographicalgorithmsincludeDiffie-HellmanandRSA.Thenextstepistoexchangecertificatesandkeysasnecessarytoenableauthentication.

TechTip

POODLEAttackThePaddingOracleOnDowngradedLegacyEncryption(POODLE)attackisacryptographicattackusingthepaddingofamessage.ResearchersatGooglehavediscoveredhowtoperformsuchanattackonTLSandSSL.ThebestmethodofpreventingtheattackonclientsisthroughthedisablingofSSLv3.GoogleandMozillahavebothremovedSSLsupportfromChromeandFirefox,respectively.ThePOODLEattackonTLSinvolvesanimplementationerrorontheserversideandcanbecorrectedviapatching.

Onceauthenticationisestablished,thechannelissecuredwithsymmetrickeycryptographicmethodsandhashes,typicallyRC4or3DESforsymmetrickeyandMD5orSHA-1forthehashfunctions.

TechTip

TLSnotSSLJustknowthatTLSshouldbeusedinplaceofSSLforallinstances.Tousetheseprotocolseffectivelybetweenaclientandaserver,anagreementmustbereachedonwhichprotocoltouse,whichisdoneviatheTLShandshakeprocess.Theprocessbeginswithaclientrequestforasecureconnectionandaserver’sresponse.Althoughsimilar,SSLisnolongersecureandTLSremainstheonlyoption.

TechTip

TLSHandshakeThefollowingsteps,depictedintheillustrationbelow,establishaTLSsecuredchannel(theSSLhandshakeisdeprecatedduetoallversionsofSSLbeingcompromised):

1.Theclientsendstotheservertheclient’sTLSversionnumber,ciphersettings,andsession-specificdata.

2.Theserversendstotheclienttheserver’sTLSversionnumber,ciphersettings,session-specificdata,anditsowncertificate.Iftheresourcerequestedrequiresclientauthentication,theserverrequeststheclient’scertificate.

3.Theclientauthenticatestheserverusingtheinformationithasreceived.Iftheservercannotbeauthenticated,theuseriswarnedoftheproblemandinformedthatan

encryptedandauthenticatedconnectioncannotbeestablished.4.Theclientencryptsaseedvaluewiththeserver’spublickey(fromcertificate—step2)andsendsittotheserver.Iftheserverrequestedclientauthentication,theclientalsosendstheclientcertificate.

5.Iftheserverrequestedclientauthentication,theserverattemptstoauthenticatetheclientcertificate.Iftheclientcertificatecannotbeauthenticated,thesessionends.

6.Theserverusesitsprivatekeytodecryptthesecret,andthenperformsaseriesofsteps(whichtheclientalsoperforms)togenerateamastersecret.Therequiredstepsdependonthecryptographicmethodusedforkeyexchange.

7.Boththeclientandtheserverusethemastersecrettogeneratethesessionkey,whichisasymmetrickeyusedtoencryptanddecryptinformationexchangedduringtheTLSsession.

8.Theclientsendsamessageinformingtheserverthatfuturemessagesfromtheclientwillbeencryptedwiththesessionkey.Itthensendsaseparate(encrypted)messageindicatingthattheclientportionofthehandshakeisfinished.

9.Theserversendsamessageinformingtheclientthatfuturemessagesfromtheserverwillbeencryptedwiththesessionkey.Itthensendsaseparate(encrypted)messageindicatingthattheserverportionofthehandshakeisfinished.

10.TheTLShandshakeisnowcompleteandthesessioncanbegin.

ExamTip:Authenticationwasaone-wayprocessforSSLv1andv2,withonlytheserverprovidingauthentication.InSSLv3/TLS,mutualauthenticationofbothclientandserverispossible.TheexamwillstillhaveSSL!

Atthispoint,theauthenticityoftheserverandpossiblytheclienthasbeenestablished,andthechannelisprotectedbyencryptionagainsteavesdropping.Eachpacketisencryptedusingthesymmetrickeybeforetransferacrossthenetwork,andthendecryptedbythereceiver.AllofthisworkrequiresCPUtime;hence,SSL/TLSconnectionsrequiresignificantlymoreoverheadthanunprotectedconnections.Establishingconnectionsisparticularlytimeconsuming,soevenstatelesswebconnectionsareheldinastatefulfashionwhensecuredviaSSL/TLS,toavoidrepeatingthehandshakeprocessforeachrequest.Thismakessome

webserverfunctionalitymoredifficult,suchasimplementingwebfarms,andrequiresthateitheranSSL/TLSappliancebeusedbeforethewebservertomaintainstateortheSSL/TLSstateinformationbemaintainedinadirectory-typeserviceaccessiblebyallofthewebfarmservers.Eithermethodrequiresadditionalinfrastructureandequipment.However,toenablesecuree-commerceandotherprivatedatatransactionsovertheInternet,thisisacost-effectivemethodtoestablishaspecificlevelofnecessarysecurity.

TechTip

CertificatesAcertificateismerelyastandardsetofformatteddatathatrepresentstheauthenticityofthepublickeyassociatedwiththesigner.Iftheissuerisathirdpartyofstature,suchasVeriSignorAT&T,youcanrestyourfaithuponthatauthenticity.IftheissuerisalargefirmsuchasMicrosoft,youcanprobablytrustitifyouaredownloadingitscode.IftheissuerisBob’sCertificateShack—well,unlessyouknowBob,youmayhavecauseforconcern.Certificatesdonotvouchforcodesecurity;theyonlysaythatthepersonorentitythatissigningthemisactuallythepersonorentitytheyclaimtobe.DetailsofcertificatesandPKIelementstosupporttheirusearecoveredinChapter6,andyouareencouragedtobrushuponthemifneeded.

Theuseofcertificatescouldpresentalotofdataandcomplicationtoauser.Fortunately,browsershaveincorporatedmuchofthisdesiredfunctionalityintoaseamlessoperation.OnceyouhavedecidedalwaystoacceptcodefromXYZCorporation,subsequentcertificatechecksarehandledbythebrowser.TheabilitytomanipulatecertificatesettingsisundertheOptionsmenusinbothInternetExplorer(Figures17.2and17.3)andMozillaFirefox(Figures17.4and17.5).

•Figure17.2InternetExplorercertificatemanagementoptions

•Figure17.3InternetExplorercertificatestore

•Figure17.4Firefoxcertificateoptions

•Figure17.5Firefoxcertificatestore

TechTip

SSL/TLSAttacksSSL/TLSisspecificallydesignedtoprovideprotectionfromman-in-themiddleattacks.Byauthenticatingtheserverendoftheconnection,SSL/TLSwasdesignedtopreventtheinitialhijackingofasession.Byencryptingalloftheconversationsbetweentheclientandtheserver,SSL/TLSpreventseavesdropping.Evenwithallofthis,however,SSL/TLSisnotacompletesecuritysolutionandcanbedefeated.

OnceacommunicationisintheSSL/TLSchannel,itisverydifficulttodefeattheSSLprotocol.Beforedataentersthesecuredchannel,however,defeatispossible.ATrojanprogramthatcopieskeystrokesandechoesthemtoanotherTCP/IPaddressinparallelwiththeintendedcommunicationcandefeatSSL/TLS,forexample,providedthattheTrojanprogramcopiesthedatapriortoSSL/TLSencapsulation.Thistypeofattackhasoccurredandhasbeenusedtostealpasswordsandothersensitivematerialfromusers,performingthetheftastheuseractuallytypesinthedata.

TechTip

SSL/TLSProxyAttackSSL/TLS-basedsecurityisnotfoolproof.Itcanbedefeated,asinthecaseofaproxy-basedattack.Examiningthehandshake,thefollowingstepscouldoccur,asshowninthisillustration:

•SSL/TLSman-in-the-middleattack

1.Theclient(C)initiatesaTLSsessionwiththeirbankserver(S)throughaproxy(P).2.PactsbyechoingtheinformationsenttoitbyC(step1a)toS(step1b),imitatingCtoS,andestablishingasecurechannelbetweenPandS(TLS#1).

3.PcreatesasecondsecurechanneltoC(TLS#2),usinginformationreceivedfromS,pretendingtobeS.

4.Theuserassumesthatthedottedlinesoccur—asecurechanneltothebankdirectly—whentheclientactuallyhasonlyasecurechanneltotheproxy.Infact,theproxyhasthesecurechanneltothebank,andasfarasthebankisconcerned,theproxyistheclientandusingtheclient’scredentials.Foraproxythatisnotcompletelytrusted,thiscouldbeanightmarefortheclient.

Theadventofhigh-assurancecertificatespreventstheproxyfromimitatingthebank,asitcannotgivethecorrectsetofcredentialsbacktotheclienttocompletethehigh-assurancehandshake.Mutualauthenticationisalsodesignedtopreventthis,astheproxycannotsimultaneouslyimitatebothsidesofthehandshake.Mutualauthenticationisrarelyused,asthereistheissueofmaintainingclientcertificatesthataretrustedtoaserver—achallengeforbroad-reachsiteslikefinancialinstitutionsande-commercesites.

TheWeb(HTTPandHTTPS)HTTPisusedforthetransferofhyperlinkeddataovertheInternet,fromwebserverstobrowsers.WhenausertypesaURLsuchashttp://www.example.comintoabrowser,thehttp://portionindicatesthatthedesiredmethodofdatatransferisHTTP.AlthoughitwasinitiallycreatedjustforHTMLpages,todaymanyprotocolsdelivercontentoverthisconnectionprotocol.HTTPtraffictakesplaceoverTCPport80bydefault,andthisportistypicallyleftopenonfirewallsbecauseoftheextensiveuseofHTTP.OneoftheprimarydriversbehindthedevelopmentofSSL/TLSwasthe

desiretohidethecomplexitiesofcryptographyfromendusers.WhenusinganSSL/TLS-enabledbrowser,thiscanbedonesimplybyrequestingasecureconnectionfromawebserverinsteadofanonsecureconnection.WithrespecttoHTTPconnections,thisisassimpleasusinghttps://inplaceofhttp://.TheentryofanSSL/TLS-basedprotocolwillcauseabrowserto

performthenecessarynegotiationswiththewebservertoestablishtherequiredlevelofsecurity.Oncethesenegotiationshavebeencompletedandthesessionissecuredbyasessionkey,aclosedpadlockiconisdisplayedinthelowerrightofthescreentoindicatethatthesessionissecure.Iftheprotocolishttps:,yourconnectionissecure;ifitishttp:,thentheconnectioniscarriedbyplaintextforanyonetosee.Figure17.6showsasecureconnectioninInternetExplorer,andFigure17.7showstheequivalentinFirefox.AsofInternetExplorer7,Microsoftplacesthepadlockiconinanobviousposition,nexttotheURL,insteadofinthelower-rightcornerofthescreen,whereuserscouldmoreeasilymissit.Tocombatavarietyofattacks,in2006theSSL/TLSlandscapechangedwith

theadventofextendedvalidationcertificatesandhighsecuritybrowsers.ThesechangesprovidevisualcuestotheuserwhenhighassurancecertificatesarebeingusedaspartofasecureSSL/TLSconnection.Theseimprovementswereinresponsetophishingsitesandonlinefraud,andalthoughtheyrequireadditionalcostsandregistrationonthepartofthevendors,thisisamodestup-frontcosttohelpreducefraudandprovideconfidencetocustomers.

•Figure17.6High-assurancenotificationinInternetExplorer

•Figure17.7High-assurancenotificationinFirefox

Theobjectiveofenablingcryptographicmethodsinthisfashionistomakeiteasyforenduserstousetheseprotocols.SSL/TLSisdesignedtobeprotocolagnostic.AlthoughdesignedtorunontopofTCP/IP,itcanoperateontopofother,lower-levelprotocols,suchasX.25.SSL/TLSrequiresareliablelower-levelprotocol,soitisnotdesignedandcannotproperlyfunctionontopofanonreliableprotocolsuchastheUserDatagramProtocol(UDP).Evenwiththislimitation,SSL/TLShasbeenusedtosecuremanycommonTCP/IP-basedservices,asshowninTable17.1.

Table17.1 SSL/TLS-ProtectedServices

HTTPSEverywhereWhenwebsiteswerefirstdeployed,providingHTTPSwasaresourcecostissue,becauseittookprocessorcyclestoencryptalltheconnections.Today,withavarietyofencryptiontechnologiesavailable,managingtheresourcesforHTTPSconnectionsismucheasier,andacasehasbeenmadebymanyinsecuritythatallwebconnectionsshouldbeHTTPS.ThishasresultedintheHTTPSEverywheremovement(https://www.eff.org/https-everywhere/),spearheadedbytheElectronicFrontierFoundation(EFF).

IfwebsiteseverywherewouldturnoffHTTPinfavorofusingonlyHTTPS(withTLSinlightofSSLvulnerabilities),thiswouldnotsolveallthesecurityproblems,butitwouldraisethebarsubstantiallyformanyattacks.HTTPSEverywherewouldgoalongwayforprivacy,becauseitwouldpreventdatasnooping.Itwouldalsopreventmanyman-in-the-middleattacks,suchasSSLstripping.

BecausenotallsitesareHTTPSyet,theEFFhasdevelopedaplug-inforbrowserscalledHTTPSEverywhere.Thisplug-inhelpsthebrowsermaintainanHTTPSconnectionandwarnswhenitisnotpresent.

HTTPStrictTransportSecurityHTTPStrictTransportSecurity(HSTS)isanIETFstandardandamechanismtoenforcerulestopreventbrowsersfromdowngradingsecuritywhenaccessingasite.ThepolicystatesthatwhenawebserverprovidesanHTTPresponseheaderfieldnamed“Strict-Transport-Security,”thentheuseragentshallcomplybynotissuinginsecurerequests.Theheaderfieldhasatimeperiodassociatedwithit,setintheheader,duringwhichthepolicyisineffect.HSTSwascreatedinresponsetoaseriesofattackprofiles,themost

criticalbeingtheSSLstrippingman-in-the-middleattacks,firstpubliclyintroducedbyMoxieMarlinspike.TheSSLstrippingattackworksonbothSSLandTLSbytransparentlyconvertingthesecureHTTPSconnectionintoaplainHTTPconnection,removingthetransportlayerencryptionprotections.Althoughanobservantusermightnoticethedropinsecurity,bythenthedamagemayhavebeendone,andthisreliesuponusersknowingwhetherapageshouldbesecureornot.Nowarningsarepresentedtotheuserduringthedowngradeprocess,whichmakestheattackfairlysubtletoallbutthemostvigilant.Marlinspike’ssslstriptoolfullyautomatestheattackandisavailableontheWeb.

TryThis!SniffYourOwnConnections!DeterminingwhatlevelofprotectionyouhavewhensurfingtheWebiseasy.Useapacket-sniffingtoollikeWiresharktorecordyourowncommunications.BecauseHTTPSendsatyourbrowser,thepacketcapturemechanismshouldreflectthesameexperienceanoutsiderwillseeifsniffingyourtraffic.Byexaminingthepackets,youcanseeiftrafficisencrypted,whichtrafficisencrypted,andwhatisvisibletooutsiders.

DirectoryServices(DAPandLDAP)Adirectoryisadatastoragemechanismsimilartoadatabase,butithasseveraldistinctdifferencesdesignedtoprovideefficientdataretrievalservicescomparedtostandarddatabasemechanisms.Adirectoryisdesignedandoptimizedforreadingdata,offeringveryfastsearchandretrievaloperations.Thetypesofinformationstoredinadirectorytendtobedescriptiveattributedata.Adirectoryoffersastaticviewofdatathatcanbechangedwithoutacomplexupdatetransaction.Thedataishierarchicallydescribedinatreelikestructure,andanetworkinterfaceforreadingistypical.

Asdirectoriesareoptimizedforreadoperations,theyarefrequentlyemployedwheredataretrievalisdesired.Commonusesofdirectoriesincludee-mailaddresslists,domainserverdata,andresourcemapsofnetworkresources.

LDAPoverTCPisaplaintextprotocol,meaningdataispassedintheclearandissusceptibletoeavesdropping.Encryptioncanbeusedtoremedythisproblem,andtheapplicationofSSL/TLS-basedserviceswillprotectdirectoryqueriesandrepliesfromeavesdroppers.

Toenableinteroperability,theX.500standardwascreatedasastandardfordirectoryservices.TheprimarymethodforaccessinganX.500directoryisthroughtheDirectoryAccessProtocol(DAP),aheavyweightprotocolthatisdifficulttoimplementcompletely,especiallyonPCsandmoreconstrainedplatforms.ThisledtotheLightweightDirectoryAccessProtocol(LDAP),whichcontainsthemostcommonlyusedfunctionality.LDAPcaninterfacewithX.500services,and,mostimportantly,LDAPcanbeusedoverTCPwithsignificantlylesscomputingresourcesthanafullX.500implementation.LDAPoffersallofthefunctionalitymostdirectoriesneedandiseasierandmoreeconomicaltoimplement;henceLDAPhasbecometheInternetstandardfordirectoryservices.

SSL/TLSLDAPSSL/TLSprovidesseveralimportantfunctionstoLDAPservices.Itcanestablishtheidentityofadatasourcethroughtheuseofcertificates,anditcanalsoprovidefortheintegrityandconfidentialityofthedatabeingpresentedfromanLDAPsource.AsLDAPandSSL/TLSaretwoseparateindependentprotocols,interoperabilityismoreafunctionofcorrectsetupthananythingelse.ToachieveLDAPoverSSL/TLS,thetypicalsetupistoestablishanSSL/TLSconnectionandthenopenanLDAPconnectionovertheprotectedchannel.TodothisrequiresthatboththeclientandtheserverbeenabledforSSL/TLS.Inthecaseoftheclient,mostbrowsersarealreadyenabled.InthecaseofanLDAPserver,thisspecificfunctionmustbeenabledbyasystemadministrator.Asthissetupinitiallyiscomplicated,it’sdefinitelyataskforacompetentsystemadministrator.OnceanLDAPserverissetuptofunctionoveranSSL/TLS

connection,itoperatesasitalwayshas.TheLDAPserverrespondstospecificquerieswiththedatareturnedfromanodeinthesearch.TheSSL/TLSfunctionalityistransparenttothedataflowfromtheuser’sperspective.Fromtheoutside,SSL/TLSpreventsobservationofthedatarequestandresponse,ensuringconfidentiality.

FileTransfer(FTPandSFTP)OneoftheoriginalintendedusesoftheInternetwastotransferfilesfromonemachinetoanotherinasimple,secure,andreliablefashion,whichwasneededbyscientificresearchers.Today,filetransfersrepresentdownloadsofmusiccontent,reports,andotherdatasetsfromothercomputersystemstoaPC-basedclient.Until1995,themajorityofInternettrafficwasfiletransfers.Withallofthisneed,aprotocolwasnecessarysothattwocomputerscouldagreeonhowtosendandreceivedata.Assuch,FTPisoneoftheolderprotocols.

FTPFileTransferProtocol(FTP)isanapplication-levelprotocolthatoperatesoverawiderangeoflower-levelprotocols.FTPisembeddedinmostoperatingsystemsandprovidesamethodoftransferringfilesfromasendertoareceiver.MostFTPimplementationsaredesignedtooperatebothways,sendingandreceiving,andcanenableremotefileoperationsoveraTCP/IPconnection.FTPclientsareusedtoinitiatetransactions,andFTPserversareusedtorespondtotransactionrequests.Theactualrequestcanbeeithertoupload(senddatafromclienttoserver)ortodownload(senddatafromservertoclient).

TechTip

FTPIsNotSecureFTPisaplaintextprotocol.Usercredentialsusedforloginsaresentplaintextacrossthenetwork.FiletransfersviaFTPcanbeeitherbinaryorintextmode,butineithercase,theyareinplaintextacrossthenetwork.Ifconfidentialityofatransferisdesired,thenasecurechannelshouldbeusedforthetransfer.Ifintegrityisaconcern,amorecomplexmethodoftransferwillberequired,tosupportdigitalhashesandsignatures.

ClientsforFTPonaPCcanrangefromanapplicationprogram,tothecommand-lineFTPprograminWindows/DOS,tomostbrowsers.Toopen

anFTPdatastoreinabrowser,youcanenterftp://urlinthebrowser’saddressfieldtoindicatethatyouwanttoseethedataassociatedwiththeURLviaanFTPsession—thebrowserhandlesthedetails.

BlindFTP(AnonymousFTP)Toaccessresourcesonacomputer,anaccountmustbeusedtoallowtheoperatingsystem–levelauthorizationfunctiontowork.InthecaseofanFTPserver,youmaynotwishtocontrolwhogetstheinformation,soastandardaccountcalledanonymousexists.Thisallowsunlimitedpublicaccesstothefilesandiscommonlyusedwhenyouwanttohaveunlimiteddistribution.Onaserver,accesspermissionscanbeestablishedtoallowonlydownloadingoronlyuploadingorboth,dependingonthesystem’sfunction.

AsFTPcanbeusedtoallowanyoneaccesstouploadfilestoaserver,itisconsideredasecurityriskandiscommonlyimplementedonspecializedserversisolatedfromothercriticalfunctions.

AsFTPserverscanpresentasecurityrisk,theyaretypicallynotpermittedonworkstationsandaredisabledonserverswithoutneedforthisfunctionality.

SFTPFTPoperatesinaplaintextmode,soaneavesdroppercanobservethedatabeingpassed.Ifconfidentialtransferisrequired,SecureFTP(SFTP)combinesboththeSecureShell(SSH)protocolandFTPtoaccomplishthistask.SFTPoperatesasanapplicationprogramthatencodesboththecommandsandthedatabeingpassedandrequiresSFTPtobeonboththeclientandtheserver.SFTPisnotinteroperablewithstandardFTP—theencryptedcommandscannotbereadbythestandardFTPserverprogram.ToestablishSFTPdatatransfers,theservermustbeenabledwiththe

SFTPprogram,andthenclientscanaccesstheserver,providedtheyhavethecorrectcredentials.OneofthefirstSFTPoperationsisthesameasthatofFTP:anidentificationfunctionthatusesausernameandanauthorizationfunctionthatusesapassword.ThereisnoanonymousSFTPaccountbydefinition,soaccessisestablishedandcontrolledfromtheserverusingstandardaccesscontrollists(ACLs),IDs,andpasswords.

VulnerabilitiesModernencryptiontechnologycanprovidesignificantlevelsofprivacy,uptomilitary-gradesecrecy.TheuseofprotocolssuchasTLSprovidesaconvenientmethodforenduserstousecryptographywithouthavingtounderstandhowitworks.Thiscanresultincomplacency—theimpressionthatonceTLSisenabled,theuserissafe,butthisisnotnecessarilythecase.IfaTrojanprogramisrecordingkeystrokesandsendingtheinformationtoanotherunauthorizeduser,forexample,TLScannotpreventthesecuritybreach.Iftheuserisconnectingtoanuntrustworthysite,themerefactthattheconnectionissecuredoesnotpreventtheothersitefromrunningascam.

TLSisnotaguaranteeofsecurity.AllTLScandoissecurethetransportlinkbetweenthecomputerandtheserver.Therearestillanumberofvulnerabilitiesthatcanaffectthesecurityofthesystem.AkeyloggerontheclientcancopythesecretsbeforetheygototheTLS-protectedlink.Malwareoneitherendofthesecurecommunicationcancopyand/oraltertransmissionsoutsidethesecurelink.

UsingTLSandotherencryptionmethodswillnotguardagainstyourcreditcardinformationbeing“lost”byacompanywithwhichyoudobusiness,asintheEgghead.comcreditcardhackof2000.InDecember2000,Egghead.com’screditcarddatabasewashacked,andasmanyas3.7millioncreditcardnumberswereexposed.Thisresultedeventuallyinthe

lossofthefirm,whichisnowknownasNewEgg.Theyear2014wasayearfilledwithdatabreaches,lossesofcustomerinformation—includingcreditcardnumbers—frommanyhigh-profilemerchantssuchasTarget.Inthesecases,thesecurityfailurewasinternaltothedatastorageinthecompany,notduringtransfertothefirm.Soevenwithsecurewebcontrols,datacanbelostafterbeingstoredinacompanydatabase.Thekeytounderstandingwhatisprotectedandwhereitisprotectedis

tounderstandwhattheseprotocolscanandcannotdo.TheTLSsuitecanprotectdataintransit,butnotoneitherendinstorage.Itcanauthenticateusersandservers,providedthatthecertificatemechanismsareestablishedandusedbybothparties.Properlysetupandused,TLScanprovideaverysecuremethodofauthentication,followedbyconfidentialityindatatransfersanddataintegritychecking.Butagain,allofthisoccursduringtransit,andtheprotectionendsoncethedataisstored.

Code-BasedVulnerabilitiesTheabilitytoconnectmanymachinestogethertotransferdataiswhatmakestheInternetsofunctionalforsomanyusers.Browsersenablemuchofthisfunctionality,andasthetypesofdatahavegrownontheInternet,browserfunctionalityhasgrownaswell.Butnotallfunctionscanbeanticipatedorincludedineachbrowserrelease,sotheideaofextendingbrowserfunctionsthroughplug-insbecameastandard.Browserscanperformmanytypesofdatatransfer,andinsomecases,additionalhelperprograms,orplug-ins,canincreasefunctionalityforspecifictypesofdatatransfers.Inothercases,separateapplicationprogramsmaybecalledbyabrowsertohandlethedatabeingtransferred.Commonexamplesoftheseplug-insandprogramsincludeShockwaveandFlashplug-ins,WindowsMediaPlayer,andAdobeAcrobat(bothplug-inandstandalone).TherichnessthatenablesthedesiredfunctionalityoftheInternethasalsospawnedsomeadditionaltypesofinterfacesintheformofActiveXcomponentsandJavaapplets.Inessence,allofthesearepiecesofcodethatcanbewrittenbythird

parties,distributedviatheInternet,andrunonyourPC.Ifthecodedoeswhattheuserwants,theuserishappy.Buttheopportunityexistsfortheseapplicationsorplug-instoincludemaliciouscodethatperformsactionsnotdesiredbytheenduser.Maliciouscodedesignedtooperatewithinawebbrowserenvironmentisamajortoolforcomputercrackerstousetoobtainunauthorizedaccesstocomputersystems.WhetherdeliveredbyHTML-basede-mail,bygettingausertovisitawebsite,orevendeliveryviaanadserver,theresultisthesame:malwareperformsmalicioustasksinthebrowserenvironment.

BufferOverflowsOneofthemostcommonexploitsusedtohackintosoftwareisthebufferoverflow.Thebufferoverflowvulnerabilityisaresultofpoorcodingpracticesonthepartofsoftwareprogrammers—whenanyprogramreadsinputintoabuffer(anareaofmemory)anddoesnotvalidatetheinputforcorrectlength,thepotentialforabufferoverflowexists.Thebuffer-overflowvulnerabilityoccurswhenanapplicationcanacceptmoreinputthanithasassignedstoragespaceandtheinputdataoverwritesotherprogramareas.Theexploitconceptissimple:Anattackerdevelopsanexecutableprogramthatperformssomeactiononthetargetmachineandappendsthiscodetoalegitimateresponsetoaprogramonthetargetmachine.Whenthetargetmachinereadsthroughthetoo-longresponse,abuffer-overflowconditioncausestheoriginalprogramtofail.Theextramaliciouscodefragmentisnowinthemachine’smemory,awaitingexecution.Iftheattackerexecuteditcorrectly,theprogramwillskipintotheattacker’scode,runningitinsteadofcrashing.

CrossCheckDangersofSoftwareVulnerabilitiesErrorsinsoftwareleadtovulnerabilitiesassociatedwiththecodebeingrun.Thesevulnerabilitiesareexploitedbyhackerstoperformmaliciousactivityonamachine.Theseerrors

arefrequentlyrelatedtoweb-enabledprograms,astheInternetprovidesausefulconduitforhackerstoachieveaccesstoasystem.Theproblemofcodevulnerabilities,frombufferoverflows,toarithmeticoverflows,tocross-siterequestforgeries,cross-sitescripting,andinjectionattacks,isaseriousissuethathasmanyfaces.Itisnotedinthischapterbecausewebcomponentsareinvolved,butfulldetailsontheseverityofandstepstomitigatethisissueareinChapter18.Thenexttimeyouprovideinputtoaweb-basedapplication,thinkofwhatmaliciousactivityyoucouldperformontheserverinquestion.

JavaJavaisacomputerlanguageinventedbySunMicrosystemsasanalternativetoMicrosoft’sdevelopmentlanguages.Designedtobeplatform-independentandbasedonC,Javaofferedalowlearningcurveandawayofimplementingprogramsacrossanenterprise,independentofplatform.Althoughplatformindependenceneverfullymaterialized,andthepaceofJavalanguagedevelopmentwasslowedbySun,Javahasfounditselftobealeaderinobject-orientedprogramminglanguages.JavaoperatesthroughaninterpretercalledaJavaVirtualMachine

(JVM)oneachplatformthatinterpretstheJavacode,andthisJVMenablestheprogram’sfunctionalityforthespecificplatform.Java’srelianceonaninterpretivestephasledtoperformanceissues,andJavaisstillplaguedbypoorperformancewhencomparedtomostotherlanguages.SecuritywasoneofthetoutedadvantagesofJava,butinreality,securityisnotabuilt-infunctionbutanafterthoughtandisimplementedindependentlyofthelanguagecore.Thisallbeingsaid,properlycodedJavacanoperateatreasonablerates,andwhenproperlydesignedcanactinasecurefashion.ThesefactshaveledtothewidedependenceonJavaformuchoftheserver-sidecodingfore-commerceandotherweb-enabledfunctionality.ServerscanaddCPUstoaddressspeedconcerns,andthelowlearningcurvehasprovencostefficientforenterprises.

Javaisdesignedforsafety,reducingtheopportunityforsystemcrashes.Javacanstillperformmaliciousactivities,andthefactthatmanyusersfalselybelieveitissafeincreasesitsusefulnesstoattackers.

Javawasinitiallydesignedtobeusedintrustedenvironments,andwhenitmovedtotheInternetforgeneraluse,safetybecameoneofitsmuch-hypedbenefits.Javahasmanysafetyfeatures,suchastypecheckingandgarbagecollection,thatactuallyimproveaprogram’sabilitytorunsafelyonamachineandnotcauseoperatingsystem–levelfailures.Thisisolatestheuserfrommanycommonformsofoperatingsystemfaultsthatcanendinthe“bluescreenofdeath”inaWindowsenvironment,wheretheoperatingsystemcrashesandforcesarebootofthesystem.Safetyisnotsecurity,however,andalthoughsafe,amaliciousJavaprogramcanstillcausesignificantdamagetoasystem.Theprimarymodeofacomputerprogramistointeractwiththe

operatingsystemandperformfunctionaltasksforauser,suchasgettinganddisplayingdata,manipulatingdata,storingdata,andsoon.Althoughthesefunctionscanseembenign,whenenabledacrosstheWebtheycanhavesomeunintendedconsequences.Theabilitytoreaddatafromaharddriveanddisplayitonthescreenisessentialformanyprograms,butwhentheprogramisdownloadedandrunfromtheInternetandthedatais,withouttheknowledgeoftheuser,sentacrosstheInternettoanunauthorizeduser,thisenablesaprogramtospyonauserandstealdata.Writingdatatotheharddrivecanalsocausedeletionsiftheprogramdoesn’twritethedatawheretheuserexpects.SunrecognizedthesedangersandenvisionedthreedifferentsecuritypoliciesforJavathatwouldbeimplementedviathebrowserandJVM,providingdifferentlevelsofsecurity.ThefirstpolicyisnottorunJavaprogramsatall.ThesecondrestrictsJavaprogramfunctionalitywhentheprogramisnotrundirectlyfromthesystem’sharddrive—programsbeingdirectlyexecutedfromtheInternethavesevererestrictionsthatblockdiskaccessandforceothersecurity-relatedfunctionstobeperformed.ThelastpolicyrunsanyandallJavaprogramsaspresented.Mostbrowsersadoptedthesecondsecuritypolicy,restrictingJava

functionalityonaclientunlesstheprogramwasloadeddirectlyfromtheclient’sharddrive.Althoughthissolvedmanyproblemsinitially,italsoseverelylimitedfunctionality.Today,browsersallowmuchmorespecificgranularityonsecurityforJava,basedonsecurityzonesandusersettings.

JavaandJavaScriptarecompletelyseparateentities.JavaScriptdoesnotcreateappletsorstand-aloneapplications.JavaScriptresidesinsideHTMLdocuments,andcanprovidelevelsofinteractivitytowebpagesthatarenotachievablewithsimpleHTML.Javaisusedtocreateapplicationsthatruninavirtualmachineorbrowser.JavaScriptcodeisrunonabrowseronly.JavaScriptisnotpartoftheJavaenvironment.

JavaScriptJavaScriptisascriptinglanguagedevelopedbyNetscapeanddesignedtobeoperatedwithinabrowserinstance.JavaScriptworksthroughthebrowserenvironment.TheprimarypurposeofJavaScriptistoenablefeaturessuchasvalidationofformsbeforetheyaresubmittedtotheserver.EnterprisingprogrammersfoundmanyotherusesforJavaScript,suchasmanipulatingthebrowserhistoryfiles,nowprohibitedbydesign.JavaScriptactuallyrunswithinthebrowser,andthecodeisexecutedbythebrowseritself.Thishasledtocompatibilityproblems,andnotjustbetweenvendors,suchasMicrosoftandMozilla,butbetweenbrowserversions.SecuritysettingsinInternetExploreraredonebyaseriesofzones,allowingdifferinglevelsofcontrolover.NETfunctionality,ActiveXfunctionality,andJavafunctionality(seeFigure17.8).Unfortunately,thesesettingscanbechangedbyaTrojanprogram,alteringthebrowser(withoutalertingtheuser)andloweringthesecuritysettings.InFirefox,usingtheNoScriptplug-inisasolutiontothis,butthereducedfunctionalityleadstootherissues,asshowninFigure17.9,andrequiresmorediligentuserintervention.

•Figure17.8JavaconfigurationsettingsinInternetExplorer

•Figure17.9Securitysettingfunctionalityissues

AlthoughJavaScriptwasdesignednottobeabletoaccessfilesornetworkresourcesdirectly,exceptthroughthebrowserfunctions,ithasnotproventobeassecureasdesired.ThisfaulttracesbacktoasimilarfaultintheJavalanguage,wheresecuritywasaddedon,withoutthebenefitofacomprehensivesecuritymodel.So,althoughdesignersputthoughtandcommonsenseintothedesignofJavaScript,thelackofacomprehensivesecuritymodelleftsomesecurityholes.Forinstance,aformcouldsubmititselfviae-mailtoanundisclosedrecipient,eithereavesdropping,spamming,orcausingotherproblems—imagineyourmachinesendingdeaththreate-mailstohigh-levelgovernmentofficialsfromarogueJavaScriptimplementation.Further,mostbrowsersdonothaveamechanismtohaltarunning

script,shortofabortingthebrowserinstance,andeventhismaynotbepossibleifthebrowserhasstoppedrespondingtocommands.MaliciousJavaScriptscandomanythings,includingopeningtwonewwindowseverytimeyoucloseone,eachwiththecodetoopentwomore.Thereisnowayoutofthisone,shortofkillingthebrowserprocessfromthe

operatingsystem.

Manywebsitesmayhavebehaviorsthatusersdeemlessthandesirable,suchaspoppingopenadditionalwindows,eitherontop(pop-up)orunderneath(pop-under).Topreventthesebehaviors,aclassofappletreferredtoasapop-upblockermaybeemployed.Althoughtheymayblocksomedesiredpop-ups,mostpop-upblockershavesettingstoallowpop-upsonselectedsites.Theuseofapop-upblockerassistsinretainingstrictcontroloverbrowserbehaviorandenhancessecurityfortheuser.

JavaScriptscanalsotrickusersintothinkingtheyarecommunicatingwithoneentitywheninfacttheyarecommunicatingwithanother.Forexample,awindowmayopenaskingwhetheryouwanttodownloadandexecutethenewupdatefrom“http://www.microsoft.com..../update.exe,”andwhatiscoveredbytheellipsis(…)isactually“www.microsoft.com.attacker.org/”—theuserassumesthisisaMicrosoftaddressthatiscutshortbyspacerestrictionsonthedisplay.Asabrowserscriptinglanguage,JavaScriptisheretostay.Its

widespreadpopularityfordevelopingappletssuchasanimatedclocks,mortgagecalculators,andsimplegameswillovercomeitsbuggynatureandpoorlevelofsecurity.

ActiveXActiveXisthenamegiventoabroadcollectionofapplicationprogramminginterfaces(APIs),protocols,andprogramsdevelopedbyMicrosofttodownloadandexecutecodeautomaticallyoveranInternet-basedchannel.ThecodeisbundledtogetherintoanActiveXcontrolwithan.ocxextension.ThesecontrolsarereferencedinHTMLusingthe<object>tag.ActiveXisatoolfortheWindowsenvironmentandcanbeextremelypowerful.Itcandosimplethings,suchasenableabrowsertodisplayacustomtypeofinformationinaparticularway,anditcanalsoperformcomplextasks,suchasupdatetheoperatingsystemand

applicationprograms.ThisrangeofabilitiesgivesActiveXalotofpower,butthispowercanbeabusedaswellasusedforgoodpurposes.InternetExplorerhasseveraloptionstocontroltheexecutionofActiveXcontrols,asillustratedinFigure17.10.

•Figure17.10ActiveXsecuritysettingsinInternetExplorer

ToenablesecurityandconsumerconfidenceindownloadedprogramssuchasActiveXcontrols,MicrosoftdevelopedAuthenticode,asystemthatusesdigitalsignaturesandallowsWindowsuserstodeterminewhoproducedaspecificpieceofcodeandwhetherornotthecodehasbeenaltered.AsinthecaseofJava,safetyandsecurityaredifferentthings,andAuthenticodepromotesneitherinreality.Authenticodeprovideslimitedaccountabilityatthetimeofdownloadandprovidesreasonableassurancethatthecodehasnotbeenchangedsincethetimeofsigning.Authenticode

doesnotidentifywhetherapieceofcodewillcausedamagetoasystem,nordoesitregulatehowcodeisused,soaperfectlysafeActiveXcontrolunderonesetofcircumstancesmaybemaliciousifusedimproperly.Aswithanotary’ssignature,recourseisverylimited—ifcodeissignedbyaterroristorganizationandthecoderuinsyourmachine,allAuthenticodedidwasmakeitseemlegitimate.Itisstillincumbentupontheuserstoknowfromwhomtheyaregettingcodeandtodeterminewhetherornottheytrustthatorganization.

ExamTip:ActiveXtechnologycanbeusedtocreatecomplexapplicationlogicthatisthenembeddedintoothercontainerobjectssuchasawebbrowser.ActiveXcomponentshaveverysignificantcapabilitiesandthusmaliciousActiveXobjectscanbeverydangerous.AuthenticodeisameansofsigninganActiveXcontrolsothatausercanjudgetrustbasedonthecontrol’screator.

CriticsofAuthenticodeandothercode-signingtechniquesarenotagainstcodesigning,forthisisauniversallyrecognizedgoodthing.Whatthecriticsargueisthatcodesigningisnotapanaceaforsecurityissuesandthatmarketingitasdoingmorethanitreallydoesisirresponsible.Understandingthenuancesofsecurityisimportantintoday’shighlytechnicalworld,andleavingtheexplanationstomarketingdepartmentsisnottheidealsolution.

SecuringtheBrowserAgreatdealofdebateconcernstherelativesecurityissueofbrowserextensionsversustherichuserinteractionthattheyprovide.ThereisnodoubtthattherichnessoftheenvironmentofferedbyActiveXaddstotheuserexperience.Butasisthecaseinmostcodingsituations,addedfeaturesmeansweakersecurity,allotherthingsbeingconstant.Ifnothingelse,adevelopmentteammustspendsomeportionofitstimeonsecuredevelopmentpractices,timethatsomedevelopersandmarketerswould

prefertospendonnewfeatures.Althoughnobrowseris100percentsafe,theuseofFirefoxcoupledwiththeNoScriptplug-incomestheclosesttofittingthebill.FirefoxwillnotexecuteActiveX,sothatthreatvectorisremoved.TheNoScriptplug-inallowstheusertodeterminefromwhichdomainstotrustscripts.TheuseofNoScriptputstheonusbackontheuserastowhichdomainscriptstheychoosetotrust,andalthoughit’snotperfectfromasecurityperspective,thisatleastallowsameasureofcontroloverwhatcodeyouwanttorunonyourmachine.

CGITheCommonGatewayInterface(CGI)wastheoriginalmethodforhavingawebserverexecuteaprogramoutsidethewebserverprocess,yetonthesameserver.CGIofferedmanyadvantagestoweb-basedprograms.Theprogramscanbewritteninanumberoflanguages,althoughPerlisafavorite.Thesescriptedprogramsembracethefullfunctionalityofaserver,allowingaccesstodatabases,UNIXcommands,otherprograms,andsoon.Thisprovidesawiderangeoffunctionalitytothewebenvironment.Withthisunrestrainedcapability,however,comesecurityissues.Poorlywrittenscriptscancauseunintendedconsequencesatruntime.Theproblemwithpoorlywrittenscriptsisthattheirdefectsarenotalwaysobvious.Sometimesscriptsappeartobefine,butunexpecteduserinputscanhaveunintendedconsequences.CGIisanoutdated,andforthemostpartretired,technology.Ithasbeen

replacedbynewerscriptingmethods.

Server-SideScriptsCGIhasbeenreplacedinmanywebsitesthroughnewerserver-sidescriptingtechnologiessuchasJava,ActiveServerPages(ASP),ASP.NET,andPHP.AllthesetechnologiesoperateinmuchthesamefashionasCGI:theyallowprogramstoberunoutsidethewebserverandtoreturndatatothewebservertobeservedtoendusersviaawebpage.

Thetermserver-sidescriptisactuallyamisnomer,astheseareactuallyexecutableprogramsthatareeitherinterpretedorruninvirtualmachines.Eachofthesenewertechnologieshasadvantagesanddisadvantages,butallofthemhavestrongersecuritymodelsthanCGI.Withthesesecuritymodelscomereducedfunctionalityand,aseachisbasedonadifferentlanguage,asteeperlearningcurve.Still,theneedforadherencetoprogrammingfundamentalsexistsinthesetechnologies—codemustbewelldesignedandwellwrittentoavoidthesamevulnerabilitiesthatexistinallformsofcode.Bufferoverflowsarestillanissue.Changinglanguagesortechnologiesdoesnoteliminatethebasicsecurityproblemsassociatedwithincorporatingopen-endeduserinputintocode.Understandingandqualifyinguserresponsesbeforeblindlyusingthemprogrammaticallyisessentialtothesecurityofasystem.

CookiesCookiesaresmallchunksofASCIItextpassedwithinanHTTPstreamtostoredatatemporarilyinawebbrowserinstance.InventedbyNetscape,cookiespassbackandforthbetweenwebserverandbrowserandactasamechanismtomaintainstateinastatelessworld.Stateisatermthatdescribesthedependenceonpreviousactions.Bydefinition,HTTPtrafficservedbyawebserverisstateless—eachrequestiscompletelyindependentofallpreviousrequests,andtheserverhasnomemoryofpreviousrequests.Thisdramaticallysimplifiesthefunctionofawebserver,butitalsosignificantlycomplicatesthetaskofprovidinganythingbutthemostbasicfunctionalityinasite.Cookiesweredevelopedtobridgethisgap.CookiesarepassedalongwithHTTPdatathroughaSet-CookiemessageintheheaderportionofanHTTPmessage.

Cookiescomeintwotypes,sessionandpersistent.Sessioncookieslastonlyduringawebbrowsingsessionwithawebsite.Persistentcookiesarestoredontheuser’sharddriveandlastuntilanexpirationdate.

Acookieisactuallyaseriesofname-valuepairsthatisstoredinmemoryduringabrowserinstance.Thespecificationforcookiesestablishedseveralspecificname-valuepairsfordefinedpurposes.Additionalname-valuepairsmaybedefinedatwillbyadeveloper.Thespecifiedsetofname-valuepairsincludesthefollowing:

ExpiresThisfieldspecifieswhenthecookieexpires.Ifnovalueexists,thecookieisgoodonlyduringthecurrentbrowsersessionandwillnotbepersistedtotheuser’sharddrive.Shouldavaluebegiven,thecookiewillbewrittentotheuser’smachineandpersisteduntilthisdatetimevalueoccurs.

DomainSpecifiesthedomainwherethecookieisused.Cookiesweredesignedasmemory-residentobjects,butastheuserordatacancauseabrowsertomovebetweendomains—say,fromcomedy.nettojokes.org—somemechanismneedstotellthebrowserwhichcookiesbelongtowhichdomains.

PathThisname-valuepairfurtherresolvestheapplicabilityofthecookieintoaspecificpathwithinadomain.Ifpath=/directory,thecookiewillbesentonlyforrequestswithin/directoryonthegivendomain.Thisallowsalevelofgranularcontrolovertheinformationbeingpassedbetweenthebrowserandserver,anditlimitsunnecessarydataexchanges.

SecureThepresenceofthekeyword[secure]inacookieindicatesthatitistobeusedonlywhenconnectedinanSSL/TLSsession.Thisdoesnotindicateanyotherformofsecurity,ascookiesarestoredinplaintextontheclientmachine.Cookiemanagementonabrowserisnormallyaninvisibleprocess,butmostbrowsershavemethodsforuserstoexamineandmanipulatecookiesontheclientside.Chromeuserscanexamine,delete,andblockindividualcookiesthroughtheinterfaceshowninFigure17.11.InternetExplorerhasasimilarinterface,withjustaDeleteoptioninthebrowserunderBrowsingHistory(seeFigure17.12).Additionalcookiemanipulationcanbe

donethroughthefileprocessingsystem,becausecookiesarestoredasindividualfiles,asshowninFigure17.13.Thiscombinationallowseasierbulkmanipulation,whichisausefuloption,ascookiescanbecomequitenumerousinshortorder.

•Figure17.11Chromecookiemanagement

•Figure17.12InternetExplorercookiemanagement

•Figure17.13InternetExplorercookiestore

Sowhatgoodarecookies?Disablecookiesinyourbrowserandgotosomecommonsitesthatyouvisit,andyou’llquicklylearntheusefulnessofcookies.Cookiesstoreavarietyofinformation,fromcustomerIDstodataaboutpreviousvisits.Becausecookiesarestoredonauser’smachine

inaformthatwillallowsimplemanipulation,theymustalwaysbeconsideredsuspectandarenotsuitableforuseasasecuritymechanism.Theycan,however,allowthebrowsertoprovidecrucialpiecesofinformationtoawebserver.Advertiserscanusethemtocontrolwhichadsyouareshown,basedonpreviousadsyouhaveviewedandregardlessofadlocationbysite.Specificsitescanusecookiestopassstateinformationbetweenpages,enablingfunctionalityattheuser’sdesiredlevels.CookiescanalsorememberyourZIPcodeforaweathersite,yourIDforastocktrackersite,theitemsinyourshoppingcart—thesearealltypicalcookieuses.Inthefinalanalysis,cookiesareapartofthedailywebexperience,heretostayandusefulifnotusedimproperly(suchastostoresecuritydataandtoprovideIDandauthentication).

DisablingCookiesIftheuserdisablescookiesinabrowser,thistypeofinformationwillnotbeavailableforthewebservertouse.IETFRFC2109describestheHTTPstate-managementsystem(cookies)andspecifiesseveralspecificcookiefunctionstobeenabledinbrowsers,specifically:

Theabilitytoturnonandoffcookieusage

Anindicatorastowhethercookiesareinuse

Ameansofspecifyingcookiedomainvaluesandlifetimes

Severalofthesefunctionshavealreadybeendiscussed,buttosurfcookie-freerequiresmorethanasimplestep.TellingabrowsertostopacceptingcookiesisasetupoptionavailablethroughanOptionsmenu,butthishasnoeffectoncookiesalreadyreceivedandstoredonthesystem.Topreventthebrowserfromsendingcookiesalreadyreceived,theusermustdeletethecookiesfromthesystem.Thisbulkoperationiseasilyperformed,andthenthebrowsercanruncookie-free.Severalthird-partytoolsenableevenafinergranularityofcookiecontrol.

BrowserPlug-insTheadditionofbrowserscriptingandActiveXcomponentsallowsabrowsertochangehowithandlesdata,tremendouslyincreasingitsfunctionalityasauserinterface.Butalldatatypesandalldesiredfunctionalitycannotbeofferedthroughtheseprogrammingtechnologies.Plug-insareusedtofillthesegaps.Plug-insaresmallapplicationprogramsthatincreaseabrowser’sability

tohandlenewdatatypesandaddnewfunctionality.Sometimestheseplug-insareintheformofActiveXcomponents,whichistheformMicrosoftchoseforitsOfficeplug-in,whichenablesabrowsertomanipulatevariousOfficefiles,suchaspivottablesfromExcel,overtheWeb.AdobehasdevelopedAcrobatReader,aplug-inthatenablesabrowsertoreadanddisplayPortableDocumentFormat(PDF)filesdirectlyinabrowser.PDFfilesofferplatformindependenceforprinteddocumentsandareusableacrossawidearrayofplatforms—theyareacompactwaytoprovideprintedinformation.Figure17.14illustratesthevariousplug-insandbrowserhelperobjects(discussedinthenextsection)enabledinInternetExplorer.

•Figure17.14Add-onsforInternetExplorer

Thecombinationofadevelopmentenvironmentfordevelopersandplug-in–enabledbrowsersthatcandisplaythecontenthascausedthesetechnologiestoseewidespreaduse.Theresultisatremendousincreaseinvisualrichnessinwebcommunications,andthis,inturn,hasmadetheWebmorepopularandhasincreasedusageinvariousdemographicsegments.Untilrecently,theseplug-inshavehadaremarkablesafetyrecord.As

Flash-basedcontenthasgrownmorepopular,crackershaveexaminedtheFlashplug-insandsoftware,determinedvulnerabilities,anddevelopedexploitcodetouseagainsttheFlashprotocol.Adobehaspatchedtheissue,butasApplehasdecidednottouseFlashonitsiPhonesoriPads,thedeathofFlashisonthehorizon.

MaliciousAdd-onsAdd-onsarepiecesofcodethataredistributedtoallowadditionalfunctionalitytobeaddedtoanexistingprogram.Anexampleofthesearebrowserhelperobjects(BHOs),whichprovideameansofcreatingaplug-inmodulethatisloadedwithInternetExplorerandprovideameansofaddingcapabilitytothebrowser.Thefunctionalitycanbesignificant,asinthecaseoftheAdobeAcrobatBHOthatallowsPDFstoberenderedinthebrowser.ABHOhasunrestrictedaccesstotheInternetExplorereventmodelandcandothingssuchascapturekeystrokes.

TechTip

BrowserMalwareThecircumventionofbrowserfunctionalityisacommonformofmalware.Browsermalwareexploitssecurityvulnerabilitiesinthebrowseritself,itsextensions,andplug-ins.

Otherprogramscanhaveadd-onsthatutilizethepermissionsgiventhemasterprogram.Youshouldonlyuseadd-onsfromtrustedsources,andyouneedtounderstandthelevelofinteractionrisktheypose.ActiveXisatechnologyimplementedbyMicrosofttoenhanceweb-enabledsystemsthroughsignificantadditionstousercontrols.Forexample,unlesssignedbyatrustedauthorityusingAuthenticode,ActiveXcontentshouldnotbeallowedinbrowsers,asthenatureofthecodechangescanpresentsignificantrisk.

SignedAppletsCodesigningwasanattempttobringthesecurityofshrink-wrappedsoftwaretosoftwaredownloadedfromtheInternet.Codesigningworksbyaddingadigitalsignatureandadigitalcertificatetoaprogramfiletodemonstratefileintegrityandauthenticity.Thecertificateidentifiestheauthor,andthedigitalsignaturecontainsahashvaluethatcoverscode,certificate,andsignaturetoproveintegrity,andthisestablishestheintegrityofthecodeandpublisherviaastandardbrowsercertificatecheck.Thepurposeofacompanysigningthecodeistostatethatitconsidersthecodeitcreatedtobesafe,anditisstatingthatthecodewillnotdoanyharmtothesystem(tothecompany’sknowledge).Thedigitalsignaturealsotellstheuserthatthestatedcompanyis,indeed,thecreatorofthecode.Theabilitytouseacertificatetosignanappletoracontrolallowsthe

identityoftheauthorofacontrolorapplettobeestablished.Thishasmanybenefits.Forinstance,ifausertrustscontentfromaparticularvendor,suchasSunMicrosystems,theusercantrustcontrolsthataresignedbySunMicrosystems.Thissigningofapieceofcodedoesnotdoanythingotherthanidentifythecode’smanufacturerandguaranteethatthecodehasnotbeenmodifiedsinceitwassigned.Asignedappletcanbehijackedaseasilyasagraphicoranyotherfile.

Thetwowaysanattackercouldhijackasignedcontrolarebyinlineaccessorbycopyingthefileinitsentiretyandrepublishingit.Inliningisusing

anembeddedcontrolfromanothersitewithorwithouttheothersite’spermission.RepublishingasignedcontrolisdonemuchlikestealingaGIForJPEGimage—acopyofthefileismaintainedontheunauthorizedsiteandservedfromthereinsteadoffromtheoriginallocation.Ifasignedcontrolcannotbemodified,whybeconcernedwiththesethefts,apartfromtheissueofintellectualproperty?Theprimarysecurityconcerncomesfromhowthecontrolisused.Acrackermaybeabletouseacontrolinanunintendedfashion,resultinginfilelossorbufferoverflow—conditionsthatweakenasystemandcanallowexploitationofothervulnerabilities.Acommonprogrammingactivityiscleaningupinstallationfilesfromacomputer’sharddriveaftersuccessfullyinstallingasoftwarepackage.Ifasignedcontrolisusedforthistaskandpermissionhasalreadybeengranted,thenimproperlyusingthecontrolcouldresultinthewrongsetoffilesbeingdeleted.Thecontrolwillstillfunctionasdesigned,buttheissuebecomeswhoitisusedbyandhow.Theseareconcernsnotaddressedsimplybysigningacontrolorapplet.

Application-BasedWeaknessesWebbrowsersarenottheonlyaspectofsoftwarebeingabusedbycrackers.Theapplicationsoftwarewrittentorunonserversandserveupthecontentforusersisalsoatarget.Webapplicationsecurityisafairlyhottopicinsecurity,asithasbecomeaprimetargetforprofessionalcrackers.Criminalhackerstypicallyareaftersomeformoffinancialreward,whetherfromstolendata,stolenidentity,orsomeformofextortion.Attackingweb-basedapplicationshasproventobealucrativeventureforseveralreasons.First,thetargetisarichenvironment,ascompanyaftercompanyhasdevelopedacustomer-facingwebpresence,oftenincludingcustom-codedfunctionalitythatpermitscustomeraccesstoback-endsystemsforlegitimatebusinesspurposes.Second,buildingthesecustomapplicationstohighlevelsofsecurityisadifficultifnotimpossiblefeat,especiallygiventhecorporatepressureondeliverytimeandcost.

CrossCheckCommonApplicationVulnerabilitiesTherearesomecommonapplicationvulnerabilitiesthathackersusetoattackwebsites,includinginjectionattacks,cross-siterequestforgeries,cross-sitescriptingattacks,andnumericattacks.Theseareattacksthatusethebrowser’sabilitytosubmitinputtoaback-endserverprogram,andtheytakeadvantageofcodingerrorsontheback-endsystem,enablingbehavioroutsidethedesiredprogramresponse.TheseerrorsarecoveredinmoredetailinChapter18,astheyarefundamentallyprogrammingerrorsontheserverside.

Thesameprogrammaticerrorsthatplagueoperatingsystems,suchasbufferoverflows,cancausehavocwithweb-basedsystems.Butweb-basedsystemshaveanewhistoryofrichcustomerinteractions,includingthecollectionofinformationfromthecustomeranddynamicallyusingcustomer-suppliedinformationtomodifytheuserexperience.Thismakesthecustomerapartoftheapplication,andwhenpropercontrolsarenotinplace,errorssuchastheMySpace-basedSamywormcanoccur.Differenttypesoferrorsarecommonlyobservedinthedeploymentofwebapplications,andthesehavebeencategorizedintosixlogicalgroupingsofvulnerabilities:authentication,authorization,logicalattacks,informationdisclosure,commandexecution,andclient-sideattacks.Atotalof24differenttypesofvulnerabilitieshavebeenclassifiedbytheWebApplicationSecurityConsortium(WASC),aninternationalorganizationthatestablishesbestpracticesforwebapplicationsecurity.Thechangingnatureoftheweb-basedvulnerabilitiesisdemonstratedby

thechangingoftheOWASPTopTenlistofwebapplicationvulnerabilitiesmaintainedbyTheOpenWebApplicationSecurityProject.OWASPisaworldwidefreeandopencommunityfocusedonimprovingthesecurityofapplicationsoftwareandhaspublishedaseriesofTopTenvulnerabilitylistshighlightingthecurrentstateoftheartandthreatenvironmentfacingwebapplicationdevelopers.OWASPmaintainsawebsite(www.owasp.org)withsignificantresourcestohelpfirmsbuildbettersoftwareandeliminatethesecommonandpervasiveproblems.Thetruechallengeinthisareaisnotjustaboutcoding,butalsoaboutdevelopingan

understandingofthenatureofwebapplicationsandthedifficultyofusinguser-suppliedinputsforcrucialaspectsinarich,userexperience–basedwebapplication.TheerrorsincludedintheOWASPTopTenlisthaveplaguedsomeofthelargestsitesandthosewitharguablythebesttalent,includingAmazon,eBay,MySpace,andGoogle.

SessionHijackingWhencommunicatingacrosstheWeb,itiscommontocreateasessiontocontrolcommunicationflows.Sessionscanbeestablishedandcontrolledusingavarietyofmethods,includingSSL/TLSandcookies.Itisimportanttosecurelyimplementthesetupandteardownofasession,forifonepartyendsthecommunicationwithoutproperlytearingdownthecommunicationsession,aninterlopercantakeoverthesession,continueafteroneofthepartieshasleft,andimpersonatethatparty.Ifyoulogintoyourbanktoconducttransactions,butallowasessionhijackerin,thenthehijackercancontinuebankingafteryouleave,usingyouraccount.Thisisoneofthereasonsitissoimportanttologoffofbankingandfinancialsites,ratherthanjustclosingthebrowser.Therearenumerousmethodsofsessionhijacking,fromman-in-the-

middleattackstoside-jackingandbrowsertakeovers.Side-jackingistheuseofpacketsniffingtostealasessioncookie.SecuringonlythelogonprocessandthenswitchingbacktostandardHTTPcanenablethisattackmethodology.Thebestdefensesaretouseencryptioncorrectly(TLS,notSSL)andto

logoutofandcloseapplicationswhendone.Whenusingmultitabbedbrowsers,itisbesttoclosetheentirebrowserinstance,notjustthetab.

Client-SideAttacksThewebbrowserhasbecomethemajorapplicationforuserstoengageresourcesacrosstheWeb.Thepopularityandtheutilityofthisinterfacehavemadethewebbrowseraprimetargetforattackerstogainaccessand

controloverasystem.Awidevarietyofattackscanoccurviaabrowser,typicallyresultingfromafailuretoproperlyvalidateinputbeforeuse.Unvalidatedinputcanresultinaseriesofinjectionattacks,headermanipulation,andotherformsofattack.

Cross-SiteScriptingAcross-sitescriptingattackisacodeinjectionattackinwhichanattackersendscodeinresponsetoaninputrequest.Thiscodeisthenrenderedbythewebserver,resultingintheexecutionofthecodebythewebserver.Cross-sitescriptingattackstakeadvantageofafewcommonelementsinweb-basedsystems.Cross-sitescriptingiscoveredindetailinChapter18.

HeaderManipulationsWhenHTTPisbeingdynamicallygeneratedthroughtheuseofuserinputs,unvalidatedinputscangiveattackersanopportunitytochangeHTTPelements.Whenuser-suppliedinformationisusedinaheader,itispossibletocreateavarietyofattacks,includingcachepoisoning,cross-sitescripting,cross-userdefacement,pagehijacking,cookiemanipulation,andopenredirect.

ExamTip:Awidevarietyofattackvectorscanbeusedagainstaclientmachine,includingcachepoisoning,cross-sitescripting,cross-userdefacement,pagehijacking,cookiemanipulation,andopenredirect.Allattacksshouldbeknownfortheexam.

Web2.0andSecurityArelativelynewphenomenonhasswepttheInternet,Web2.0,acollectionoftechnologiesthatisdesignedtomakewebsitesmoreusefulforusers.Fromnewlanguagesandprotocols,suchasAJAX,touser-providedcontent,tosocialnetworkingsitesanduser-createdmash-ups,theInternethaschangeddramaticallyfromitsstaticHTMLroots.Thereisa

widerangeofsecurityissuesassociatedwiththisnewlevelofdeployedfunctionality.Thenewlanguagesandprotocolsaddsignificantlayersofcomplexityto

awebsite’sdesign,anderrorscanhavesignificantconsequences.EarlyeffortsbyGoogletoaddWeb2.0functionalitytoitsapplicationscreatedholesthatallowedhackersaccesstoalogged-inuser’sGmailaccountandpassword.Googlehasfixedtheseerrors,buttheyillustratethedangersofrushingintonewfunctionalitywithoutadequatetesting.ThefinedetailsofWeb2.0securityconcernsarefartoonumeroustodetailhere—infact,theycouldcomprisetheirownbook.TheimportantthingtorememberisthatthefoundationsofsecurityapplythesamewayinWeb2.0astheydoelsewhere.Infact,withmorecapabilityandgreatercomplexitycomesagreaterneedforstrongfoundationalsecurityefforts,andWeb2.0isnoexception.

Chapter17Review

LabManualExerciseThefollowinglabexercisesfromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providespracticalapplicationofmaterialcoveredinthischapter:Lab5.2mWebBrowserExploits

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutwebcomponents.

DescribethefunctioningoftheSSL/TLSprotocolsuite

SSLandTLSuseacombinationofsymmetricandasymmetriccryptographicmethodstosecuretraffic.

BeforeanSSLsessioncanbesecured,ahandshakeoccurstoexchangecryptographicinformationandkeys.

Explainwebapplications,plug-ins,andassociatedsecurityissues

Webbrowsershavemechanismstoenableplug-inprogramstomanageapplicationssuchasFlashobjectsandvideos.

FirefoxhasaNoScripthelperthatblocksscriptsfromfunctioning.

Plug-insthatblockpop-upwindowsandphishingsitescanimproveend-usersecuritybypermittinggreatercontroloverbrowserfunctionality.

Describesecurefiletransferoptions

FTPoperationsoccurinplaintext,allowinganyonewhoseesthetraffictoreadit.

SFTPcombinesthefiletransferapplicationwiththeSecureShell(SSH)applicationtoprovideforameansofconfidentialFTPoperations.

Explaindirectoryusagefordataretrieval

LDAPisaprotocoldescribinginteractionwithdirectoryservices.

Directoryservicesaredatastructuresoptimizedforretrievalandarecommonlyusedwheredataisreadmanytimesmorethanwritten,suchasACLs.

ExplainscriptingandotherInternetfunctionsthatpresentsecurityconcerns

Scriptsarepiecesofcodethatcanexecutewithinthebrowser

environment.

ActiveXisarobustprogramminglanguagethatactslikeascriptinMicrosoftInternetExplorerbrowserstoprovidearichprogrammingenvironment.

Somescriptsorcodeelementscanbecalledfromtheserverside,creatingthewebenvironmentofASP.NETandPHP.

Usecookiestomaintainparametersbetweenwebpages

Cookiesaresmalltextfilesusedtomaintainstatebetweenwebpages.

Cookiescanbesetforpersistent(lastforadefinedtimeperiod)orsession(expirewhenthesessionisclosed).

Examineweb-basedapplicationsecurityissues

Asmoreapplicationsmovetoabrowserenvironmenttoeaseprogrammaticdeployment,itmakesiteasierforuserstoworkwithafamiliaruserenvironment.

Browsershavebecomepowerfulprogrammingenvironmentsthatperformmanyactionsbehindthescenesforauser,andmaliciousprogrammerscanexploitthishiddenfunctionalitytoperformactionsonauser’sPCwithouttheuser’sobviousconsent.

KeyTermsActiveServerPages(ASP)(547)ActiveX(545)ASP.NET(547)Authenticode(545)bufferoverflow(542)codesigning(551)CommonGatewayInterface(CGI)(546)

cookie(547)FileTransferProtocol(FTP)(540)HypertextMarkupLanguage(HTML)(530)inlining(552)InternetEngineeringTaskForce(IETF)(532)Java(542)JavaScript(544)LightweightDirectoryAccessProtocol(LDAP)(539)PHP(547)plug-in(550)SecureSocketsLayer(SSL)(531)server-sidescripting(547)SSLstrippingattack(538)TransportLayerSecurity(TLS)(532)UniformResourceLocator(URL)(530)X.500(539)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.Theuseof_______________canvalidateinputresponsesfromclientsandpreventcertainattackmethodologies.

2.A(n)_______________isasmalltextfileusedtoenhancewebsurfingbycreatingalinkbetweenpagesvisitedonawebsite.

3._______________or_______________isatechnologyusedtosupportconfidentialityacrosstheInternetforwebsites.

4.A(n)_______________isasmallapplicationprogramthatincreasesabrowser’sabilitytohandlenewdatatypesandaddnewfunctionality.

5.Anapplication-levelprotocolthatoperatesoverawiderangeoflower-levelprotocolsandisusedtotransferfilesis_______________.

6._______________fileshavethe.ocxextensiontoidentifythem.7._______________isthestandardfordirectoryservices.8.Addingadigitalsignatureandadigitalcertificatetoaprogramfile

todemonstratefileintegrityandauthenticityis_______________.

9.A(n)_______________isadescriptorwherecontentislocatedontheInternet.

10._______________isasystemthatusesdigitalsignaturesandallowsWindowsuserstodeterminewhoproducedaspecificpieceofcodeandwhetherornotthecodehasbeenaltered.

Multiple-ChoiceQuiz1.Whatisacookie?

A.Apieceofdatainadatabasethatenhanceswebbrowsercapability

B.AsmalltextfileusedinsomeHTTPexchanges

C.Asegmentofscripttoenhanceawebpage

D.Aprogramthatrunswhenyouvisitawebsitesoitremembersyou

2.TheuseofcertificatesinSSL/TLSissimilarto:A.Areceiptprovingpurchase

B.Havinganotarynotarizeasignature

C.Ahistoricalrecordofaprogram’slineage

D.Noneoftheabove

3.SecurityforJavaScriptisestablishedbywhom?A.Thedeveloperatthetimeofcodedevelopment.

B.Theuseratthetimeofcodeusage.

C.Theuserthroughbrowserpreferences.

D.SecurityforJavaScriptisnotnecessary—theJavalanguageissecurebydesign.

4.ActiveXcanbeusedforwhichofthefollowingpurposes?A.Addfunctionalitytoabrowser

B.Updatetheoperatingsystem

C.BothAandB

D.NeitherAnorB

5.Thekeyword[secure]inacookie:A.Causesthesystemtoencryptitscontents

B.PreventsthecookiefrompassingoverHTTPconnections

C.Tellsthebrowserthatthecookieisasecurityupgrade

D.Noneoftheabove

6.Codesigningisusedto:A.Allowauthorstotakeartisticcreditfortheirhardwork

B.Provideamethodtodemonstratecodeintegrity

C.Guaranteecodefunctionality

D.Preventcopyrightinfringementbycodecopying

7.SSLprovideswhichofthefollowingfunctionality?

A.Dataintegrityservices

B.Authenticationservices

C.Dataconfidentialityservices

D.Alloftheabove

8.High-securitybrowserscanusewhattovalidateSSLcredentialsforauser?

A.AESencryptedlinkstoarootserver

B.Anextended-validationSSLcertificate

C.MD5hashingtoensureintegrity

D.SSLv3.0

9.ToestablishanSSLconnectionfore-mailandHTTPacrossafirewall,youmust:

A.OpenTCPports80,25,443,and223.

B.OpenTCPports443,465,and995.

C.OpenaTCPportofchoiceandassignittoallSSLtraffic.

D.Donothing;SSLtunnelspastfirewalls.

10.Topreventtheuseofcookiesinabrowser,ausermust:A.Tellthebrowsertodisablecookiesviaasetupoption.

B.Deleteallexistingcookies.

C.BothAandB.

D.Theuserneeddonothing;bydesign,cookiesarenecessaryandcannotbetotallydisabled.

EssayQuiz

1.MuchhasbeenmadeofthenewWeb2.0phenomenon,includingsocialnetworkingsitesanduser-createdmash-ups.HowdoesWeb2.0changesecurityfortheInternet?

LabProject

•LabProject17.1Cookiesandscriptscanbothenhancewebbrowsingexperiences.Theycanalsorepresentarisk,andassuchtheoptionexiststoturnthemoff.UsingFirefoxwiththeNoScriptplug-intodisablescripts,comparethebrowsingexperienceatthefollowingsiteswithandwithoutcookies,andwithandwithoutscripts:

E-commercesitelikeAmazonAbank

AninformationsitelikeWikipediaAnewssite

chapter18 SecureSoftwareDevelopment

SecurityFeatures!=SecureFeatures

—MICHAELHOWARD,MICROSOFTCORPORATION

S

Inthischapter,youwilllearnhowto

Describehowsecurecodingcanbeincorporatedintothesoftwaredevelopmentprocess

Listthemajortypesofcodingerrorsandtheirrootcauses

Describegoodsoftwaredevelopmentpracticesandexplainhowtheyimpactapplicationsecurity

Describehowusingasoftwaredevelopmentprocessenforcessecurityinclusioninaproject

Learnaboutapplicationhardeningtechniques

oftwareengineeringisthesystematicdevelopmentofsoftwaretofulfillavarietyoffunctions,suchasbusiness,recreational,scientific,andeducationalfunctions,whicharejustafewofthemanyareaswhere

softwarecomesinhandy.Regardlessofthetypeofsoftware,thereisauniversalrequirementthatthesoftwareworkproperly,performthedesiredfunctions,andperformtheminthecorrectfashion.Thefunctionalityofsoftwarerangesfromspreadsheetsthataccuratelyaddfigures,topacemakersthatstimulatetheheart.Developersknowthatfunctionalspecificationsmustbemetforthesoftwaretobesatisfactory.Softwareengineering,then,fitsasmanyrequirementsaspossibleintotheprojectmanagementscheduletimeline.Butwithanalystsanddevelopersworkingovertimetogetasmanyfunctionalelementscorrectaspossible,theissueofnonfunctionalrequirementsoftengetspushedtothebackburner,orneglectedentirely.Securityhasbeendescribedasanonfunctionalrequirement.Thisplaces

itintoacategoryofsecondaryimportanceformanydevelopers.Theirviewisthatiftimelines,schedules,andbudgetsareallinthegreen,thenmaybetherewillbetimetodevotetosecurityprogramming.Aswedependmoreandmoreoncomputersdrivenbysoftware,wewillneedsystemstodothesame—tonotonlyfunctionnow,buttobeprotectedfrommalfunctioninthefuture.

TheSoftwareEngineeringProcessSoftwaredoesnotbuilditself.Thisisgoodnewsforsoftwaredesigners,analysts,programmers,andthelike,forthecomplexityofdesigningandbuildingsoftwareenablesthemtoengageinwell-payingcareers.Toachievecontinuedsuccessinthisdifficultworkenvironment,softwareengineeringprocesseshavebeendeveloped.Ratherthanjustsittingdownandstartingtowritecodeattheonsetofaproject,softwareengineersuseacompletedevelopmentprocess.Thereareseveralmajorcategoriesofsoftwareengineeringprocesses.Thewaterfallmodel,thespiralmodel,andtheevolutionarymodelaremajorexamples.Withineachofthesemajorcategories,therearenumerousvariations,andeachgroupthenpersonalizestheprocesstotheirprojectrequirementsandteamcapabilities.

Thischaptercontainsmanydetailsofhowtotestforexploitablevulnerabilitiesinsoftware.Donotperformorattemptthesestepsoutsideofsystemsforwhichyoueitherare,orhaveexplicitpermissionfrom,theowner.Otherwise,youmayfindyourselfbeingaccusedofhackingandpossiblyevenfacinglegalcharges.

Traditionally,securityisanadd-onitemthatisincorporatedintoasystemafterthefunctionalrequirementshavebeenmet.Itisnotanintegralpartofthesoftwaredevelopmentlifecycleprocess.Thisplacesitatoddswithbothfunctionalandlifecycleprocessrequirements.Theresolutiontoalloftheseissuesisrelativelysimple:incorporatesecurityintotheprocessmodelandbuilditintotheproductalongwitheachfunctionalrequirement.Thechallengeisinhowtoaccomplishthisgoal.Therearetwoseparateandrequiredelementsneededtoachievethisobjective.First,theinclusionofsecurityrequirementsandmeasuresinthespecificprocessmodelbeingused.Second,theuseofsecurecodingmethodstopreventopportunitiestointroducesecurityfailuresintothe

software’sdesign.

ProcessModelsThereareseveralmajorsoftwareengineeringprocessmodels,eachwithslightlydifferentstepsandsequences,yettheyallhavemanysimilaritems.Thewaterfallmodelischaracterizedbyamultistepprocessinwhichstepsfolloweachotherinalinear,one-wayfashion,likewateroverawaterfall.Thespiralmodelhasstepsinphasesthatexecuteinaspiralfashion,repeatingatdifferentlevelswitheachrevolutionofthemodel.Theagilemodelischaracterizedbyiterativedevelopment,whererequirementsandsolutionsevolvethroughanongoingcollaborationbetweenself-organizingcross-functionalteams.Theevolutionarymodelisaniterativemodeldesignedtoenabletheconstructionofincreasinglycomplexversionsofaproject.Therearenumerousothermodelsandderivationsinusetoday.Thedetailsoftheseprocessmodelsareoutsidethescopeofthisbook,andmostofthedetailisnotsignificantlyrelevanttotheissueofsecurity.Fromasecurecodingperspective,asecuredevelopmentlifecycle(SDL)modelisessentialtosuccess.Fromrequirementstosystemarchitecturetocodingtotesting,securityisanembeddedpropertyinallaspectsoftheprocess.Thereareseveralspecificitemsofsignificancewithrespecttosecurity.Fourprimaryitemsofinterest,regardlessoftheparticularmodelormethodologyemployedinsoftwarecreation,arerequirements,design,coding,andtestingphases.Thesephasesaredescribedinthefollowingsection.

SecureDevelopmentLifecycleTheremaybeasmanydifferentsoftwareengineeringmethodsastherearesoftwareengineeringgroups.Butananalysisofthesemethodsindicatesthatmostsharecommonelementsfromwhichanunderstandingofauniversalmethodologycanbeobtained.Fordecades,securecoding—thatis,creatingcodethatdoeswhatitissupposedtodo,andonlywhatitis

supposedtodo—hasnotbeenhighontheradarformostorganizations.Thepastdecadeofexplosiveconnectivityandtheriseofmalwareandhackershaveraisedawarenessofthisissuesignificantly.Arecentallianceofseveralmajorsoftwarefirmsconcernedwithsecurecodingprinciplesrevealedseveralinterestingpatterns.First,theywereallattackingtheproblemusingdifferentmethodologies,butyetinsurprisinglysimilarfashions.Second,theyfoundaseriesofprinciplesthatappearstoberelatedtosuccessinthisendeavor.Firstandforemost,recognitionoftheneedtoincludesecurecoding

principlesintothedevelopmentprocessisacommonelementamongallfirms.MicrosofthasbeenveryopenandvocalaboutitsimplementationofitsSecurityDevelopmentLifecycle(SDL)andhaspublishedsignificantvolumesofinformationsurroundingitsgenesisandevolution(https://www.microsoft.com/en-us/sdl/default.aspx).TheSoftwareAssuranceForumforExcellenceinCode(SAFECode)is

anorganizationformedbysomeoftheleadingsoftwaredevelopmentfirmswiththeobjectiveofadvancingsoftwareassurancethroughbetterdevelopmentmethods.SAFECode(www.safecode.org)membersincludeEMC,Microsoft,andIntel.AnexaminationofSAFECodemembers’processesrevealsanassertionthatsecurecodingmustbetreatedasanissuethatexiststhroughoutthedevelopmentprocessandcannotbeeffectivelytreatedatafewcheckpointswithchecklists.Regardlessofthesoftwaredevelopmentprocessused,thefirststepdownthepathtosecurecodingistoinfusetheprocesswithsecurecodingprinciples.

ThreatModelingandAttackSurfaceAreaMinimizationTwoimportanttoolshavecomefromthesecurecodingrevolution:threatmodelingandattacksurfaceareaminimization.Attacksurfaceareaminimizationisastrategytoreducetheplaceswherecodecanbeattacked.Thesecondmajordesigneffortisonebuiltaroundthreatmodeling,the

processofanalyzingthreatsandtheirpotentialeffectsonsoftwareinaveryfinelydetailedfashion.Theoutputofthethreatmodelprocessisacompilationofthreatsandhowtheyinteractwiththesoftware.This

informationiscommunicatedacrossthedesignandcodingteam,sothatpotentialweaknessescanbemitigatedbeforethesoftwareisreleased.

StepbyStep18.1

ThreatModelingStepsFollowthestepsusedtoconductthreatmodeling.

RequirementsPhaseTherequirementsphaseshoulddefinethespecificsecurityrequirementsifthereisanyexpectationofthembeingdesignedintotheproject.Regardlessofthemethodologyemployed,theprocessisallaboutcompletingtherequirements.Securecodingdoesnotrefertoaddingsecurityfunctionalityintoapieceofsoftware.Securityfunctionalityisastandalonerequirement.Theobjectiveofthesecurecodingprocessistoproperlyimplementthisandallotherrequirements,sothattheresultantsoftwareperformsasdesiredandonlyasdesired.Therequirementsprocessisakeycomponentofsecurityinsoftware

development.Security-relateditemsenumeratedduringtherequirementsprocessarevisiblethroughouttherestofthesoftwaredevelopmentprocess.Theycanbearchitectedintothesystemsandsubsystems,addressedduringcoding,andtested.Forthesubsequentstepstobeeffective,thesecurityrequirementsneedtobebothspecificandpositive.Requirementssuchas“makesecurecode”or“noinsecurecode”arenonspecificandnothelpfulintheoverallprocess.Specificrequirementssuchas“preventunhandledbufferoverflowsandunhandledinputexceptions”canbespecificallycodedforineachpieceofcode.

TechTip

CommonSecureCodingRequirementsCommonsecurecodingrequirementsinclude:

AnalysisofsecurityandprivacyriskAuthenticationandpasswordmanagement

AuditloggingandanalysisAuthorizationandrolemanagement

Codeintegrityandvalidationtesting

Cryptographyandkeymanagement

DatavalidationandsanitizationNetworkanddatasecurity

OngoingeducationandawarenessTeamstaffingrequirements

Third-partycomponentanalysis

Duringtherequirementsactivity,itisessentialthattheproject/programmanagerandanybusinessleaderswhosetschedulesandallocateresourcesareawareoftheneedandrequirementsofthesecuredevelopmentprocess.Thecostofaddingsecurityatalatertimerisesexponentially,withthemostexpensiveformbeingthecommonrelease-and-patchprocessusedbymanyfirms.Thedevelopmentofbothfunctionalandnonfunctionalsecurityrequirementsoccursintandemwithotherrequirementsthroughthedevelopmentofusecases,analysisofcustomerinputs,implementationofcompanypolicies,andcompliancewithindustrybestpractices.Dependingonthenatureofaparticularmodule,specialattentionmaybefocusedonsensitiveissuessuchaspersonallyidentifiableinformation(PII),sensitivedata,orintellectualpropertydata.Oneoftheoutputsoftherequirementsphaseisasecuritydocumentthat

helpsguidetheremainingaspectsofthedevelopmentprocess,ensuringthatsecurecoderequirementsarebeingaddressed.Theserequirementscanbeinfusedintodesign,coding,andtesting,ensuringtheyareaddressedthroughoutthedevelopmentprocess.

DesignPhaseCodingwithoutdesigningfirstislikebuildingahousewithoutusingplans.Thismightworkfineonsmallprojects,butasthescopegrows,sodocomplexityandtheopportunityforfailure.Designingasoftwareprojectisamultifacetedprocess.Justastherearemanywaystobuildahouse,therearemanywaystobuildaprogram.Designisaprocessinvolvingtrade-offsandchoices,andthecriteriausedduringthedesign

decisionscanhavelastingimpactsonprogramconstruction.Therearetwosecurecodingprinciplesthatcanbeappliedduringthedesignphasethatcanhavealargeinfluenceonthecodequality.Thefirstoftheseistheconceptofminimizingattacksurfacearea.Reducingtheavenuesofattackavailabletoahackercanhaveobviousbenefits.Minimizingattacksurfaceareaisaconceptthattendstoruncountertothewaysoftwarehasbeendesigned—mostdesignscomeasaresultofincrementalaccumulation,addingfeaturesandfunctionswithoutregardtomaintainability.

CodingPhaseThepointatwhichthedesignisimplementedisthecodingstepinthesoftwaredevelopmentprocess.Theactofinstantiatinganideaintocodeisapointwhereanerrorcanentertheprocess.Theseerrorsareoftwotypes:thefailuretoincludedesiredfunctionality,andtheinclusionofundesiredbehaviorinthecode.Testingforthefirsttypeoferrorisrelativelyeasyiftherequirementsareenumeratedinapreviousphaseoftheprocess.Testingfortheinclusionofundesiredbehaviorissignificantlymore

difficult.Testingforanunknownisavirtuallyimpossibletask.Whatmakesthispossibleatallistheconceptoftestingforcategoriesofpreviouslydeterminederrors.Severalclassesofcommonerrorshavebeenobserved.EnumerationsofknownsoftwareweaknessesandvulnerabilitieshavebeencompiledandpublishedastheCommonWeaknessEnumeration(CWE)andCommonVulnerabilitiesandExposures(CVE)bytheMITRECorporation,agovernment-fundedresearchgroup(www.mitre.org).Theseenumerationshaveenabledsignificantadvancementinthedevelopmentofmethodstoreducecodevulnerabilities.TheCVEandCWEarevendor-andlanguage-neutralmethodsofdescribingerrors.Theseenumerationsallowacommonvocabularyforcommunicationaboutweaknessesandvulnerabilities.Thiscommonvocabularyhasalsoledtothedevelopmentofautomatedtoolstomanagethetrackingoftheseissues.Therearemanycommoncodingerrors,butsomeoftheprimaryand

mostdamagingareleastprivilegeviolationsandcryptographicfailures.

Language-specificfailuresareanothercommonsourceofvulnerabilities.Thereareseveralwaystogoaboutsearchingforcodingerrorsthatlead

tovulnerabilitiesinsoftware.Onemethodisbymanualcodeinspection.Developerscanbetrainedto“notmakemistakes,”butthisapproachhasnotprovensuccessful.Thishasledtothedevelopmentofaclassoftoolsdesignedtoanalyzecodeforpotentialdefects.Staticcode-analysistoolsareatypeoftoolthatcanbeusedtoanalyze

softwareforcodingerrorsthatcanleadtoknowntypesofvulnerabilitiesandweaknesses.Sophisticatedstaticcodeanalyzerscanexaminecodebasestofindfunctioncallsofunsafelibraries,potentialbuffer-overflowconditions,andnumerousotherconditions.Currently,theCWEdescribesmorethan750differentweaknesses,fartoomanyfordevelopermemoryanddirectknowledge.Inlightofthis,andduetothefactthatsomeweaknessesaremoreprevalentthanothers,MITREhascollaboratedwithSANStodeveloptheCWE/SANSTop25MostDangerousSoftwareErrorslist.OneoftheideasbehindtheTop25lististhatitcanbeupdatedperiodicallyasthethreatlandscapechanges.Explorethecurrentlistingathttp://cwe.mitre.org/top25/.Therearetwomainenumerationsofcommonsoftwareerrors:theTop

25listmaintainedbyMITREandtheOWASPTopTenlistforwebapplications.Dependingonthetypeofapplicationbeingevaluated,theselistsprovideasolidstartingpointforsecurityanalysisofknownerrortypes.MITREistherepositoryoftheindustrystandardlistforstandardprograms,andOWASPisforwebapplications.Asthecausesofcommonerrorsdonotchangequickly,theselistsarenotupdatedeveryyear.

LeastPrivilegeOneofthecentralparadigmsofsecurityisthenotionofrunningaprocesswiththeleastrequiredprivilege.Leastprivilegerequiresthatthedeveloperunderstandwhatprivilegesareneededspecificallyforanapplicationtoexecuteandaccessallitsnecessaryresources.Obviously,fromadeveloperpointofview,itwouldbeeasiertouseadministrative-levelpermissionforalltasks,whichremovesaccesscontrolsfromtheequation,butthisalsoremovestheveryprotectionsthat

access-levelcontrolsaredesignedtoprovide.Theotherendofthespectrumissoftwaredesignedforoperatingsystemswithoutanybuilt-insecurity,suchasearlyversionsofWindowsandsomemainframeOSs,wheresecuritycomesintheformofanapplicationpackage.Whenmigratingtheseapplicationstoplatforms,theissueofaccesscontrolsarises.Asdevelopersincreasinglyaretaskedwithincorporatingsecurityinto

theirwork,thenaturaltendencyistocodearoundthis“new”securityrequirement,developinginthesamefashionasbefore,asifsecurityisnotanissue.Thisiscommonlymanifestedasaprogramthatrunsonlyunderanadministrative-levelaccount,orrunsasaserviceutilizingtheSYSTEMaccountforpermissionsinWindows.Bothofthesepracticesarebadpracticesthatreducesecurity,introducehard-to-fixerrors,andproducecodethatishardertomaintainandextend.

TechTip

2011CWE/SANSTop25MostDangerousSoftwareErrors?SQLInjectionOSCommandInjectionBufferOverflowCross-SiteScripting(XSS)MissingAuthenticationforCriticalFunctionMissingAuthorizationUseofHard-codedCredentialsMissingEncryptionofSensitiveDataUnrestrictedUploadofFilewithDangerousTypeRelianceonUntrustedInputsinaSecurityDecisionExecutionwithUnnecessaryPrivilegesCross-SiteRequestForgery(CSRF)ImproperLimitationofaPathnametoaRestrictedDirectory(‘PathTraversal’)DownloadofCodeWithoutIntegrityCheckIncorrectAuthorizationInclusionofFunctionalityfromUntrustedControlSphereIncorrectPermissionAssignmentforCriticalResourceUseofPotentiallyDangerousFunction

UseofaBrokenorRiskyCryptographicAlgorithmIncorrectCalculationofBufferSizeImproperRestrictionofExcessiveAuthenticationAttemptsURLRedirectiontoUntrustedSite(‘OpenRedirect’)UncontrolledFormatStringIntegerOverfloworWraparoundUseofaOne-WayHashwithoutaSalt

DeveloperswhododevelopmentandtestingonanintegratedenvironmentontheirownPC—thatis,theyhaveawebserverand/ordatabaseengineontheirPC—canproducecodethatworksfineontheirmachine,whereunifiedaccountpermissionsexist(andarefrequentlyadministrator).Whenthiscodeistransitionedtoadistributedenvironment,permissionscanbecomeanissue.Thepropermethodistomanagepermissionsappropriatelyonthedeveloperboxfromthebeginning.

Thekeyprincipleindesigningandcodingsoftwarewithrespecttoaccess-levelcontrolsistoplanandunderstandthenatureofthesoftware’sinteractionwiththeoperatingsystemandsystemresources.Wheneverthesoftwareaccessesafile,asystemcomponent,oranotherprogram,theissueofappropriateaccesscontrolneedstobeaddressed.Andalthoughthesimplepracticeofjustgivingeverythingrootoradministrativeaccessmaysolvethisimmediateproblem,itcreatesmuchbiggersecurityissuesthatwillbemuchlessapparentinthefuture.Anexampleiswhenaprogramrunscorrectlywheninitiatedfromanadministratoraccountbutfailswhenrunundernormaluserprivileges.Theactualfailuremaystemfromaprivilegeissue,buttheactualpointoffailureinthecodemaybemanyproceduresaway,anddiagnosingthesetypesoffailuresisadifficultandtime-consumingoperation.

Whensoftwarefailsduetoanexploitedvulnerability,thehackertypicallyachieveswhateverlevelofprivilegethattheapplicationhadpriortotheexploitoccurrence.Ifanapplicationalwaysoperateswithroot-levelprivilege,thiswillpassontothehackeraswell.

Thebottomlineisactuallysimple.Determinewhatneedstobeaccessedandwhattheappropriatelevelofpermissionis,thenusethatlevelindesignandimplementation.Repeatthisforeveryitemaccessed.Intheend,itisrarethatadministrativeaccessisneededformanyfunctions.Oncetheapplicationisdesigned,thewholeprocesswillneedtoberepeatedwiththeinstallationprocedure,becausefrequently,installingsoftwarewillneedahigherlevelofaccessthanneededforexecutingthesoftware.Designandimplementationdetailsmustbedeterminedwithrespecttorequiredpermissionlevels,nottoahigherlevelsuchasadministrativerootaccessjustforconvenience.Thecostoffailuretoheedtheprincipleofleastprivilegecanbe

twofold.First,youhaveexpensive,time-consumingaccess-violationerrorsthatarehardtotrackdownandcorrect.Thesecondproblemiswhenanexploitisfoundthatallowssomeotherprogramtouseportionsofyourcodeinanunauthorizedfashion.AprimeexampleisthesendmailexploitintheUNIXenvironment.Becausesendmailrequiresroot-levelaccessforsomefunctions,thesendmailexploitinsertsforeigncodeintotheprocessstream,thereuponexecutingitscodeatroot-levelaccessbecausethesendmailprocessthreaditselfhasroot-levelaccess.Inthiscase,sendmailneedstheroot-levelaccess,butthisexploitillustratesthattheriskisrealandwillbeexploitedoncefound.Properdesigncan,inmanycases,eliminatetheneedforsuchhighaccessprivilegelevels.

CryptographicFailuresHailedasasolutionforallproblems,cryptographyhasasmuchchanceofbeingtheultimatecure-allasdidthetonicssoldbytravelingsalesmenofadifferentera.Thereisnosuchthingasauniversalsolution,yettherearesomeveryversatiletoolsthatprovideawiderangeofprotections.Cryptographyfallsintothis“veryusefultool”category.Properuseofcryptographycanprovideawealthofprogrammaticfunctionality,fromauthenticationandconfidentialityto

integrityandnonrepudiation.Thesearevaluabletools,andmanyprogramsrelyonpropercryptographicfunctionforimportantfunctionality.Theneedforthisfunctionalityinanapplicationtemptsprogrammerstorolltheirowncryptographicfunctions.Thisisataskfraughtwithopportunityforcatastrophicerror.Cryptographicerrorscomefromseveralcommoncauses.Onetypical

mistakeischoosingtodevelopyourowncryptographicalgorithm.Developmentofasecurecryptographicalgorithmisfarfromaneasytask,andevenwhendonebyexperts,weaknessescanoccurthatmakethemunusable.Cryptographicalgorithmsbecometrustedafteryearsofscrutinyandattacks,andanynewalgorithmswouldtakeyearstojointhetrustedset.Ifyouinsteaddecidetorestonsecrecy,bewarnedthatsecretorproprietaryalgorithmshaveneverprovidedthedesiredlevelofprotection.Oneoftheaxiomsofcryptographyisthatthereisnosecuritythroughobscurity.

TechTip

OnlyUseApprovedCryptographicFunctionsAlwaysusevettedandapprovedlibrariesforallcryptographicwork.Nevercreateyourowncryptographicfunctions,evenwhenusingknownalgorithms.Forexample,the.NETFrameworkhasanumberofcryptographyclassesthatdeveloperscancallupontoperformencryptionservices.

Decidingtouseatrustedalgorithmisaproperstart,buttherestillareseveralmajorerrorsthatcanoccur.Thefirstisanerrorininstantiatingthealgorithm.Aneasywaytoavoidthistypeoferroristousealibraryfunctionthathasalreadybeenproperlytested.Sourcesoftheselibraryfunctionsabound,andtheyprovideaneconomicalsolutiontothisfunctionality’sneeds.Onceyouhaveanalgorithm,andhavechosenaparticularinstantiation,thenextitemneededistherandomnumbertogeneratearandomkey.Cryptographicfunctionsuseanalgorithmandakey,thelatterbeingadigitalnumber.

Thegenerationofarealrandomnumberisnotatrivialtask.Computersaremachinesthatarerenownedforreproducingthesameoutputwhengiventhesameinput,sogeneratingapure,nonreproduciblerandomnumberisachallenge.Therearefunctionsforproducingrandomnumbersbuiltintothelibrariesofmostprogramminglanguages,butthesearepseudorandomnumbergenerators,andalthoughthedistributionofoutputnumbersappearsrandom,itgeneratesareproduciblesequence.Giventhesameinput,asecondrunofthefunctionwillproducethesamesequenceof“random”numbers.Determiningtheseedandrandomsequenceandusingthisknowledgeto“break”acryptographicfunctionhasbeenusedmorethanoncetobypassthesecurity.ThismethodwasusedtosubvertanearlyversionofNetscape’sSSLimplementation.Usinganumberthatiscryptographicallyrandom—suitableforanencryptionfunction—resolvesthisproblem,andagaintheuseoftrustedlibraryfunctionsdesignedandtestedforgeneratingsuchnumbersisthepropermethodology.

ExamTip:Neverhard-codesecretsintocodebases.Hackerscanusedisassemblersandvariouscodedifferentialtoolstodissectyourcodeandfindstaticinformation.

Nowyouhaveagoodalgorithmandagoodrandomnumber—sowherecanyougowrong?Well,storingprivatekeysinareaswheretheycanberecoveredbyanunauthorizedpersonisthenextworry.Poorkeymanagementhasfailedmanyacryptographicimplementation.AfamousexploitofgettingcryptographickeysfromanexecutableandusingthemtobreakacryptographicschemeisthecaseofhackersusingthisexploittobreakDVDencryptionanddeveloptheDeCSSprogram.Toolshavebeendevelopedthatcansearchcodefor“random”keysandextractthekeyfromthecodeorrunningprocess.Thebottomlineissimple:donothard-codesecretkeysinyourcode.Theycan,andwill,bediscovered.Keysshouldbegenerated,andthenpassedbyreference,minimizingthetravel

ofcopiesacrossanetworkorapplication.Storingtheminmemoryinanoncontiguousfashionisalsoimportant,topreventexternaldetection.Again,trustedcryptographiclibraryfunctionscometotherescue.Youmighthavededucedbythispointthattheterm“libraryfunction”

hasbecomesynonymouswiththissection.Thisisnotanaccident.Infact,thisisprobablyoneofthebestpiecesofadvicefromthischapter:usecommerciallyprovenfunctionsforcryptographicfunctionality.

TechTip

MicrosoftRecommendedDeprecatedCFunctionsFunctionfamiliestodeprecate/remove:

strcpy()andstrncpy()strcat()andstrncat()

scanf()sprint()

gets()memcpy(),CopyMemory(),andRtlCopyMemory()

Language-SpecificFailuresModernprogramminglanguagesarebuiltaroundlibrariesthatpermitreuseandspeedthedevelopmentprocess.Thedevelopmentofmanylibrarycallsandfunctionswasdonewithoutregardtosecurecodingimplications,andthishasledtoissuesrelatedtospecificlibraryfunctions.Asmentionedpreviously,strcpy()hashaditsfairshareofinvolvementinbufferoverflowsandshouldbeavoided.Developingandmaintainingaseriesofdeprecatedfunctionsandprohibitingtheiruseinnewcode,whileremovingthemfromoldcodewhenpossible,isaprovenpathtowardmoresecurecode.Bannedfunctionsareeasilyhandledviaautomatedcodereviewsduring

thecheck-inprocess.Thechallengeisingarneringthedeveloperawarenessastothepotentialdangersandthevalueofsafercoding

practices.

TestingPhaseIftherequirementsphasemarksthebeginningofthegenerationofsecurityincode,thenthetestingphasemarkstheotherboundary.Althoughthereareadditionalfunctionsaftertesting,noonewantsausertovalidateerrorsincode.Anderrorsdiscoveredafterthecodehasshippedarethemostexpensivetofix,regardlessoftheseverity.Employingusecasestocompareprogramresponsestoknowninputsandthencomparingtheoutputtothedesiredoutputisaprovenmethodoftestingsoftware.Thedesignofusecasestotestspecificfunctionalrequirementsoccursbasedontherequirementsdeterminedintherequirementsphase.Providingadditionalsecurity-relatedusecasesistheprocess-drivenwayofensuringthatsecurityspecificsarealsotested.Thetestingphaseisthelastopportunitytodeterminethatthesoftware

performsproperlybeforetheenduserexperiencesproblems.Errorsfoundintestingarelateinthedevelopmentprocess,butatleasttheyarestilllearnedaboutinternally,beforetheendcustomersuffers.Testingcanoccurateachlevelofdevelopment:module,subsystem,system,andcompletedapplication.Thesoonererrorsarediscoveredandcorrected,thelowerthecostandthelessertheimpactwillbetoprojectschedules.Thismakestestinganessentialstepintheprocessofdevelopinggoodprograms.Testingforsecurityrequiresamuchbroaderseriesofteststhan

functionaltestingdoes.Misusecasescanbeformulatedtoverifythatvulnerabilitiescannotbeexploited.Fuzztesting(alsoknownasfuzzing)usesrandominputstocheckforexploitablebufferoverflows.Codereviewsbydesignanddevelopmentteamsareusedtoverifythatsecurityelementssuchasinputandoutputvalidationarefunctional,asthesearethebestdefensesagainstawiderangeofattacks,includingcross-sitescriptingandcross-siterequestforgeries.Codewalkthroughsbeginwithdesignreviews,architectureexaminations,unittesting,subsystemtesting,and,ultimately,completesystemtesting.

Testingincludeswhite-boxtesting,wherethetestteamhasaccesstothedesignandcodingelements;black-boxtesting,wheretheteamdoesnothaveaccess;andgrey-boxtesting,wherethetestteamhasmoreinformationthaninblack-boxtestingbutnotasmuchasinwhite-boxtesting.Thesemodesoftestingareusedfordifferentobjectives;forexample,fuzztestingworksperfectlyfineregardlessofthetypeoftesting,whereascertaintypesofpenetrationtestsarebetterinawhite-boxtestingenvironment.Testingisalsoperformedontheproductioncodetoverifythaterrorhandlingandexceptionreporting,whichmayprovidedetaileddiagnosticinformationduringdevelopment,aresquelchedtopreventinformationreleaseduringerrorconditions.Finalcodecanbesubjectedtopenetrationtests,designedspecificallyto

testconfiguration,securitycontrols,andcommondefensessuchasinputandoutputvalidationanderrorhandling.Penetrationtestingcanexplorethefunctionalityandwhetherornotspecificsecuritycontrolscanbebypassed.Usingtheattacksurfaceanalysisinformation,penetrationtesterscanemulateadversariesandattemptawiderangeofknownattackvectorsinordertoverifythattheknownmethodsofattackareallmitigated.Oneofthemostpowerfultoolsthatcanbeusedintestingisfuzzing,the

systematicapplicationofaseriesofmalformedinputstotesthowtheprogramresponds.Fuzzinghasbeenusedbyhackersforyearstofindpotentiallyexploitablebufferoverflows,withoutanyspecificknowledgeofthecoding.Atestercanuseafuzzingframeworktoautomatenumerousinputsequences.Inexaminingwhetherafunctioncanfallpreytoabufferoverflow,numerousinputscanberun,testinglengthsandultimatepayload-deliveryoptions.Ifaparticularinputstringresultsinacrashthatcanbeexploited,thisinputwouldthenbeexaminedindetail.Fuzzingisnewtothedevelopmentscenebutisrapidlymaturingandwillsoonbeonnearlyequalfootingwithotherautomatedcode-checkingtools.

SecureCodingConceptsApplicationsecuritybeginswithcodethatissecureandfreeof

vulnerabilities.Unfortunately,allcodehasweaknessesandvulnerabilities,soinstantiatingthecodeinamannerthathaseffectivedefensespreventingtheexploitationofvulnerabilitiescanmaintainadesiredlevelofsecurity.Properhandlingofconfigurations,errorsandexceptions,andinputscanassistinthecreationofasecureapplication.Testingoftheapplicationthroughoutthesystemlifecyclecanbeusedtodeterminetheactualsecurityriskprofileofasystem.Therearenumerousindividualelementsinthesecuredevelopment

lifecycle(SDL)thatcanassistateamindevelopingsecurecode.CorrectSDLprocesses,suchasinputvalidation,propererrorandexceptionhandling,andcross-sitescriptingandcross-siterequestforgerymitigations,canimprovethesecurityofcode.Processelementssuchassecuritytesting,fuzzing,andpatchmanagementalsohelptoensureapplicationsmeetadesiredriskprofile.

ErrorandExceptionHandlingEveryapplicationwillencountererrorsandexceptions,andtheseneedtobehandledinasecuremanner.Oneattackmethodologyincludesforcingerrorstomoveanapplicationfromnormaloperationtoexceptionhandling.Duringanexception,itiscommonpracticetorecord/reportthecondition,includingsupportinginformationsuchasthedatathatresultedintheerror.Thisinformationcanbeinvaluableindiagnosingthecauseoftheerrorcondition.Thechallengeisinwherethisinformationiscaptured.Thebestmethodistocaptureitinalogfile,whereitcanbesecuredbyanACL.Theworstcaseiswhenitisechoedtotheuser.Echoingerrorconditiondetailstouserscanprovidevaluableinformationtoattackerswhentheycauseerrorsonpurpose.

ExamTip:Allerrors/exceptionsshouldbetrappedandhandledinthegeneratingroutine.

Improperexceptionhandlingcanleadtoawiderangeofdisclosures.ErrorsassociatedwithSQLstatementscandisclosedatastructuresanddataelements.Remoteprocedurecall(RPC)errorscangiveupsensitiveinformationsuchasfilenames,paths,andservernames.Programmaticerrorscangiveuplinenumbersthatanexceptionoccurredon,themethodthatwasinvoked,andinformationsuchasstackelements.

InputandOutputValidationWiththemovetoweb-basedapplications,theerrorshaveshiftedfrombufferoverflowstoinput-handlingissues.Usershavetheabilitytomanipulateinput,soitisuptothedevelopertohandletheinputappropriatelytopreventmaliciousentriesfromhavinganeffect.Bufferoverflowscouldbeconsideredaclassofimproperinput,butnewerattacksincludecanonicalizationattacksandarithmeticattacks.Probablythemostimportantdefensivemechanismthatcanbeemployedisinputvalidation.Consideringallinputstobehostileuntilproperlyvalidatedcanmitigatemanyattacksbasedoncommonvulnerabilities.Thisisachallenge,asthevalidationeffortsneedtooccurafterallparsershavecompletedmanipulatinginputstreams,acommonfunctioninweb-basedapplicationsusingUnicodeandotherinternationalcharactersets.Inputvalidationisespeciallywellsuitedforthefollowing

vulnerabilities:bufferoverflow,relianceonuntrustedinputsinasecuritydecision,cross-sitescripting,cross-siterequestforgery,pathtraversal,andincorrectcalculationofbuffersize.Inputvalidationmayseemsuitableforvariousinjectionattacks,butgiventhecomplexityoftheinputandtheramificationsfromlegalbutimproperinputstreams,thismethodfallsshortformostinjectionattacks.Whatcanworkisaformofrecognitionandwhitelistingapproach,wheretheinputisvalidatedandthenparsedintoastandardstructurethatisthenexecuted.Thisrestrictstheattacksurfacetonotonlylegalinputsbutalsoexpectedinputs.

ExamTip:Considerallinputtobehostile.Inputvalidationisoneofthemostimportantsecurecodingtechniquesemployed,mitigatingawidearrayofpotentialvulnerabilities.

Intoday’scomputingenvironment,awiderangeofcharactersetsisused.Unicodeallowsmultilanguagesupport.Charactercodesetsallowmultilanguagecapability.Variousencodingschemes,suchashexencoding,aresupportedtoallowdiverseinputs.Thenetresultofalltheseinputmethodsisthattherearenumerouswaystocreatethesameinputtoaprogram.Canonicalizationistheprocessbywhichapplicationprogramsmanipulatestringstoabaseform,creatingafoundationalrepresentationoftheinput.Canonicalizationerrorsarisefromthefactthatinputstoawebapplicationmaybeprocessedbymultipleapplications,suchasthewebserver,applicationserver,anddatabaseserver,eachwithitsownparserstoresolveappropriatecanonicalizationissues.Wherethisisanissuerelatestotheformoftheinputstringatthetimeoferrorchecking.Iftheerror-checkingroutineoccurspriortoresolutiontocanonicalform,thenissuesmaybemissed.Thestringrepresenting/../,usedindirectorytraversalattacks,canbeobscuredbyencodingandhencemissedbyacharacterstringmatchbeforeanapplicationparsermanipulatesittocanonicalform.Thefirstlineofdefenseistowritesolidcode.Regardlessofthe

languageused,orthesourceofoutsideinput,prudentprogrammingpracticeistotreatallinputfromoutsideafunctionashostile.Validateallinputsasiftheywerehostileandanattempttoforceabufferoverflow.Acceptthenotionthatalthoughduringdevelopmenteveryonemaybeonthesameteam,beconscientious,andbecompliantwithdesignrules,futuremaintainersmaynotbeasrobust.Asecond,andequallyimportant,lineofdefenseisproperstring

handling.Stringhandlingisacommoneventinprograms,andstring-handlingfunctionsarethesourceofalargenumberofknownbuffer-overflowvulnerabilities.Usingstrncpy()inplaceofstrcpy()isapossiblemethodofimprovingsecuritybecausestrncpy()requiresaninputlength

forthenumberofcharacterstobecopied.Thissimplefunctioncallreplacementcanultimatelyfail,however,becauseUnicodeandotherencodingmethodscanmakecharactercountsmeaningless.Toresolvethisissuerequiresnewlibrarycalls,andmuchcloserattentiontohowinputstrings,andsubsequentlyoutputstrings,canbeabused.Properuseoffunctionstoachieveprogramobjectivesisessentialtopreventunintendedeffectssuchasbufferoverflows.Useofthegets()functioncanprobablyneverbetotallysafesinceitreadsfromthestdinstreamuntilalinefeedorcarriagereturn.Inmostcases,thereisnowaytopredeterminewhethertheinputisgoingtooverflowthebuffer.AbettersolutionistouseaC++streamobjectorthefgets()function.Thefunctionfgets()requiresaninputbufferlength,andhenceavoidstheoverflow.Simplyreplace

TechTip

ARoseIsaRoseIsar%6fseCanonicalformreferstosimplestform,and,duetothemanyencodingschemesinuse,canbeacomplexissue.CharacterscanbeencodedinASCII,Unicode,hex,UTF-8,orevencombinationsofthese.So,iftheattackerdesirestoobfuscatehisresponse,thenseveralthingscanhappen.ByURLencodingURLstrings,itmaybepossibletocircumventfiltersecuritysystemsand

IDS:

canbecome

Doubleencodingcancomplicatethematterevenfurther.Round1decoding

becomes

Round2decoding

becomes

Thebottomlineissimple:Knowthatencodingcanbeused,andplanforitwhendesigninginputverificationmechanisms.Expectencodedtransmissionstobeusedtoattempttobypasssecuritymechanisms.

Outputvalidationisjustasimportantinmanycasesasinputvalidation.Ifqueryingadatabaseforausernameandpasswordmatch,theexpected

formsoftheoutputofthematchfunctionshouldbeeitheronematchornone.Ifusingrecordcounttoindicatethelevelofmatch,whichisacommonpractice,thenavalueotherthan0or1wouldbeanerror.Defensivecodingusingoutputvalidationwouldnotactonvalues>1,astheseareclearlyanerrorandshouldbetreatedasafailure.

FuzzingOneofthemostpowerfultoolsthatcanbeusedintestingisfuzzing(a.k.a.fuzztesting),whichisthesystematicapplicationofaseriesofmalformedinputstotesthowtheprogramresponds.Fuzzinghasbeenusedbyhackersforyearstofindpotentiallyexploitablebufferoverflows,withoutanyspecificknowledgeofthecoding.Fuzztestingworksperfectlyfineregardlessofthetypeoftesting,whiteboxorblackbox.Fuzzingservesasabestpracticeforfindingunexpectedinputvalidationerrors.Atestercanuseafuzzingframeworktoautomatenumerousinput

sequences.Inexaminingwhetherafunctioncanfallpreytoabufferoverflow,atestercanrunnumerousinputs,testinglengthsandultimatepayload-deliveryoptions.Ifaparticularinputstringresultsinacrashthatcanbeexploited,thetesterwouldthenexaminethisinputindetail.Fuzzingisstillrelativelynewtothedevelopmentscenebutisrapidlymaturingandwillsoonbeonnearlyequalfootingwithotherautomatedcode-checkingtools.

BugTrackingBugtrackingisafoundationalelementinsecuredevelopment.Allbugsareenumerated,classified,andtracked.Iftheclassificationofabugexceedsasetlevel,thenitmustberesolvedbeforethecodeadvancestothenextlevelofdevelopment.Bugsareclassifiedbasedontheriskthevulnerabilityexposes.Microsoftusesfourlevels:

CriticalAsecurityvulnerabilityhavingthehighestpotentialfor

damage

ImportantAsecurityvulnerabilityhavingsignificantpotentialfordamage,butlessthanCritical

ModerateAsecurityvulnerabilityhavingmoderatepotentialfordamage,butlessthanImportant

LowAsecurityvulnerabilityhavinglowpotentialfordamage

ExamplesofCriticalvulnerabilitiesincludethosethatwithoutwarningtotheusercanresultinremoteexploitinvolvingelevationofprivilege.Criticalisreallyreservedforthemostimportantrisks.AsanexampleofthedistinctionbetweenCriticalandImportant,avulnerabilitythatwouldleadtoamachinefailurerequiringreinstallationofsoftwarewouldonlyscoreImportant.Thekeydifferenceisthattheuserwouldknowofthispenetrationandrisk,whereasforaCriticalvulnerability,theusermayneverknowthatitoccurred.Thetrackingoferrorsservesseveralpurposes.First,froma

managementperspective,whatismeasuredismanaged,bothbymanagementandbythoseinvolved.Overtime,fewererrorswilloccuriftheworkforceknowstheyarebeingtracked,takenseriously,andrepresentanissuewiththeproduct.Second,sincenotallerrorsareimmediatelycorrectable,thisenablesfuturecorrectionwhenamoduleisrewritten.Zerodefectsincodeislikezerodefectsinquality:notanachievableobjective.Butthisdoesnotmeanthatconstantimprovementoftheprocesscannotdramaticallyreducetheerrorrates.EvidencefromfirmsinvolvedinSAFECodesupportthis,astheyarereapingthebenefitsoflowererrorratesandreduceddevelopmentcostsfromlowerlevelsofcorrectivework.

ApplicationAttacksAttacksagainstasystemcanoccuratthenetworklevel,attheoperatingsystemlevel,attheapplicationlevel,orattheuserlevel(socialengineering).Earlyattackpatternswereagainstthenetwork,butmostof

today’sattacksareaimedattheapplications,primarilybecausethatiswheretheobjectiveofmostattacksresides—intheinfamouswordsofbankrobberWillieSutton,“becausethat’swherethemoneyis.”Infact,manyoftoday’sattacksonsystemsusecombinationsofvulnerabilitiesinnetworks,operatingsystems,andapplications,allmeanstoanendtoobtainthedesiredobjectiveofanattack,whichisusuallysomeformofdata.Application-levelattackstakeadvantageofseveralfactsassociatedwith

computerapplications.First,mostapplicationsarelargeprogramswrittenbygroupsofprogrammers,andbytheirnaturehaveerrorsindesignandcodingthatcreatevulnerabilities.Foralistoftypicalvulnerabilities,seetheCommonVulnerabilitiesandExposures(CVE)listmaintainedbyMITRE(http://cve.mitre.org).Second,evenwhenvulnerabilitiesarediscoveredandpatchedbysoftwarevendors,endusersareslowtoapplypatches,asevidencedbytheSQLSlammerincidentinJanuary2003.Thevulnerabilityexploitedwasabufferoverflow,andthevendorsuppliedapatchsixmonthspriortotheoutbreak,yetthewormstillspreadquicklyduetothemultitudeofunpatchedsystems.

Cross-SiteScriptingCross-sitescripting(XSS)isoneofthemostcommonwebattackmethodologies.

Cross-sitescriptingisabbreviatedXSStodistinguishitfromCascadingStyleSheets(CSS).

Across-sitescriptingattackisacodeinjectionattackinwhichanattackersendscodeinresponsetoaninputrequest.Thiscodeisthenrenderedbythewebserver,resultingintheexecutionofthecodebythewebserver.Cross-sitescriptingattackstakeadvantageofafewcommonelementsinweb-basedsystems.Firstisthecommonfailuretoperform

completeinputvalidation.XSSsendsscriptinresponsetoaninputrequest,evenwhenscriptisnottheexpectedorauthorizedinputtype.Secondisthenatureofweb-basedsystemstodynamicallyself-createoutput.Web-basedsystemsarefrequentlycollectionsofimages,text,scripts,andmore,whicharepresentedbyawebservertoabrowserthatinterpretsandrenders.XSSattackscanexploitthedynamicallyself-createdoutputbyexecutingascriptintheclientbrowserthatreceivesthealteredoutput.Thecauseofthevulnerabilityisweakuserinputvalidation.Ifinputis

notvalidatedproperly,anattackercanincludeascriptintheirinputandhaveitrenderedaspartofthewebprocess.ThereareseveraldifferenttypesofXSSattacks,whicharedistinguishedbytheeffectofthescript:

NonpersistentXSSattackTheinjectedscriptisnotpersistedorstored,butratherisimmediatelyexecutedandpassedbackviathewebserver.

PersistentXSSattackThescriptispermanentlystoredonthewebserverorsomeback-endstorage.Thisallowsthescripttobeusedagainstotherswhologintothesystem.

DOM-basedXSSattackThescriptisexecutedinthebrowserviatheDocumentObjectModel(DOM)processasopposedtothewebserver.

Cross-sitescriptingattackscanresultinawiderangeofconsequences,andinsomecases,thelistcanbeanythingthatacleverscriptercandevise.Commonusesthathavebeenseeninthewildincludethefollowing:

Theftofauthenticationinformationfromawebapplication

Sessionhijacking

Deployinghostilecontent

Changingusersettings,includingfutureusers

Impersonatingauser

Phishingorstealingsensitiveinformation

ControlstodefendagainstXSSattacksincludetheuseofanti-XSSlibrariestostripscriptsfromtheinputsequences.VariousotherwaystomitigateXSSattacksincludelimitingtypesofuploadsandscreeningthesizeofuploads,whitelistinginputs,andsoon,butattemptingtoremovescriptsfrominputscanbeatrickytask.Well-designedanti-XSSinputlibraryfunctionshaveproventobethebestdefense.Cross-sitescriptingvulnerabilitiesareeasilytestedforandshouldbeapartofthetestplanforeveryapplication.Testingavarietyofencodedandunencodedinputsforscriptingvulnerabilityisanessentialtestelement.

InjectionsUseofinputtoafunctionwithoutvalidationhasalreadybeenshowntoberiskybehavior.Anotherissuewithunvalidatedinputisthecaseofcodeinjection.Ratherthantheinputbeingappropriateforthefunction,thiscodeinjectionchangesthefunctioninanunintendedway.ASQLinjectionattackisaformofcodeinjectionaimedatanyStructuredQueryLanguage(SQL)–baseddatabase,regardlessofvendor.Theprimarymethodofdefenseagainstthistypeofvulnerabilityis

similartothatforbufferoverflows:validateallinputs.Butratherthanvalidatingtowardjustlength,youneedtovalidateinputsforcontent.Imagineawebpagethatasksforuserinput,andthenusesthatinputinthebuildingofasubsequentpage.NowimaginethattheuserputsthetextforaJavaScriptfunctioninthemiddleoftheirinputsequence,alongwithacalltothescript.Now,thegeneratedwebpagehasanaddedJavaScriptfunctionthatiscalledwhendisplayed.PassingtheuserinputthroughanHTMLencodefunctionbeforeusecanpreventsuchattacks.Again,goodprogrammingpracticegoesalongwaytowardpreventing

thesetypesofvulnerabilities.Thisplacestheburdennotjustontheprogrammers,butalsoontheprocessoftrainingprogrammers,thesoftwareengineeringprocessthatreviewscode,andthetestingprocessto

catchprogrammingerrors.Thisismuchmorethanasingle-personresponsibility;everyoneinvolvedinthesoftwaredevelopmentprocessneedstobeawareofthetypesandcausesoftheseerrors,andsafeguardsneedtobeinplacetopreventtheirpropagation.

TechTip

TestingforSQLInjectionVulnerabilityTherearetwomainstepsassociatedwithtestingforSQLinjectionvulnerability.Firstoneneedstoconfirmthatthesystemisatallvulnerable.ThiscanbedoneusingvariousinputstotestwhetheraninputvariablecanbeusedtomanipulatetheSQLcommand.Thefollowingarecommontestvectorsused:

′or1=1—″or1=1—

or1=1—′or′a′=′a

″or″a″=″a′)or(′a′=′a

NotethattheuseofsingleordoublequotesisSQLimplementationdependent,astherearesyntacticdifferencesbetweenthemajordatabaseengines.Thesecondstepistousetheerrormessageinformationtoattempttoperformanactual

exploitagainstthedatabase.

SQLInjectionASQLinjectionattackisaformofcodeinjectionaimedatanyStructuredQueryLanguage(SQL)–baseddatabase,regardlessofvendor.Anexampleofthistypeofattackiswherethefunctiontakestheuser-providedinputsforusernameandpasswordandsubstitutesthemintoawhereclauseofaSQLstatementwiththeexpresspurposeofchangingthewhereclauseintoonethatgivesafalseanswertothequery.AssumethedesiredSQLstatementis

ThevaluesJDoeandnewpassareprovidedfromtheuserandaresimplyinsertedintothestringsequence.Thoughseeminglysafefunctionally,thiscanbeeasilycorruptedbyusingthesequence

sincethischangesthewhereclausetoonethatreturnsallrecords:

Theadditionoftheorclause,withanalwaystruestatementandthebeginningofacommentlinetoblockthetrailingsinglequote,alterstheSQLstatementtooneinwhichthewhereclauseisrenderedinoperable.

LDAPInjectionLDAP-basedsystemsarealsosubjecttoinjectionattacks.WhenanapplicationconstructsanLDAPrequestbasedonuserinput,afailuretovalidatetheinputcanleadtobadLDAPrequests.JustastheSQLinjectioncanbeusedtoexecutearbitrarycommandsinadatabase,theLDAPinjectioncandothesameinadirectorysystem.Somethingassimpleasawildcardcharacter(*)inasearchboxcanreturnresultsthatwouldnormallybebeyondthescopeofaquery.ProperinputvalidationisimportantbeforepassingtherequesttoanLDAPengine.

XMLInjectionXMLcanbetamperedwithviainjectionaswell.XMLinjectionscanbeusedtomanipulateanXML-basedsystem.AsXMLisnearlyubiquitousinthewebapplicationworld,thisformofattackhasawiderangeoftargets.

DefenseAgainstInjectionAttacksTheprimarymethodofdefenseagainstinjectionattacksissimilartothatforbufferoverflows:validateallinputs.Butratherthanvalidatingtowardjustlength,youneedtovalidateinputsforcontent.Imagineawebpagethatasksforuserinput,andthenusesthatinputinthebuildingofasubsequentpage.AlsoimaginethattheuserputsthetextforaJavaScriptfunctioninthemiddleoftheirinputsequence,alongwithacalltothescript.Now,thegeneratedwebpagehasanaddedJavaScriptfunctionthatiscalledwhendisplayed.PassingtheuserinputthroughanHtmlEncodefunctionbeforeusecanpreventsuchattacks.

ExamTip:Fortheexam,youshouldunderstandinjection-typeattacksandhowtheymanipulatethesystemstheyareinjecting,SQL,LDAP,andXML.

DirectoryTraversal/CommandInjectionAdirectorytraversalattackiswhenanattackerusesspecialinputstocircumventthedirectorytreestructureofthefilesystem.Addingencodedsymbolsfor“../..”inanunvalidatedinputboxcanresultintheparserresolvingtheencodingtothetraversalcode,bypassingmanydetectionelements,andpassingtheinputtothefilesystemandresultingintheprogramexecutingcommandsinadifferentlocationthandesigned.Whencombinedwithacommandinjection,theinputcanresultinexecutionofcodeinanunauthorizedmanner.Classifiedasinputvalidationerrors,thesecanbedifficulttodetectwithoutdoingcodewalkthroughsandspecificallylookingforthem.ThisillustratestheusefulnessoftheTop25MostDangerousSoftwareErrorschecklistduringcodereviews,asitwouldalertdeveloperstothisissueduringdevelopment.Directorytraversalscanbemaskedbyusingencodingofinputstreams.

Ifthesecuritycheckisdonebeforethestringisdecodedbythesystemparser,thenrecognitionoftheattackformmaybeimpaired.Thereare

manywaystorepresentaparticularinputform,thesimplestofwhichisthecanonicalform(introducedearlierinthe“ARoseIsaRoseIsar%6fse”TechTip).ParsersareusedtorenderthecanonicalformfortheOS,buttheseembeddedparsersmayactafterinputvalidation,makingitmoredifficulttodetectcertainattacksfromjustmatchingastring.

BufferOverflowIfthere’soneitemthatcouldbelabeledasthe“MostWanted”incodingsecurity,itwouldbethebufferoverflow.TheCERT/CCatCarnegieMellonUniversityestimatesthatnearlyhalfofallexploitsofcomputerprogramsstemhistoricallyfromsomeformofbufferoverflow.Findingavaccinetobufferoverflowswouldstampouthalfofthesesecurity-relatedincidents,bytype,andprobably90percentbyvolume.TheMorrisfingerwormin1988wasanexploitofanoverflow,asweremorerecentbig-nameeventssuchasCodeRedandSlammer.Thegenericclassificationofbufferoverflowsincludesmanyvariants,suchasstaticbufferoverruns,indexingerrors,formatstringbugs,UnicodeandANSIbuffersizemismatches,andheapoverruns.Theconceptbehindthesevulnerabilitiesisrelativelysimple.Theinput

bufferthatisusedtoholdprograminputisoverwrittenwithdatathatislargerthanthebuffercanhold.Therootcauseofthisvulnerabilityisamixtureoftwothings:poorprogrammingpracticeandprogramminglanguageweaknesses.Forexample,whatwouldhappenifaprogramthatasksfora7-to10-characterphonenumberinsteadreceivesastringof150characters?Manyprogramswillprovidesomeerrorcheckingtoensurethatthiswillnotcauseaproblem.Someprograms,however,cannothandlethiserror,andtheextracharacterscontinuetofillmemory,overwritingotherportionsoftheprogram.Thiscanresultinanumberofproblems,includingcausingtheprogramtoabortorthesystemtocrash.Undercertaincircumstances,theprogramcanexecuteacommandsuppliedbytheattacker.Bufferoverflowstypicallyinheritthelevelofprivilegeenjoyedbytheprogrambeingexploited.Thisiswhyprogramsthatuse

root-levelaccessaresodangerouswhenexploitedwithabufferoverflow,asthecodethatwillexecutedoessoatroot-levelaccess.ProgramminglanguagessuchasCweredesignedforspaceand

performanceconstraints.ManyfunctionsinC,likegets(),areunsafeinthattheywillpermitunsafeoperations,suchasunboundedstringmanipulationintofixedbufferlocations.TheClanguagealsopermitsdirectmemoryaccessviapointers,afunctionalitythatprovidesalotofprogrammingpowerbutcarrieswithittheburdenofpropersafeguardsbeingprovidedbytheprogrammer.

ExamTip:Bufferoverflowscanoccurinanycode,andcodethatrunswithprivilegehasanevengreaterriskprofile.In2014,abufferoverflowintheOpenSSLlibrary,calledHeartbleed,lefthundredsofthousandsofsystemsvulnerableandexposedcriticaldatafortenstohundredsofmillionusersworldwide.

Bufferoverflowsareinputvalidationattacks,designedtotakeadvantageofinputroutinesthatdonotvalidatethelengthofinputs.Surprisinglysimpletoresolve,allthatisrequiredisthevalidationofallinputlengthspriortowritingtomemory.Thiscanbedoneinavarietyofmanners,includingtheuseofsafelibraryfunctionsforinputs.Thisisoneofthevulnerabilitiesthathasbeenshowntobesolvable,andinfacttheprevalenceisdecliningsubstantiallyamongmajorsecurity-conscioussoftwarefirms.

IntegerOverflowAnintegeroverflowisaprogrammingerrorconditionthatoccurswhenaprogramattemptstostoreanumericvalue,aninteger,inavariablethatistoosmalltoholdit.Theresultsvarybylanguageandnumerictype.Insomecases,thevaluesaturatesthevariable,assumingthemaximumvalueforthedefinedtypeandnomore.Inothercases,especiallywithsigned

integers,itcanrolloverintoanegativevalue,asthemostsignificantbitisusuallyreservedforthesignofthenumber.Thiscancreatesignificantlogicerrorsinaprogram.Integeroverflowsareeasilytestedfor,andstaticcodeanalyzerscan

pointoutwheretheyarelikelytooccur.Giventhis,therearenotanygoodexcusesforhavingtheseerrorsendupinproductioncode.

Cross-SiteRequestForgeryCross-siterequestforgery(XSRF)attacksutilizeunintendedbehaviorsthatareproperindefinedusebutareperformedundercircumstancesoutsidetheauthorizeduse.Thisisanexampleofa“confuseddeputy”problem,aclassofproblemswhereoneentitymistakenlyperformsanactiononbehalfofanother.AnXSRFattackreliesuponseveralconditionstobeeffective.Itisperformedagainstsitesthathaveanauthenticateduserandexploitsthesite’strustinapreviousauthenticationevent.Then,bytrickingauser’sbrowsertosendanHTTPrequesttothetargetsite,thetrustisexploited.Assumeyourbankallowsyoutologinandperformfinancialtransactions,butdoesnotvalidatetheauthenticationforeachsubsequenttransaction.Ifauserisloggedinandhasnotclosedtheirbrowser,thenanactioninanotherbrowsertabcouldsendahiddenrequesttothebank,resultinginatransactionthatappearstobeauthorizedbutinfactwasnotdonebytheuser.Therearemanydifferentmitigationtechniquesthatcanbeemployed,

fromlimitingauthenticationtimes,tocookieexpiration,tomanagingsomespecificelementsofawebpagelikeheaderchecking.ThestrongestmethodistheuseofrandomXSRFtokensinformsubmissions.Subsequentrequestscannotwork,asthetokenwasnotsetinadvance.TestingforXSRFtakesabitmoreplanningthanforotherinjection-typeattacks,butthis,too,canbeaccomplishedaspartofthedesignprocess.

Zero-Day

Zero-dayisatermusedtodefinevulnerabilitiesthatarenewlydiscoveredandnotyetaddressedbyapatch.Mostvulnerabilitiesexistinanunknownstateuntildiscoveredbyaresearcherorthedeveloper.Ifaresearcherordeveloperdiscoversavulnerabilitybutdoesnotsharetheinformation,thenthisvulnerabilitycanbeexploitedwithoutavendor’sabilitytofixit,becauseforallpracticalknowledgetheissueisunknown,excepttothepersonwhofoundit.Fromthetimeofdiscoveryuntilafixorpatchismadeavailable,thevulnerabilitygoesbythenamezero-day,indicatingthatithasnotbeenaddressedyet.Themostfrighteningthingaboutzero-daysistheunknownfactor—theircapabilityandeffectonriskareunknown.

AttachmentsAttachmentscanalsobeusedasanattackvector.Ifauserinputsagraphicsfile(forinstance,aJPEGfile),andthatfileisalteredtocontainexecutablecodesuchasJava,thenwhentheimageisrendered,thecodeisexecuted.Thiscanenableawiderangeofattacks.

LocallySharedObjectsLocallysharedobjects(LSOs)arepiecesofdatathatarestoredonauser’smachinetosaveinformationfromanapplication,suchasagame.FrequentlythesearecookiesusedbyAdobeFlash,calledFlashCookies,andcanstoreinformationsuchasuserpreferences.Asthesecanbemanipulatedoutsideoftheapplication,theycanrepresentasecurityorprivacythreat.

Client-SideAttacksThewebbrowserhasbecomethemajorapplicationforuserstoengageresourcesacrosstheWeb.Web-basedattacksarecoveredindetailinChapter17.

ExamTip:Awidevarietyofattackvectorscanbeusedagainstaclientmachine,includingcachepoisoning,cross-sitescripting,cross-userdefacement,pagehijacking,cookiemanipulation,andopenredirect.Allattacksshouldbeknownfortheexam.

Arbitrary/RemoteCodeExecutionOneoftherisksinvolvedintakinguserinputandusingittocreateacommandtobeexecutedonasystemisarbitraryorremotecodeexecution.Thisattackinvolvesanattackerpreparinganinputstatementthatchangestheformorfunctionofapreparedstatement.Aformofcommandinjection,thisattackcanallowausertoinsertarbitrarycodeandthenremotelyexecuteitonasystem.Thisisaformofinputvalidationfailure,asusersshouldnothavetheabilitytochangethewayaprograminteractswiththehostOSoutsideofasetofdefinedandapprovedmethods.

OpenVulnerabilityandAssessmentLanguageTheMITRECorporationhasdoneextensiveresearchintosoftwarevulnerabilities.Toenablecollaborationbetweenthemanydifferentpartiesinvolvedinsoftwaredevelopmentandmaintenance,MITREhasdevelopedataxonomyofvulnerabilities,theCommonVulnerabilitiesandExposures(CVE).ThisisjustoneofthemanyrelatedenumerationsthatMITREhasdeveloped,inanefforttomakemachine-readabledataexchangestofacilitatesystemmanagementacrosslargeenterprises.TheCVEledtoeffortssuchasthedevelopmentoftheOpenVulnerabilityandAssessmentLanguage(OVAL).OVALcomprisestwomainelements:anXML-basedmachine-readablelanguagefordescribingvulnerabilities,andarepository;seehttp://oval.mitre.org.

CVEprovidessecuritypersonnelwithacommonlanguagetousewhendiscussingvulnerabilities.IfoneisdiscussingaspecificvulnerabilityintheFlashobjectthatallowsanarbitraryexecutionofcode,thenusingthenomenclatureCVE-2005-2628recordsthespecificsofthevulnerabilityandensureseveryoneisdiscussingthesameproblem.

InadditiontotheCVEandOVALefforts,MITREhasdevelopedawiderangeofenumerationsandstandardsdesignedtoeasetheautomationofsecuritymanagementatthelowestlevelsacrossanenterprise.Additionaleffortsincludethefollowing:

CommonAttackPatternEnumerationandClassification(CAPEC)

ExtensibleConfigurationChecklistDescriptionFormat(XCCDF)

SecurityContentAutomationProtocol(SCAP)

CommonConfigurationEnumeration(CCE)

CommonPlatformEnumeration(CPE)

CommonWeaknessEnumeration(CWE)

CommonEventExpression(CEE)

CommonResultFormat(CRF)

TheCommonWeaknessEnumeration(CWE)isimportantforsecuredevelopmentinthatitenumeratescommonpatternsofdevelopmentthatleadtoweaknessandpotentialvulnerabilities.AdditionalinformationcanbeobtainedfromtheMITREMakingSecurityMeasurablewebsite,http://measurablesecurity.mitre.org.

ApplicationHardeningApplicationhardeningworksinthesamefashionassystemhardening

(discussedinChapter14).Thefirststepistheremovalofunnecessarycomponentsoroptions.Thesecondstepistheproperconfigurationofthesystemasitisimplemented.Everyupdateorpatchcanleadtochangestotheseconditions,andtheyshouldbeconfirmedaftereveryupdate.Theprimarytoolsusedtoensureahardenedsystemareasecure

applicationconfigurationbaselineandapatchmanagementprocess.Whenproperlyemployed,thesetoolscanleadtothemostsecuresystem.

ApplicationConfigurationBaselineAbaselineisthesetofpropersettingsforacomputersystem.Anapplicationconfigurationbaselineoutlinesthepropersettingsandconfigurationsforanapplicationorsetofapplications.Thesesettingsincludemanyelements,fromapplicationsettingstosecuritysettings.Protectionofthesettingsiscrucial,andthemostcommonmechanismsusedtoprotectthemincludeaccesscontrollistsandprotecteddirectories.Thedocumentationofthedesiredsettingsisanimportantsecuritydocument,assistingadministratorsinensuringthatproperconfigurationsaremaintainedacrossupdates.

ApplicationPatchManagementApplicationpatchmanagementisafundamentalcomponentofapplicationandsystemhardening.Theobjectiveistoberunningthemostsecureversionofanapplication,and,withveryfewexceptions,thatwouldbethemostcurrentversionofsoftware,includingpatches.Mostupdatesandpatchesincludefixingsecurityissuesandclosingvulnerabilities.Currentpatchingisarequirementofmanycomplianceschemesaswell.Patchingdoesnotalwaysgoasplanned,andsomepatchesmayresultin

problemsinproductionsystems.Aformalsystemofpatchmanagementisneededtotestandimplementpatchesinachange-controlledmanner.

ExamTip:Patchmanagementmightbereferredtoasupdatemanagement,configurationmanagement,orchangemanagement.Althoughthesetermsarenotstrictlysynonyms,theymightbeusedinterchangeablyontheexam.

NoSQLDatabasesvs.SQLDatabasesCurrentprogrammingtrendsincludetopicssuchaswhethertouseSQLdatabasesorNoSQLdatabases.SQLdatabasesarethosethatuseStructuredQueryLanguagetomanipulateitemsthatarereferencedinarelationalmannerintheformoftables.NoSQLreferstodatastoresthatemployneitherSQLnorrelationaltablestructures.Eachsystemhasitsstrengthsandweaknesses,andbothcanbeusedforawiderangeofdatastorageneeds.SQLdatabasesarebyfarthemostcommon,withimplementationsby

IBM,Microsoft,andOraclebeingthemajorplayers.NoSQLdatabasestendtobecustom-builtusinglow-levellanguagesandlackmanyofthestandardsofexistingdatabases.ThishasnotstoppedthegrowthofNoSQLdatabasesinlarge-scale,well-resourcedenvironments.Theimportantfactorinaccessingdatainasecurefashionisinthe

correctemploymentofprogrammingstructuresandframeworkstoabstracttheaccessprocess.MethodssuchasinlineSQLgenerationcoupledwithinputvalidationerrorsisarecipefordisasterintheformofSQLinjectionattacks.

Server-Sidevs.Client-SideValidationInamodernclient/serverenvironment,datacanbecheckedforcompliancewithinput/outputrequirementseitherontheserverorontheclient.Thereareadvantagestoverifyingdataelementsonaclientbeforesendingtotheserver—namely,efficiency.Doingchecksontheclientsavesaround-trip,anditsdelays,beforeausercanbealertedtoa

problem.Thiscanimproveusabilityofsoftwareinterfaces.Theclientisnotasuitableplacetoperformanycriticalvaluechecksor

securitychecks.Thereasonsforthisaretwofold.First,theclientcanchangeanythingafterthecheck.Andsecond,thedatacanbealteredwhileintransitoratanintermediaryproxy.Forallchecksthatareessential,eitherforbusinessreasonsorsecurity,theverificationstepsshouldbeperformedontheserverside,wherethedataisfreefromunauthorizedalterations.Inputvalidationcheckscanbesafelyperformedonlyontheserverside.

ExamTip:Allinputvalidationshouldbeperformedontheserversideoftheclient–serverrelationship,whereitisfreefromoutsideinfluenceandchange.

Chapter18Review

ForMoreInformationSAFECodewww.safecode.orgDHSBuildSecurityInhttps://buildsecurityin.us-cert.govMicrosoftSDLwww.microsoft.com/sdlCVEhttp://cve.mitre.orgCWEhttp://cwe.mitre.orgCWE/SANSTop25http://cwe.mitre.org/top25/index.html

ChapterSummary

Afterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutsecurityissuesrelatedtosoftwaredevelopment.

Describehowsecurecodingcanbeincorporatedintothesoftwaredevelopmentprocess

Therequirementsphaseisthemostimportantpartofthesoftwareengineeringprocesssinceitoutlinestheproject’sfuturerequirements,thusdefiningitsscopeandlimitations.

Theuseofanenhancedlifecycledevelopmentprocesstoincludesecurityelementswillbuildsecurityintotheproduct.

Listthemajortypesofcodingerrorsandtheirrootcauses

Thecommonestcodingerrorisabuffer-overflowcondition.

Codeinjectionerrorscanresultinundesiredcodeexecutionasdefinedbytheenduser.

Inputvalidationisthebestmethodofinsuringagainstbufferoverflowsandcodeinjectionerrors.

Describegoodsoftwaredevelopmentpracticesandexplainhowtheyimpactapplicationsecurity

Earlytestinghelpsresolveerrorsatanearlierstageandresultsincleanercode.

Security-relatedusecasescanbeusedtotestforspecificsecurityrequirements.

Fuzztestingcanfindawiderangeoferrors.

Describehowusingasoftwaredevelopmentprocessenforcessecurityinclusioninaproject

Securityisbuiltintothesoftwarebyincludingsecurityconcernsand

reviewsthroughoutthesoftwaredevelopmentprocess.

Regardlessofthespecificsoftwareengineeringprocessmodelused,securitycanbeincludedinthenormalprocessbybeinginputasrequirements.

Learnaboutapplicationhardeningtechniques

Thefirststepinapplicationhardeningisdeterminingtheapplicationconfigurationbaseline.

ApplicationsrequirepatchingaswellastheOS,andproperenterpriseapplicationpatchmanagementisimportant.

Allvalidationsofclient-to-serverdataneedtobedoneontheserverside,forthisisthesecuritycontrollablesideofthecommunication.

KeyTermsagilemodel(559)black-boxtesting(567)bufferoverflow(575)canonicalizationerror(569)codeinjection(573)CommonVulnerabilitiesandExposures(CVE)(563)CommonWeaknessEnumeration(CWE)(563)cryptographicallyrandom(566)CWE/SANSTop25MostDangerousSoftwareErrors(563)deprecatedfunction(566)evolutionarymodel(559)fuzzing(567)grey-boxtesting(567)leastprivilege(563)requirementsphase(561)

securedevelopmentlifecycle(SDL)model(559)spiralmodel(559)SQLinjection(573)testingphase(567)Top25list(563)usecase(567)waterfallmodel(559)white-boxtesting(567)zero-day(577)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.The_______________isalinearsoftwareengineeringmodelwithnorepeatingsteps.

2.A(n)_______________causesanapplicationtomalfunctionduetoamisrepresentednameforaresource.

3.CWE-20:ImproperInputValidationreferstoa(n)_______________.

4.Usingaseriesofmalformedinputtotestforconditionssuchasbufferoverflowsiscalled_______________.

5.ModifyingaSQLstatementthroughfalseinputtoafunctionisanexampleof_______________.

6.Usinganadministrator-levelaccountforallfunctionsisaviolationoftheprincipleof_______________.

7.The_______________isthefirstopportunitytoaddresssecurityfunctionalityduringaproject.

8.Thebanningof_______________helpsimprovecodequalityby

usingsaferlibrarycalls.

9.A(n)_______________isavulnerabilitythathasbeendiscoveredbyhackers,butnotbythedevelopersofthesoftware.

10.Anumberthatissuitableforanencryptionfunctioniscalled_______________.

Multiple-ChoiceQuiz1.Whichofthefollowingisnotrelatedtoabufferoverflow?

A.Staticbufferoverflow

B.Indexerror

C.Canonicalizationerror

D.Heapoverflow

2.Whichofthefollowingisnotinvolvedwithacodeinjectionerror?A.SQLstatementbuilding

B.Inputvalidation

C.JavaScript

D.ApointerintheClanguage

3.Inputvalidationisimportanttopreventwhat?A.Bufferoverflow

B.Indexsequenceerror

C.Operatoroverloaderror

D.Unhandledexception

4.It’smostimportanttodefinesecurityrequirementsduring:

A.Testing

B.Usecasedevelopment

C.Codewalkthroughs

D.Therequirementsphaseoftheproject

5.Thelargestclassoferrorsinsoftwareengineeringcanbeattributedto:

A.Poortesting

B.Privilegeviolations

C.Improperinputvalidation

D.Canonicalizationerrors

6.Leastprivilegeappliesto:A.Onlytheapplicationcode

B.Onlytocallstooperatingsystemobjects

C.Allresourcerequestsfromapplicationstootherentities

D.Applicationsundernameduseraccounts

7.Commoncryptographicfailuresincludewhichofthefollowing?A.Useofcryptographicallyrandomnumbers

B.Cryptographicsequencefailures

C.Poorencryptionprotocols

D.Canonicalizationerrors

8.Whenistestingbestaccomplished?A.Afterallcodeisfinished

B.Asearlyaspossibleintheprocess

C.Usingcryptographicallyrandomelements

D.Usingthird-partytestingsoftware

9.Codereviewbyasecondpartyishelpfultodowhat?A.Increasecreativityofthejuniorprogrammer

B.Reducecost—makingforabetter,cheapermethodoftesting

C.Catcherrorsearlyintheprogrammingprocess

D.Ensureallmodulesworktogether

10.Oneofthemostfundamentalrulestogoodcodingpracticeis:A.Codeonce,testtwice.

B.Validateallinputs.

C.Don’tusepointers.

D.Useobscurecodingpracticessovirusescannotliveinthecode.

EssayQuiz1.Describetherelationshipoftherequirementsphase,testingphase,

andusecaseswithrespecttosoftwareengineeringdevelopmentandsecurecode.

2.Developalistoffivesecurity-relatedissuestobeputintoarequirementsdocumentaspartofasecurecodinginitiative.

3.Choosetworequirementsfromthepreviousquestionanddescribeusecasesthatwouldvalidatetheminthetestingphase.

4.Youhavebeenaskedbyyourmanagertodevelopaworksheetforcodewalkthroughs,anothernameforstructuredcodereviews.Thisworksheetshouldincludealistofcommonerrorstolookforduringtheexamination,actingasamemoryaid.Youwanttoleavea

lastingimpressionontheteamasanewcollegegrad.Outlinewhatyouwouldincludeontheworksheetrelatedtosecurity.

LabProjects

•LabProject18.1Learnthespecificsoftwareengineeringprocessmodelusedatalocalfirm(oryoumaybeabletoresearchacompanyonlineorfindoneinasoftwareengineeringtextbookatalibrary).Examinewheresecurityisbuilt,orcouldbebuilt,intothemodel.Provideanoverviewofthestrengthsandopportunitiesofthemodelwithrespecttodesigningsecurecode.

•LabProject18.2DevelopanexampleofaSQLinjectionstatementforawebpageinquiry.Listthewebpageinputs,whattheprojectedback-endSQLis,andhowitcanbechanged.

chapter19 BusinessContinuityandDisasterRecovery,

andOrganizationalPolicies

Thesuperiorman,whenrestinginsafety,doesnotforgetthatdangermaycome.Wheninastateofsecurityhedoesnotforgetthepossibilityofruin.Whenallisorderly,hedoesnotforget

M

disordermaycome.ThushispersonisnotendangeredandhisStatesandalltheirclansarepreserved.

—CONFUCIUS

Inthischapter,youwilllearnhowto

Describethevariouscomponentsofabusinesscontinuityplan

Describetheelementsofdisasterrecoveryplans

Describethevariouswaysbackupsareconductedandstored

Explaindifferentstrategiesforalternativesiteprocessing

uchofthisbookfocusesonavoidingthelossofconfidentialityorintegrityduetoasecuritybreach.Theissueofavailabilityisalsodiscussedintermsofspecificevents,suchasdenial-of-serviceand

distributedDoSattacks.Inreality,however,therearemanythingsthatcandisrupttheoperationsofyourorganization.Fromthestandpointofyourclientsandemployees,whetheryourorganization’swebsiteisunavailablebecauseofastormorbecauseofanintrudermakeslittledifference—thesiteisstillunavailable.Inthischapter,we’lldiscusswhatdotowhenasituationarisesthatresultsinthedisruptionofservices.Thisdiscussionincludesbothdisasterrecoveryandbusinesscontinuity.

BusinessContinuityKeepinganorganizationrunningwhenaneventoccursthatdisruptsoperationsisnotaccomplishedspontaneouslybutrequiresadvanceplanningandperiodicallyexercisingthoseplanstoensuretheywillwork.Atermthatisoftenusedwhendiscussingtheissueofcontinuedorganizationaloperationsisbusinesscontinuity(BC).

ExamTip:ThetermsDRandBCareoftenusedsynonymouslyandsometimestogetherasinBC/DR,buttherearesubtledifferencesbetweenthem.Studythissectioncarefullytoensurethatyoucandiscriminatebetweenthetwoterms.

Therearemanyriskmanagementbestpracticesassociatedwithbusinesscontinuity.Thetopicsofplanning,businessimpactanalysis,identificationofcriticalsystemsandcomponents,singlepointsoffailure,andmorearedetailedinthefollowingsections.

BusinessContinuityPlansAsinmostoperationalissues,planningisafoundationalelementtosuccess.Thisistrueinbusinesscontinuity,andthebusinesscontinuityplan(BCP)representstheplanningandadvancepolicydecisionstoensurethebusinesscontinuityobjectivesareachievedduringatimeofobviousturmoil.Youmightwonderwhatthedifferenceisbetweenadisasterrecoveryplanandabusinesscontinuityplan—afterall,isn’tthepurposeofdisasterrecoverythecontinuedoperationoftheorganizationorbusinessduringaperiodofdisruption?Manytimes,thesetwotermsaresometimesusedsynonymously,andformanyorganizationstheremaybenomajordifferenceinthetwo.Thereare,however,realdifferencesbetweenaBCPandaDRP,oneofwhichisthefocus.ThefocusofaBCPisthecontinuedoperationoftheessentialelements

businessororganization.Businesscontinuityisnotaboutoperationsasnormal,butratherabouttrimmed-down,essentialoperationsonly.Likelife-support,goodforaperiodtobuytimetorecover,butnotaleanerwayofrunningtheoperation.ThefocusofaDRPisontherecoveryandrebuildingoftheorganizationafteradisasterhasoccurred.Andthisrecoveryisallthewaybacktoacompleteoperationofallelementsofthebusiness.TheDRPispartofthelargerpicture,whiletheBCPisatacticalnecessityuntiloperationscanberestored.AmajorfocusoftheDRPistheprotectionofhumanlife.Evacuationplansandsystemshutdownproceduresshouldbeaddressed.ThesafetyofemployeesshouldbeathemethroughoutaDRP.InaBCP,youwillseeamoresignificant

emphasisplacedonthelimitednumberofcriticalsystemstheorganizationneedstooperate.TheBCPwilldescribethefunctionsthataremostcritical,basedonapreviouslyconductedbusinessimpactanalysis,andwilldescribetheorderinwhichfunctionsshouldbereturnedtooperation.TheBCPdescribeswhatisneededinorderforthebusinesstocontinuetooperateintheshortterm,evenifallrequirementsarenotmetandriskprofilesarechanged.

BusinessImpactAnalysisBusinessimpactanalysis(BIA)isthetermusedtodescribethedocumentthatdetailsthespecificimpactofelementsonabusinessoperation(thismayalsobereferredtoasabusinessimpactassessment).ABIAoutlineswhatthelossofanyofyourcriticalfunctionswillmeantotheorganization.TheBIAisafoundationaldocumentusedtoestablishawiderangeofpriorities,includingsystembackupsandrestoration,whichareneededinmaintainingcontinuityofoperation,andmore.Whileeachpersonmayconsidertheirindividualtaskstobeimportant,theBIAisabusiness-levelanalysisofthecriticalityofallelementswithrespecttothebusinessasawhole.TheBIAwilltakeintoaccounttheincreasedriskfromminimaloperations,andisdesignedtodetermineandjustifywhatisessentiallycriticalforabusinesstosurviveversuswhatsomeonemaystateorwish.

ConductingaBIAisacriticalpartofdevelopingyourDRP.Thisassessmentwillallowyoutofocusonthemostcriticalelementsofyourorganization.Thesecriticalelementsaretheonesthatyouwanttoensurearerecoveredfirst,andthispriorityshouldbereflectedinyourDRP.

IdentificationofCriticalSystemsandComponents

Afoundationalelementofasecurityplanisanunderstandingofthecriticalityofsystems,thedata,andthecomponents.Identifyingthecriticalsystemsandcomponentsisoneofthefirststepsanorganizationneedstoundertakeindesigningthesetofsecuritycontrols.Asthesystemsevolveandchange,thecontinuedidentificationofthecriticalsystemsneedstooccur,keepingtheinformationup-to-dateandcurrent.

RemovingSinglePointsofFailureAkeysecuritymethodologyistoattempttoavoidasinglepointoffailureincriticalfunctionswithinanorganization.WhendevelopingyourBCP,youshouldbeonthelookoutforareasinwhichacriticalfunctionreliesonasingleitem(suchasswitches,routers,firewalls,powersupplies,software,ordata)thatiflostwouldstopthiscriticalfunction.Whenthesepointsareidentified,thinkabouthoweachofthesepossiblesinglepointsoffailurecanbeeliminated(ormitigated).Inadditiontotheinternalresourcesyouneedtoconsiderwhen

evaluatingyourbusinessfunctions,therearemanyresourcesexternaltoyourorganizationthatcanimpacttheoperationofyourbusiness.Youmustlookbeyondhardware,software,anddatatoconsiderhowthelossofvariouscriticalinfrastructurescanalsoimpactbusinessoperations.

RiskAssessmentTheprinciplesofriskassessmentcanbeappliedtobusinesscontinuityplanning.Determiningthesourcesandmagnitudesofrisksisnecessaryinallbusinessoperations,includingbusinesscontinuityplanning.

SuccessionPlanningBusinesscontinuityplanningismorethanjustensuringthathardwareisavailableandoperational.Thepeoplewhooperateandmaintainthesystemarealsoimportant,andintheeventofadisruptiveevent,the

availabilityofkeypersonnelisasimportantashardwareforsuccessfulbusinesscontinuityoperations.ThedevelopmentofasuccessionplanthatidentifieskeypersonnelanddevelopsqualifiedpersonnelforkeyfunctionsisacriticalpartofasuccessfulBCP.

ExamTip:Businesscontinuityisnotonlyabouthardware;plansneedtoincludepeopleaswell.Successionplanningisaproactiveplanforpersonnelsubstitutionsintheeventthattheprimarypersonisnotavailabletofulfilltheirassignedduties.

ContinuityofOperationsThecontinuityofoperationsisimperative,asithasbeenshownthatbusinessesthatcannotquicklyrecoverfromadisruptionhavearealchanceofneverrecovering,andtheymaygooutofbusiness.Theoverallgoalofbusinesscontinuityplanningistodeterminewhichsubsetofnormaloperationsneedstobecontinuedduringperiodsofdisruption.

DisasterRecoveryManytypesofdisasters,whethernaturalorcausedbypeople,candisruptyourorganization’soperationsforsomelengthoftime.Suchdisastersareunlikethreatsthatintentionallytargetyourcomputersystemsandnetworks,suchasindustrialespionage,hacking,attacksfromdisgruntledemployees,andinsiderthreats,becausetheeventsthatcausethedisruptionarenotspecificallyaimedatyourorganization.Althoughbothdisastersandintentionalthreatsmustbeconsideredimportantinplanningfordisasterrecovery,thepurposeofthissectionistofocusonrecoveringfromdisasters.Howlongyourorganization’soperationsaredisrupteddependsinpart

onhowprepareditisforadisasterandwhatplansareinplacetomitigatetheeffectsofadisaster.Anyofthefollowingeventscouldcausea

disruptioninoperations:

Fortunately,thesetypesofeventsdonothappenfrequentlyinanyonelocation.Itismorelikelythatbusinessoperationswillbeinterruptedduetoemployeeerror(suchasaccidentalcorruptionofadatabaseorunpluggingasystemtopluginavacuumcleaner—aneventthathasoccurredatmorethanoneorganization).Agooddisasterrecoveryplanwillprepareyourorganizationforanytypeoforganizationaldisruption.

Disasterscanbecausedbynature(suchasfires,earthquakes,andfloods)orcanbetheresultofsomemanmadeevent(suchaswaroraterroristattack).Theplansanorganizationdevelopstoaddressadisasterneedtorecognizebothofthesepossibilities.Whilemanyoftheelementsinadisasterrecoveryplanwillbesimilarforbothnaturalandmanmadeevents,somedifferencesmightexist.Forexample,recoveringdatafrombackuptapesafteranaturaldisastercanusethemostrecentbackupavailable.If,ontheotherhand,theeventwasalossofalldataasaresultofacomputervirusthatwipedyoursystem,restoringfromthemostrecentbackuptapesmightresultinthereinfectionofyoursystemifthevirushadbeendormantforaplannedperiodoftime.Inthiscaserecoverymightentailrestoringsomefilesfromearlierbackups.

DisasterRecoveryPlans/ProcessNomatterwhateventyouareworriedabout—whethernaturalornot,targetedatyourorganizationornot—youcanmakepreparationstolessentheimpactonyourorganizationandthelengthoftimethatyourorganizationwillbeoutofoperation.Adisasterrecoveryplan(DRP)is

criticalforeffectivedisasterrecoveryefforts.ADRPdefinesthedataandresourcesnecessaryandthestepsrequiredtorestorecriticalorganizationalprocesses.Considerwhatyourorganizationneedstoperformitsmission.This

informationprovidesthebeginningofaDRP,sinceittellsyouwhatneedstobequicklyrestored.Whenconsideringresources,don’tforgettoincludeboththephysicalresources(suchascomputerhardwareandsoftware)andthepersonnel(thepeoplewhoknowhowtorunthesystemsthatprocessyourcriticaldata).TobegincreatingyourDRP,firstidentifyallcriticalfunctionsforyour

organization,andthenanswerthefollowingquestionsforeachofthesecriticalfunctions:

Whoisresponsiblefortheoperationofthisfunction?

Whatdotheseindividualsneedtoperformthefunction?

Whenshouldthisfunctionbeaccomplishedrelativetootherfunctions?

Wherewillthisfunctionbeperformed?

Howisthisfunctionperformed(whatistheprocess)?

Whyisthisfunctionsoimportantorcriticaltotheorganization?

Byansweringthesequestions,youcancreateaninitialdraftofyourorganization’sDRP.Thenameoftenusedtodescribethedocumentcreatedbyaddressingthesequestionsisabusinessimpactassessment(BIA).BoththeDRPandtheBCP,ofcourse,willneedtobeapprovedbymanagement,anditisessentialthattheybuyintotheplan—otherwiseyoureffortswillmorethanlikelyfail.Theoldadage“Thosewhofailtoplan,plantofail”certainlyappliesinthissituation.AgoodDRPmustincludetheprocessesandproceduresneededto

restoreyourorganizationtoproperfunctioningandtoensurecontinuedoperation.Whatspecificstepswillberequiredtorestoreoperations?Theseprocessesshouldbedocumentedand,wherepossibleandfeasible,

reviewedandexercisedonaperiodicbasis.Havingaplanwithstep-by-stepproceduresthatnobodyknowshowtofollowdoesnothingtoensurethecontinuedoperationoftheorganization.ExercisingyourDRPandprocessesbeforeadisasteroccursprovidesyouwiththeopportunitytodiscoverflawsorweaknessesintheplanwhenthereisstilltimetomodifyandcorrectthem.Italsoprovidesanopportunityforkeyfiguresintheplantopracticewhattheywillbeexpectedtoaccomplish.

Itisoftenveryinformativetodeterminewhatcategoryyourvariousbusinessfunctionsfallinto.Youmayfindthatcertainfunctionscurrentlybeingconductedarenotessentialtoyouroperationsandcouldbeeliminated.Inthisway,preparingforasecurityeventmayactuallyhelpyoustreamlineyouroperationalprocesses.

CategoriesofBusinessFunctionsIndevelopingyourBIAandDRP,youmayfinditusefultocategorizethevariousfunctionsyourorganizationperforms,suchasshowninTable19.1.Thiscategorizationisbasedonhowcriticalorimportantthefunctionistoyourbusinessoperationandhowlongyourorganizationcanlastwithoutthefunction.Thosefunctionsthatarethemostcriticalwillberestoredfirst,andyourDRPshouldreflectthis.Ifthefunctiondoesn’tfallintoanyofthefirstfourcategories,thenitisnotreallyneededandtheorganizationshouldseriouslyconsiderwhetheritcanbeeliminatedaltogether.

Table19.1 DRPConsiderations

ThedifferencebetweenaDRPandBCPisthattheBCPwillbeusedtoensurethatyouroperationscontinueinthefaceofwhatevereventhasoccurredthathascausedadisruptioninoperations.Ifadisasterhasoccurredandhasdestroyedallorpartofyourfacility,theDRPportionoftheBCPwilladdressthebuildingoracquisitionofanewfacility.TheDRPcanalsoincludedetailsrelatedtothelong-termrecoveryoftheorganization.Howeveryouviewthesetwoplans,anorganizationthatisnotableto

quicklyrestorebusinessfunctionsafteranoperationalinterruptionisan

organizationthatwillmostlikelysufferanunrecoverablelossandmayceasetoexist.

TechTip

DRPvs.BCPAlthoughthetermsDRPandBCPmaybeusedsynonymouslyinsmallfirms,inlargefirms,thereisadifferenceinfocusbetweenthetwoplans.ThefocusoftheBCPisoncontinuedoperationofabusiness,albeitatareducedlevelorthroughdifferentmeansduringsomeperiodoftime.TheDRPisfocusedspecificallyonrecoveringfromadisaster.Inmanycases,bothofthesefunctionshappenatthesametime,andhencetheyarefrequentlycombinedinsmallfirmsandinmanydiscussions.Inlarge,complexentities,theyareseparateplansusedtoprovidemanagementoptionsforarangeofsituations.

ITContingencyPlanningImportantpartsofanyorganizationtodayaretheinformationtechnology(IT)processesandassets.Withoutcomputersandnetworks,mostorganizationscouldnotoperate.Asaresult,itisimperativethataBCPincludesITcontingencyplanning.DuetothenatureoftheInternetandthethreatsthatcomefromit,anorganization’sITassetswilllikelyfacesomelevelofdisruptionbeforetheorganizationsuffersfromadisruptionduetoanaturaldisaster.Eventssuchasviruses,worms,computerintruders,anddenial-of-serviceattackscouldresultinanorganizationlosingpartorallofitscomputingresourceswithoutwarning.Consequently,theITcontingencyplansaremorelikelytobeneededthantheotheraspectsofaBCP.Theseplansshouldaccountfordisruptionscausedbyanyofthesecuritythreatsdiscussedthroughoutthisbookaswellasdisastersorsimplesystemfailures.

Test,Exercise,andRehearseAnorganizationshouldpracticeitsDRPperiodically.Thetimetofindout

whetherithasflawsisnotwhenanactualeventoccursandtherecoveryofdataandinformationmeansthecontinuedexistenceoftheorganization.TheDRPshouldbetestedtoensurethatitissufficientandthatallkeyindividualsknowtheirroleinthespecificplan.Thesecurityplandeterminesiftheorganization’splanandtheindividualsinvolvedperformastheyshouldduringasimulatedsecurityincident.Atestimpliesa“grade”willbeappliedtotheoutcome.Didthe

organization’splanandtheindividualsinvolvedperformastheyshould?Wastheorganizationabletorecoverandcontinuetooperatewithinthepredefinedtolerancessetbymanagement?Iftheanswerisno,thenduringthefollow-upevaluationoftheexercise,thefailuresshouldbeidentifiedandaddressed.Wasitsimplyamatterofuntrainedoruninformedindividuals,orwasthereatechnologicalfailurethatnecessitatesachangeinhardware,software,andprocedures?Whereasatestimpliesa“grade,”anexercisecanbeconductedwithout

thestigmaofapass/failgradebeingattached.Securityexercisesareconductedtoprovidetheopportunityforallpartiestopracticetheproceduresthathavebeenestablishedtorespondtoasecurityincident.Itisimportanttoperformasmanyoftherecoveryfunctionsaspossible,withoutimpactingongoingoperations,toensurethattheproceduresandtechnologywillworkinarealincident.Youmaywanttoperiodicallyrehearseportionsoftherecoveryplan,particularlythoseaspectsthateitherarepotentiallymoredisruptivetoactualoperationsorrequiremorefrequentpracticebecauseoftheirimportanceordegreeofdifficulty.Additionally,therearedifferentformatsforexerciseswithvarying

degreesofimpactontheorganization.Themostbasicisachecklistwalkthroughinwhichindividualsgothrougharecoverychecklisttoensurethattheyunderstandwhattodoshouldtheplanbeinvokedandconfirmthatallnecessaryequipment(hardwareandsoftware)isavailable.Thistypeofexercisenormallydoesnotreveal“holes”inaplanbutwillshowwherediscrepanciesexistinthepreparationfortheplan.Toexaminethecompletenessofaplan,adifferenttypeofexerciseneedstobeconducted.Thesimplestisatabletopexerciseinwhichparticipantssit

aroundatablewithafacilitatorwhosuppliesinformationrelatedtothe“incident”andtheprocessesthatarebeingexamined.Anothertypeofexerciseisafunctionaltestinwhichcertainaspectsofaplanaretestedtoseehowwelltheywork(andhowwellpreparedpersonnelare).Atthemostextremearefulloperationalexercisesdesignedtoactuallyinterruptservicesinordertoverifythatallaspectsofaplanareinplaceandsufficienttorespondtothetypeofincidentthatisbeingsimulated.

Exercisesareanoftenoverlookedaspectofsecurity.Manyorganizationsdonotbelievethattheyhavethetimetospendonsuchevents,butthequestiontoaskiswhethertheycanaffordtonotconducttheseexercises,astheyensuretheorganizationhasaviableplantorecoverfromdisastersandthatoperationscancontinue.Makesureyouunderstandwhatisinvolvedinthesecriticaltestsofyourorganization’splans.

TabletopExercisesExercisingoperationalplansisaneffortthatcantakeonmanydifferentforms.Forseniordecisionmakers,thepointofactionismoretypicallyadeskoraconferenceroom,withtheirmethodbeingmeetingsanddecisions.Acommonformofexercisingoperationalplansforseniormanagementisthetabletopexercise.Theseniormanagementteam,orelementsofit,aregatheredtogetherandpresentedascenario.Theycanwalkthroughtheirdecision-makingsteps,communicatewithothers,andgothroughthemotionsoftheexerciseinthepatterninwhichtheywouldlikelybeinvolved.Thescenarioispresentedataleveltotesttheresponsivenessoftheirdecisionsanddecision-makingprocess.Becausetheeventisfrequentlyruninaconferenceroom,aroundatable,thenametabletopexercisehascometodefinethisformofexercise.

RecoveryTimeObjectiveandRecoveryPointObjective

Thetermrecoverytimeobjective(RTO)isusedtodescribethetargettimethatissetforaresumptionofoperationsafteranincident.Thisisaperiodoftimethatisdefinedbythebusiness,basedontheneedsoftheenterprise.AshorterRTOresultsinhighercostsbecauseitrequiresgreatercoordinationandresources.Thistermiscommonlyusedinbusinesscontinuityanddisasterrecoveryoperations.Recoverypointobjective(RPO),atotallydifferentconceptfromRTO,

isthetimeperiodrepresentingthemaximumperiodofacceptabledataloss.TheRPOdeterminesthefrequencyofbackupoperationsnecessarytopreventunacceptablelevelsofdataloss.AsimpleexampleofestablishingRPOistoanswerthefollowingquestions:Howmuchdatacanyouaffordtolose?Howmuchreworkistolerable?RTPandRPOareseeminglyrelatedbutinactualitymeasuredifferent

thingsentirely.TheRTOservesthepurposeofdefiningtherequirementsforbusinesscontinuity,whiletheRPOdealswithbackupfrequency.ItispossibletohaveanRTOof1dayandanRPOof1hour,oranRTOof1hourandanRPOof1day.Thedeterminingfactorsaretheneedsofthebusiness.

Althoughrecoverytimeobjectiveandrecoverypointobjectiveseemtobethesameorsimilar,theyareverydifferent.TheRTOservesthepurposeofdefiningtherequirementsforbusinesscontinuity,whiletheRPOdealswithbackupfrequency.

BackupsAkeyelementinanyBC/DRplanistheavailabilityofbackups.Thisistruenotonlybecauseofthepossibilityofadisaster,butalsobecausehardwareandstoragemediawillperiodicallyfail,resultinginlossorcorruptionofcriticaldata.Anorganizationmightalsofindbackupscriticalwhensecuritymeasureshavefailedandanindividualhasgainedaccesstoimportantinformationthatmayhavebecomecorruptedorattheveryleastcan’tbetrusted.Databackupisthusacriticalelementintheseplans,as

wellasinnormaloperation.Thereareseveralfactorstoconsiderinanorganization’sdatabackupstrategy:

Howfrequentlyshouldbackupsbeconducted?

Howextensivedothebackupsneedtobe?

Whatistheprocessforconductingbackups?

Whoisresponsibleforensuringbackupsarecreated?

Wherewillthebackupsbestored?

Howlongwillbackupsbekept?

Howmanycopieswillbemaintained?

Keepinmindthatthepurposeofabackupistoprovidevalid,uncorrupteddataintheeventofcorruptionorlossoftheoriginalfileorthemediawherethedatawasstored.Dependingonthetypeoforganization,legalrequirementsformaintainingbackupscanalsoaffecthowitisaccomplished.

TechTip

BackupsAreaKeyResponsibilityforAdministratorsOneofthemostimportanttoolsasecurityadministratorhasisabackup.Whilebackupswillnotpreventasecurityevent(ornaturaldisaster)fromoccurring,theyoftencansaveanorganizationfromacatastrophebyallowingittoquicklyreturntofulloperationafteraneventoccurs.Conductingfrequentbackupsandhavingaviablebackupandrecoveryplanaretwoofthemostimportantresponsibilitiesofasecurityadministrator.

WhatNeedstoBeBackedUpBackupscommonlycomprisethedatathatanorganizationreliesontoconductitsdailyoperations.Whilethisiscertainlyessential,agoodbackupplanwillconsidermorethanjustthedata;itwillincludeany

applicationprogramsneededtoprocessthedataandtheoperatingsystemandutilitiesthatthehardwareplatformrequirestoruntheapplications.Obviously,theapplicationprogramsandoperatingsystemwillchangemuchlessfrequentlythanthedataitself,sothefrequencywithwhichtheseitemsneedtobebackedupisconsiderablydifferent.Thisshouldbereflectedintheorganization’sbackupplanandstrategy.TheBC/DRplanshouldalsoaddressotheritemsrelatedtobackups.

Personnel,equipment,andelectricalpowermustalsobepartoftheplan.Somebodyneedstounderstandtheoperationofthecriticalhardwareandsoftwareusedbytheorganization.Ifthedisasterthatdestroyedtheoriginalcopyofthedataandtheoriginalsystemsalsoresultsinthelossoftheonlypersonnelwhoknowhowtoprocessthedata,havingbackupdatawillnotbeenoughtorestorenormaloperationsfortheorganization.Similarly,ifthedatarequiresspecificsoftwaretoberunonaveryspecifichardwareplatform,thenhavingthedatawithouttheapplicationprogramorrequiredhardwarewillalsonotbesufficient.

TechTip

ImplementingtheRightTypeofBackupsCarefullyconsiderthetypeofbackupthatyouwanttoconduct.Withthesizeoftoday’sPCharddrives,acompletebackupoftheentireharddrivecantakeaconsiderableamountoftime.Implementthetypeofbackupthatyouneedandcheckforsoftwaretoolsthatcanhelpyouinestablishingaviablebackupschedule.

StrategiesforBackupsTheprocessforcreatingabackupcopyofdataandsoftwarerequiresmorethoughtthansimplystating“copyallrequiredfiles.”Thesizeoftheresultingbackupmustbeconsidered,aswellasthetimerequiredtoconductthebackup.Bothofthesewillaffectdetailssuchashowfrequentlythebackupwilloccurandthetypeofstoragemediumthatwillbeusedforthebackup.Otherconsiderationsincludewhowillbe

responsibleforconductingthebackup,wherethebackupswillbestored,andhowlongtheyshouldbemaintained.Short-termstorageforaccidentallydeletedfilesthatusersneedtohaverestoredshouldprobablybecloseathand.Longer-termstorageforbackupsthatmaybeseveralmonthsorevenyearsoldshouldoccurinadifferentfacility.Itshouldbeevidentbynowthatevensomethingthatsoundsassimpleasmaintainingbackupcopiesofessentialdatarequirescarefulconsiderationandplanning.

TypesofBackupsTheamountofdatathatwillbebackedup,andthetimeittakestoaccomplishthis,hasadirectbearingonthetypeofbackupthatshouldbeperformed.Table19.2outlinesthefourbasictypesofbackupsthatcanbeconducted,theamountofspacerequiredforeach,andtheeaseofrestorationusingeachstrategy.

Table19.2 BackupTypesandCharacteristics

ThevaluesforeachofthestrategiesinTable19.2arehighlyvariabledependingonyourspecificenvironment.Themorefrequentlyfilesarechangedbetweenbackups,themorethesestrategieswilllookalike.Whateachstrategyentailsbearsfurtherexplanation.

TechTip

ArchiveBitsThearchivebitisusedtoindicatewhetherafilehas(1)orhasnot(0)changedsincethelastbackup.Thebitisset(changedtoa1)ifthefileismodified,orinsomecases,ifthefileis

copied,thenewcopyofthefilehasitsarchivebitset.Thebitisreset(changedtoa0)whenthefileisbackedup.Thearchivebitcanbeusedtodeterminewhichfilesneedtobebackedupwhenusingmethodssuchasthedifferentialbackupmethod.

Theeasiesttypeofbackuptounderstandisthefullbackup.Inafullbackup,allfilesandsoftwarearecopiedontothestoragemedia.Restorationfromafullbackupissimilarlystraightforward—youmustcopyallthefilesbackontothesystem.Thisprocesscantakeaconsiderableamountoftime.ConsiderthesizeofeventheaveragehomePCtoday,forwhichstorageismeasuredintensandhundredsofgigabytes.Copyingthisamountofdatatakestime.Inafullbackup,thearchivebitiscleared.Inadifferentialbackup,onlythefilesandsoftwarethathavechanged

sincethelastfullbackupwascompletedarebackedup.Thisalsoimpliesthatperiodicallyafullbackupneedstobeaccomplished.Thefrequencyofthefullbackupversustheinterimdifferentialbackupsdependsonyourorganizationandneedstobepartofyourdefinedstrategy.Restorationfromadifferentialbackuprequirestwosteps:thelastfullbackupfirstneedstobeloaded,andthenthelastdifferentialbackupperformedcanbeappliedtoupdatethefilesthathavebeenchangedsincethefullbackupwasconducted.Again,thisisnotadifficultprocess,butitdoestakesometime.Theamountoftimetoaccomplishtheperiodicdifferentialbackup,however,ismuchlessthanthatforafullbackup,andthisisoneoftheadvantagesofthismethod.Obviously,ifalotoftimehaspassedbetweendifferentialbackups,orifmostfilesinyourenvironmentchangefrequently,thenthedifferentialbackupdoesnotdiffermuchfromafullbackup.Itshouldalsobeobviousthattoaccomplishthedifferentialbackup,thesystemhastohaveamethodtodeterminewhichfileshavebeenchangedsincesomegivenpointintime.Thearchivebitisnotclearedinadifferentialbackupsincethekeyforadifferentialistobackupallfilesthathavechangedsincethelastfullbackup.Withincrementalbackups,evenlessinformationwillbestoredineach

backup.Theincrementalbackupisavariationonadifferentialbackup,withthedifferencebeingthatinsteadofcopyingallfilesthathavechanged

sincethelastfullbackup,theincrementalbackupbacksuponlyfilesthathavechangedsincethelastfullorincrementalbackupoccurred,thusrequiringfewerfilestobebackedup.Justasinthecaseofthedifferentialbackup,theincrementalbackupreliesontheoccasionalfullbackupbeingaccomplished.Afterthat,youbackuponlyfilesthathavechangedsincethelastbackupofanysortwasconducted.Torestoreasystemusingthistypeofbackupmethodrequiresquiteabitmorework.Youfirstneedtogobacktothelastfullbackupandreloadthesystemwiththisdata.Thenyouhavetoupdatethesystemwitheveryincrementalbackupthathasoccurredsincethefullbackup.Theadvantageofthistypeofbackupisthatitrequireslessstorageandtimetoaccomplish.Thedisadvantageisthattherestorationprocessismoreinvolved.Assumingthatyoudon’tfrequentlyhavetoconductacompleterestorationofyoursystem,however,theincrementalbackupisavalidtechnique.Anincrementalbackupwillclearthearchivebit.Finally,thegoalofthedeltabackupistobackupaslittleinformation

aspossibleeachtimeyouperformabackup.Aswiththeotherstrategies,anoccasionalfullbackupmustbeaccomplished.Afterthat,whenadeltabackupisconductedatspecificintervals,onlytheportionsofthefilesthathavebeenchangedwillbestored.Theadvantageofthisiseasytoillustrate.Ifyourorganizationmaintainsalargedatabasewiththousandsofrecordscomprisingseveralhundredmegabytesofdata,theentiredatabasewouldbecopiedinthepreviousbackuptypesevenifonlyonerecordhaschanged.Foradeltabackup,onlytheactualrecordthatchangedwouldbestored.Thedisadvantageofthismethodisthatrestorationisacomplexprocess,becauseitrequiresmorethanjustloadingafile(orseveralfiles).Itrequiresthatapplicationsoftwareberuntoupdatetherecordsinthefilesthathavebeenchanged.Therearesomenewerbackupmethodsthataresimilartodeltabackups

inthattheyminimizewhatisbackedup.Therearereal-timeornear-real-timebackupstrategies,suchasjournaling,transactionalbackups,andelectronicvaulting,thatcanprovideprotectionagainstlossinreal-timeenvironments.Implementingthesemethodsintoanoverallbackupstrategy

canincreaseoptionsandflexibilityduringtimesofrecovery.

ExamTip:Youneedtomakesureyouunderstandthedifferenttypesofbackupsandtheiradvantagesanddisadvantagesfortheexam.

Eachtypeofbackuphasadvantagesanddisadvantages.Whichtypeisbestforyourorganizationdependsontheamountofdatayouroutinelyprocessandstore,howfrequentlythedatachanges,howoftenyouexpecttohavetorestorefromabackup,andanumberofotherfactors.Thetypeyouselectwillshapeyouroverallbackupstrategyandprocesses.

BackupFrequencyandRetentionThetypeofbackupstrategyanorganizationemploysisoftenaffectedbyhowfrequentlytheorganizationconductsthebackupactivity.Theusefulnessofabackupisdirectlyrelatedtohowmanychangeshaveoccurredsincethebackupwascreated,andthisisobviouslyaffectedbyhowoftenbackupsarecreated.Thelongerithasbeensincethebackupwascreated,themorechangesthatlikelywillhaveoccurred.Thereisnoeasyanswer,however,tohowfrequentlyanorganizationshouldperformbackups.Everyorganizationshouldconsiderhowlongitcansurvivewithoutcurrentdatafromwhichtooperate.Itcanthendeterminehowlongitwilltaketorestorefrombackups,usingvariousmethods,anddecidehowfrequentlybackupsneedtooccur.Thissoundssimple,butitisaserious,complexdecisiontomake.

TechTip

DeterminingHowLongtoMaintainBackupsDeterminingthelengthoftimethatyouretainyourbackupsshouldnotbebasedonthefrequencyofyourbackups.Themoreoftenyouconductbackupoperations,themoredatayou

willhave.Youmightbetemptedtotrimthenumberofbackupsretainedtokeepstoragecostsdown,butyouneedtoevaluatehowlongyouneedtoretainbackupsbasedonyouroperationalenvironmentandthenkeeptheappropriatenumberofbackups.

Relatedtothefrequencyquestionistheissueofhowlongbackupsshouldbemaintained.Isitsufficienttosimplymaintainasinglebackupfromwhichtorestoredata?Securityprofessionalswilltellyouno;multiplebackupsshouldbemaintained,foravarietyofreasons.Ifthereasonforrestoringfromthebackupisthediscoveryofanintruderinthesystem,itisimportanttorestorethesystemtoitspre-intrusionstate.Iftheintruderhasbeeninthesystemforseveralmonthsbeforebeingdiscovered,andbackupsaretakenweekly,itwillnotbepossibletorestoretoapre-intrusionstateifonlyonebackupismaintained.Thiswouldmeanthatalldataandsystemfileswouldbesuspectandmaynotbereliable.Ifmultiplebackupsweremaintained,atvariousintervals,thenitiseasiertoreturntoapointbeforetheintrusion(orbeforethesecurityoroperationaleventthatisnecessitatingtherestoration)occurred.Thereareseveralstrategiesorapproachestobackupretention.One

commonandeasy-to-rememberstrategyisthe“ruleofthree,”inwhichthethreemostrecentbackupsarekept.Whenanewbackupiscreated,theoldestbackupisoverwritten.Anotherstrategyistokeepthemostrecentcopyofbackupsforvarioustimeintervals.Forexample,youmightkeepthelatestdaily,weekly,monthly,quarterly,andyearlybackups.Notethatincertainenvironments,regulatoryissuesmayprescribeaspecificfrequencyandretentionperiod,soitisimportanttoknowyourorganization’srequirementswhendetermininghowoftenyouwillcreateabackupandhowlongyouwillkeepit.Ifyouarenotinanenvironmentforwhichregulatoryissuesdictatethe

frequencyandretentionforbackups,yourgoalwillbetooptimizethefrequency.Indeterminingtheoptimalbackupfrequency,twomajorcostsneedtobeconsidered:thecostofthebackupstrategyyouchooseandthecostofrecoveryifyoudonotimplementthisbackupstrategy(thatis,ifnobackupswerecreated).Youmustalsofactorintothisequationtheprobabilitythatthebackupwillbeneededonanygivenday.Thetwo

figurestoconsiderthenarethese:

Alternative1:(probabilitythebackupisneeded)×(costofrestoringwithnobackup)Alternative2:(probabilitythebackupisn’tneeded)×(costofthebackupstrategy)

Thefirstofthesetwofigures,alternative1,canbeconsideredtheprobablelossyoucanexpectifyourorganizationhasnobackup.Thesecondfigure,alternative2,canbeconsideredtheamountyouarewillingtospendtoensurethatyoucanrestore,shouldaproblemoccur(thinkofthisasbackupinsurance—thecostofaninsurancepolicythatmayneverbeusedbutthatyouarewillingtopayfor,justincase).Forexample,iftheprobabilityofabackupbeingneededis10percent,andthecostofrestoringwithnobackupis$100,000,thenthefirstequationwouldyieldafigureof$10,000.Thiscanbecomparedwiththealternative,whichwouldbea90percentchancethebackupisnotneededmultipliedbythecostofimplementingyourbackupstrategy(oftakingandmaintainingthebackups),whichis,say,$10,000annually.Thesecondequationyieldsafigureof$9000.Inthisexample,thecostofmaintainingthebackupislessthanthecostofnothavingbackups,sotheformerwouldbethebetterchoice.Whileconceptuallythisisaneasytrade-offtounderstand,inrealityitisoftendifficulttoaccuratelydeterminetheprobabilityofabackupbeingneeded.Fortunately,thefiguresforthepotentiallossifthereisnobackupare

generallysomuchgreaterthanthecostofmaintainingabackupthatamistakeinjudgingtheprobabilitywillnotmatter—itjustmakestoomuchsensetomaintainbackups.Thisexamplealsousesastraightcomparisonbasedsolelyonthecostoftheprocessofrestoringwithandwithoutabackupstrategy.Whatneedstobeincludedinthecostofbothoftheseisthelossthatoccurswhiletheassetisnotavailableasitisbeingrestored—inessence,ameasurementofthevalueoftheassetitself.Tooptimizeyourbackupstrategy,youneedtodeterminethecorrect

balancebetweenthesetwofigures.Obviously,youdonotwanttospendmoreinyourbackupstrategythanyoufacelosingshouldyounothaveabackupplanatall.Whenworkingwiththesetwocalculations,youhavetorememberthatthisisacost-avoidanceexercise.Theorganizationisnotgoingtoincreaserevenueswithitsbackupstrategy.Thegoalistominimizethepotentiallossduetosomecatastrophiceventbycreatingabackupstrategythatwilladdressyourorganization’sneeds.Whenyou’recalculatingthecostofthebackupstrategy,considerthe

following:

Thecostofthebackupmediarequiredforasinglebackup

Thestoragecostsforthebackupmediabasedontheretentionpolicy

Thelaborcostsassociatedwithperformingasinglebackup

Thefrequencywithwhichbackupsarecreated

Alloftheseconsiderationscanbeusedtoarriveatanannualcostforimplementingyourchosenbackupstrategy,andthisfigurecanthenbeusedaspreviouslydescribed.

TechTip

OnsiteBackupStorageOneofthemostfrequenterrorscommittedwithbackupsistostoreallbackupsonsite.Whilethisgreatlysimplifiestheprocess,itmeansthatalldataisstoredinthesamefacility.Shouldanaturaldisasteroccur(suchasafireorhurricane),youcouldlosenotonlyyourprimarydatastoragedevicesbutyourbackupsaswell.Youneedtouseanoffsitelocationtostoreatleastsomeofyourbackups.

StorageofBackupsAnimportantelementtofactorintothecostofthebackupstrategyistheexpenseofstoringthebackups.Asimplestrategymightbetostoreall

yourbackupstogetherforquickandeasyrecoveryactions.Thisisnot,however,agoodidea.Supposethecatastrophiceventthatnecessitatedtherestorationofbacked-updatawasafirethatdestroyedthecomputersystemthedatawasprocessedon.Inthiscase,anybackupsthatwerestoredinthesamefacilitymightalsobelostinthesamefire.Thesolutionistokeepcopiesofbackupsinseparatelocations.The

mostrecentcopycanbestoredlocally,asitisthemostlikelytobeneeded,whileothercopiescanbekeptatotherlocations.Dependingonthelevelofsecurityyourorganizationdesires,thestoragefacilityitselfcouldbereinforcedagainstpossiblethreatsinyourarea(suchastornadosorfloods).Amorerecentadvanceisonlinebackupservices.Anumberofthird-partycompaniesofferhigh-speedconnectionsforstoringdatainaseparatefacility.Transmittingthebackupdatavianetworkconnectionsalleviatessomeotherissueswithphysicalmovementofmoretraditionalstoragemedia,suchascareduringtransportation(tapesdonotfarewellindirectsunlight,forexample)orthetimethatittakestotransportthetapes.

TechTip

Long-TermBackupStorageAneasyfactortooverlookwhenupgradingsystemsiswhetherlong-termbackupswillstillbeusable.Youneedtoensurethatthetypeofmediautilizedforyourlong-termstorageiscompatiblewiththehardwarethatyouareupgradingto.Otherwise,youmayfindyourselfinasituationinwhichyouneedtorestoredata,andyouhavethedata,butyoudon’thaveanywaytorestoreit.

IssueswithLong-TermStorageofBackupsDependingonthemediausedforanorganization’sbackups,degradationofthemediaisadistinctpossibilityandneedstobeconsidered.Magneticmediadegradesovertime(measuredinyears).Inaddition,tapescanbeusedalimitednumberoftimesbeforethesurfacebeginstoflakeoff.Magneticmediashouldthusberotatedandtestedtoensurethatitisstill

usable.Anotherconsiderationisadvancesintechnology.Themediayouusedto

storeyourdatatwoyearsagomaynowbeconsideredobsolete(5.25-inchfloppydisks,forexample).Softwareapplicationsalsoevolve,andthemediamaybepresentbutmaynotbecompatiblewithcurrentversionsofthesoftware.Thismaymeanthatyouneedtomaintainbackupcopiesofbothhardwareandsoftwareinordertorecoverfromolderbackupmedia.Anotherissueissecurityrelated.Ifthefileyoustoredwasencryptedfor

securitypurposes,doesanybodyinthecompanyrememberthepasswordtodecryptthefiletorestorethedata?Morethanoneemployeeinthecompanyshouldknowthekeytodecryptthefiles,andthisinformationshouldbepassedalongtoanotherpersonwhenacriticalemployeewiththatinformationleaves,isterminated,ordies.

AlternativeSitesAnissuerelatedtothelocationofbackupstorageiswheretherestorationserviceswillbeconducted.Determinationofwhenorifanalternativesiteisneededshouldbeincludedinrecoveryandcontinuityplans.Iftheorganizationhassufferedphysicaldamagetoafacility,havingoffsitestorageofdataisonlypartofthesolution.Thisdatawillneedtobeprocessedsomewhere,whichmeansthatcomputingfacilitiessimilartothoseusedinnormaloperationsarerequired.Thereareanumberofwaystoapproachthisproblem,includinghotsites,warmsites,coldsites,andmobilebackupsites.Ahotsiteisafullyconfiguredenvironmentthatissimilartothenormal

operatingenvironmentandthatcanbeoperationalimmediatelyorwithinafewhours,dependingonitsconfigurationandtheneedsoftheorganization.Awarmsiteispartiallyconfigured,usuallyhavingtheperipheralsandsoftwarebutperhapsnotthemoreexpensivemainprocessingcomputer.Itisdesignedtobeoperationalwithinafewdays.Acoldsitehasthebasicenvironmentalcontrolsnecessarytooperatebuthasfewofthecomputingcomponentsnecessaryforprocessing.Gettingacold

siteoperationalmaytakeweeks.Amobilebackupsitegenerallyisatrailerwiththerequiredcomputersandelectricalpowerthatcanbedriventoalocationwithinhoursofadisasterandsetuptocommenceprocessingimmediately.

ExamTip:Understandingthedifferencesbetweenhot,warm,andcoldsitesisfundamentaltounderstandingdifferentbusinesscontinuitystrategies.Makesurethatyouunderstandthesimpledifferencesbetweenthesesites,theprimaryofwhichishowsoonthealternativesitecanbeginprocessingyourorganization’swork.

Sharedalternatesitesmayalsobeconsidered.Thesesitescanbedesignedtohandletheneedsofdifferentorganizationsintheeventofanemergency.Thehopeisthatthedisasterwillaffectonlyoneorganizationatatime.Thebenefitofthismethodisthatthecostofthesitecanbesharedamongorganizations.Twosimilarorganizationslocatedclosetoeachshouldnotsharethesamealternatesiteasthereisagreaterchancethattheywouldbothneeditatthesametime.

TryThis!ResearchAlternativeProcessingSitesThereisanindustrybuiltuponprovidingalternativeprocessingsitesincaseofadisasterofsomesort.UsingtheInternetorotherresources,determinewhatresourcesareavailableinyourareaforhot,warm,andcoldsites.Doyouliveinanareainwhichalotoftheseservicesareoffered?Dootherareasofthecountryhavemorealternativeprocessingsitesavailable?Whatmakeswhereyouliveabetterorworseplaceforalternativesites?

Alloftheseoptionscancomewithaconsiderablepricetag,whichmakesanotheroption,mutualaidagreements,apossiblealternative.Withamutualaidagreement,similarorganizationsagreetoassumetheprocessingfortheotherpartyintheeventadisasteroccurs.Thisissometimesreferredtoasareciprocalsite.Theobviousassumptionhereis

thatbothorganizationswillnotbehitbythesamedisasterandthatbothhavesimilarprocessingenvironments.Ifthesetwoassumptionsarecorrect,thenamutualaidagreementshouldbeconsidered.Suchanarrangementmaynotbelegallyenforceable,evenifitisinwriting,andorganizationsmustconsiderthiswhendevelopingtheirdisasterplans.Inaddition,iftheorganizationthatthemutualaidagreementismadewithalsoishitbythesamedisaster,thenbothorganizationswillbeintrouble.Additionalcontingenciesneedtobeplannedforevenifamutualaidagreementismadewithanotherorganization.Therearealsotheobvioussecurityconcernsthatmustbeconsideredwhenhavinganotherorganizationassumeyourorganization’sprocessing.

UtilitiesTheinterruptionofpowerisacommonissueduringadisaster.Computersandnetworksobviouslyrequirepowertooperate,soemergencypowermustbeavailableintheeventofanydisruptionofoperations.Forshort-terminterruptions,suchaswhatmightoccurastheresultofanelectricalstorm,uninterruptiblepowersupplies(UPSs)maysuffice.Thesedevicescontainabatterythatprovidessteadypowerforshortperiodsoftime—enoughtokeepasystemrunningshouldpoweronlybelostforafewminutes,enoughtimetoallowadministratorstogracefullyhaltthesystemornetwork.Forcontinuedoperationsthatextendbeyondafewminutes,anothersourceofpowerwillberequired.Generallythisisprovidedbyabackupemergencygenerator.Whilebackupgeneratorsarefrequentlyusedtoprovidepowerduringan

emergency,theyarenotasimple,maintenance-freesolution.Generatorsneedtobetestedonaregularbasis,andtheycaneasilybecomestrainediftheyarerequiredtopowertoomuchequipment.Ifyourorganizationisgoingtorelyonanemergencygeneratorforbackuppower,youmustensurethatthesystemhasreservecapacitybeyondtheanticipatedloadfortheunanticipatedloadsthatwillundoubtedlybeplacedonit.Generatorsalsotaketimetostartup,sopowertoyourorganizationwill

mostlikelybelost,evenifonlybriefly,untilthegeneratorskickin.ThismeansthatyoushouldalsouseaUPStoallowforasmoothtransitiontobackuppower.Generatorsarealsoexpensiveandrequirefuel—whenlookingforaplacetolocateyourgenerator,don’tforgettheneedtodeliverfueltoitoryoumayfindyourselfhaulingcansoffuelupanumberofstairs.Whendeterminingtheneedforbackuppower,don’tforgettofactorin

environmentalconditions.Runningcomputersystemsinaroomwithnoairconditioninginthemiddleofthesummercanresultinanextremelyuncomfortableenvironmentforalltoworkin.Mobilebackupsites,generallyusingtrailers,oftenrelyongeneratorsfortheirpowerbutalsofactorintherequirementforenvironmentalcontrols.Powerisnottheonlyessentialutilityforoperations.Dependingonthe

typeofdisasterthathasoccurred,telephoneandInternetcommunicationmayalsobelost,andwirelessservicesmaynotbeavailable.Planningforredundantmeansofcommunication(suchasusingbothlandlinesandwireless)canhelpwithmostoutages,butforlargedisasters,yourbackupplansshouldincludetheoptiontocontinueoperationsfromacompletelydifferentlocationwhilewaitingforcommunicationsinyourareatoberestored.Telecommunicationcarriershavetheirownemergencyequipmentandarefairlyefficientatrestoringcommunications,butitmaytakeafewdays.

SecureRecoverySeveralcompaniesofferrecoveryservices,includingpower,communications,andtechnicalsupportthatyourorganizationmayneedifitsoperationsaredisrupted.Thesecompaniesadvertisesecurerecoverysitesorofficesfromwhichyourorganizationcanagainbegintooperateinasecureenvironment.Securerecoveryisalsoadvertisedbyotherorganizationsthatprovideservicesthatcanremotely(overtheInternet,forexample)providerestorationservicesforcriticalfilesanddata.Inbothcases—theactualphysicalsuitesandtheremoteservice—

securityisanimportantelement.Duringadisaster,yourdatadoesnotbecomeanylessimportant,andyouwillwanttomakesurethatyoumaintainthesecurity(intermsofconfidentialityandintegrity,forexample)ofyourdata.Asinotheraspectsofsecurity,thedecisiontoemploytheseservicesshouldbemadebasedonacalculationofthebenefitsweighedagainstthepotentiallossifalternativemeansareused.

CloudComputingOneofthenewerinnovationscomingtocomputingviatheInternetistheconceptofcloudcomputing.Insteadofowningandoperatingadedicatedsetofserversforcommonbusinessfunctionssuchasdatabaseservices,filestorage,e-mailservices,andsoforth,anorganizationcancontractwiththirdpartiestoprovidetheseservicesovertheInternetfromtheirserverfarms.ThisiscommonlyreferredtoasInfrastructureasaService(IaaS).Theconceptisthatoperationsandmaintenanceisanactivitythathasbecomeacommodity,andtheInternetprovidesareliablemechanismtoaccessthismoreeconomicalformofoperationalcomputing.Pushingcomputingintothecloudmaymakegoodbusinesssensefroma

costperspective,butdoingsodoesnotchangethefactthatyourorganizationisstillresponsibleforensuringthatalltheappropriatesecuritymeasuresareproperlyinplace.Howarebackupsbeingperformed?Whatplanisinplacefordisasterrecovery?Howfrequentlyaresystemspatched?Whatistheservicelevelagreement(SLA)associatedwiththesystems?Itiseasytoignorethedetailswhenoutsourcingthesecriticalyetcostlyelements,butwhensomethingbadoccurs,youmusthaveconfidencethattheappropriatelevelofprotectionshasbeenapplied.Thesearetheseriousquestionsanddifficultissuestoresolvewhenmovingcomputingintothecloud—locationmaychange,butresponsibilityandtechnicalissuesarestillthereandformtheriskofthesolution.

TechTip

TheSidekickFailureof2009InOctober2009,manyT-MobileSidekickusersdiscoveredthattheircontacts,calendars,to-dolists,andphotoswerelostwhencloud-basedserverslosttheirdata.Notalluserswereaffectedbytheserverfailure,butforthosethatwere,thelosswascomplete.T-MobilequicklypointedthefingeratMicrosoft,whohadacquiredinFebruary2008thesmallstartupcompany,Danger,whichbuiltthecloud-basedsystemforT-Mobile.Toendusers,thistransactionwascompletelytransparent.Intheend,alotofuserslosttheirdata,andwereoffereda$100creditbyT-Mobileagainsttheirbill.Regardlessofwheretheblamelands,theaffectedendusermuststillfaceasimplequestion:didtheyconsidertheimportanceofbackup?Iftheinformationontheirphonewascritical,didtheyperformalocalbackup?Ordidtheyassumethatthecloudandlargecorporationstheycontractedwithdiditforthem?

HighAvailabilityandFaultToleranceSomeothertermsthatmaybeusedindiscussionsofcontinuityofoperationsinthefaceofadisruptionofsomesortarehighavailabilityandfaulttolerance.Oneoftheobjectivesofsecurityistheavailabilityofdataand

processingpowerwhenanauthorizeduserdesiresit.Highavailabilityreferstotheabilitytomaintainavailabilityofdataandoperationalprocessingdespiteadisruptingevent.Generallythisrequiresredundantsystems,intermsofbothpowerandprocessing,sothatshouldonesystemfail,theothercantakeoveroperationswithoutanybreakinservice.Highavailabilityismorethandataredundancy;itrequiresthatbothdataandservicesbeavailable.Faulttolerancebasicallyhasthesamegoalashighavailability—the

uninterruptedaccesstodataandservices—andisaccomplishedbythemirroringofdataandsystems.Shoulda“fault”occur,causingdisruptioninadevicesuchasadiskcontroller,themirroredsystemprovidestherequesteddatawithnoapparentinterruptioninservicetotheuser.Highavailabilityclusteringisanothermethodusedtoprovideredundancyincriticalsituations.Theseclustersconsistofadditionalcomputersupon

whichacriticalprocesscanbestartediftheclusterdetectsthattherehasbeenahardwareorsoftwareproblemonthemainsystem.

ExamTip:Faulttoleranceandhighavailabilityaresimilarintheirgoals,yettheyareseparateinapplication.Highavailabilityreferstomaintainingbothdataandservicesinanoperationalstateevenwhenadisruptingeventoccurs.Faulttoleranceisadesignobjectivetoachievehighavailabilityshouldafaultoccur.

Certainsystems,suchasservers,aremorecriticaltobusinessoperationsandshould,therefore,betheobjectoffault-tolerancemeasures.Acommontechniqueusedinfaulttoleranceisloadbalancing.Anothercloselyrelatedtechniqueisclustering.Bothtechniquesarediscussedinthefollowingsections.

ExamTip:Redundancyisanimportantfactorinbothsecurityandreliability.Makesureyouunderstandhowasystemcanbenefitfromredundantcomponents.

Obviously,providingredundantsystemsandequipmentcomeswithaprice,andtheneedtoprovidethislevelofcontinuous,uninterruptedoperationneedstobecarefullyevaluated.

TechTip

UptimeMetricsBecauseuptimeiscritical,itiscommontomeasureuptime(or,conversely,downtime)andusethismeasuretodemonstratereliability.Acommonmeasureforthishasbecomethemeasureof“9s,”asin99percentuptime,99.99percentuptime,andsoon.Whensomeonerefersto“fivenines”asameasure,thisgenerallymeans99.999percentuptime.Expressingthisinotherterms,fiveninesofuptimecorrelatestolessthanfiveandahalfminutesofdowntimeperyear.Sixninesis31secondsofdowntimeperyear.Oneimportantnoteisthat

uptimeisnotthesameasavailability,forsystemscanbeupbutnotavailableforreasonsofnetworkoutage,sobesureyouunderstandwhatisbeingcounted.

ClusteringClusteringlinksagroupofsystemstohavethemworktogether,functioningasasinglesystem.Inmanyrespects,aclusterofcomputersworkingtogethercanbeconsideredasinglelargercomputer,withtheadvantageofcostinglessthanasinglecomparablypowerfulcomputer.Aclusteralsohasthefault-tolerantadvantageofnotbeingreliantonanysinglecomputersystemforoverallsystemperformance.

LoadBalancingLoadbalancingisdesignedtodistributetheprocessingloadovertwoormoresystems.Itisusedtohelpimproveresourceutilizationandthroughputbutalsohastheaddedadvantageofincreasingthefaulttoleranceoftheoverallsystem,becauseacriticalprocessmaybesplitacrossseveralsystems.Shouldanyonesystemfail,theotherscanpickuptheprocessingitwashandling.Whiletheremaybeanimpacttooverallthroughput,theoperationdoesnotgodownentirely.Loadbalancingisoftenutilizedforsystemsthathandlewebsitesandhigh-bandwidthfiletransfers.

SinglePointofFailureRelatedtothetopicofhighavailabilityistheconceptofasinglepointoffailure.Asinglepointoffailureisacriticaloperationintheorganizationuponwhichmanyotheroperationsrelyandwhichitselfreliesonasingleitemthat,iflost,wouldhaltthiscriticaloperation.Asinglepointoffailurecanbeaspecialpieceofhardware,aprocess,aspecificpieceofdata,orevenanessentialutility.Singlepointsoffailureneedtobeidentifiedifhighavailabilityisrequiredbecausetheyarepotentiallythe“weaklinks”inthechainthatcancausedisruptionoftheorganization’soperations.Generally,thesolutiontoasinglepointoffailureistomodifythecritical

operationsothatitdoesnotrelyonthissingleelementortobuildredundantcomponentsintothecriticaloperationtotakeovertheprocessshouldoneofthesepointsfail.

ExamTip:Understandthevariouswaysthatasinglepointoffailurecanbeaddressed,includingthevarioustypesofredundancyandhighavailabilityclusters.

Inadditiontotheinternalresourcesyouneedtoconsiderwhenevaluatingyourbusinessfunctions,therearemanyexternalresourcesthatcanimpacttheoperationofyourbusiness.Youmustlookbeyondhardware,software,anddatatoconsiderhowthelossofvariouscriticalinfrastructurescanalsoimpactbusinessoperations.ThetypeofinfrastructuresyoushouldconsiderinyourBCPisthesubjectofthenextsection.

FailureandRecoveryTimingSeveralimportantconceptsareinvolvedintheissueoffaulttoleranceandsystemrecovery.Thefirstismeantimetofailure(ormeantimebetweenfailures).Thistermreferstothepredictedaveragetimethatwillelapsebeforefailure(orbetweenfailures)ofasystem(generallyreferringtohardwarecomponents).Knowingwhatthistimeisforhardwarecomponentsofvariouscriticalsystemscanhelpanorganizationplanformaintenanceandequipmentreplacement.

TechTip

LoadBalancing,Clusters,FarmsAclusterisagroupofserversdeployedtoachieveacommonobjective.Clusteredserversareawareofoneanotherandhaveamechanismtoexchangetheirstates,soeachserver’sstateis

replicatedtotheotherclusteredservers.Loadbalancingisamechanismwheretrafficisdirectedtoidenticalserversbasedonavailability.Inloadbalancing,theserversarenotawareofthestateofotherservers.Forpurposesofload,itisnotuncommontohavealoadbalancerdistributerequeststoclusteredservers.Databaseserversaretypicallyclustered,astheintegrityofthedatastructurerequiresall

copiestobeidentical.Webserversandothercontentdistributionmechanismscanuseloadbalancingalonewhenevermaintainingstatechangesisnotnecessaryacrosstheenvironment.Aserverfarmisagroupofrelatedserversinonelocationservinganenterprise.Itcanbeeitherclustered,loadbalanced,orboth.

Asecondimportantconcepttounderstandismeantimetorestore(ormeantimetorecovery).Thistermreferstotheaveragetimethatitwilltaketorestoreasystemtooperationalstatus(torecoverfromanyfailure).Knowingwhatthistimeisforcriticalsystemsandprocessesisimportanttodevelopingeffective,andrealistic,recoveryplans,includingDRP,BCP,andbackupplans.Thelasttwoconceptsarecloselytied.Aspreviouslydescribed,the

recoverytimeobjectiveisthegoalanorganizationsetsforthetimewithinwhichitwantstohaveacriticalservicerestoredafteradisruptioninserviceoccurs.Itisbasedonthecalculationofthemaximumamountoftimethatcanoccurbeforeunacceptablelossestakeplace.Alsocoveredwastherecoverypointobjective,whichisbasedonadeterminationofhowmuchdatalossanorganizationcanwithstand.Takentogether,thesefourconceptsareimportantconsiderationsforan

organizationdevelopingitsvariouscontingencyplans.HavingRTOandRPOthatareshorterthantheMTTRcanresultinlosses.Andattemptingtolowerthemeantimebetweenfailuresortherecoverytimeobjectivesbelowwhatisrequiredbytheorganizationwastesmoneythatcouldbebetterspentelsewhere.Thekeyisinunderstandingthesefiguresandbalancingthem.

BackoutPlanningAnissuerelatedtobackupsistheissueofreturningtoanearlierreleaseofasoftwareapplicationintheeventthatanewreleasecauseseitherapartialorcompletefailure.Planningforsuchaneventisreferredtoasbackout

planning.Theseplansshouldaddressbothapartialorfullreturntopreviousreleasesofsoftware.Sadly,thissortofeventismorefrequentthanmostwouldsuspect.Thereasonforthisistheinterdependenceofvariousaspectsofasystem.Itisnotuncommonforonepieceofsoftwaretotakeadvantageofsomefeatureofanother.Shouldthisfeaturechangeinanewrelease,anothercriticaloperationmaybeimpacted.

RAIDOnepopularapproachtoincreasingreliabilityindiskstorageisRedundantArrayofIndependentDisks(RAID)(previouslyknownasRedundantArrayofInexpensiveDisks).RAIDtakesdatathatisnormallystoredonasinglediskandspreadsitoutamongseveralothers.Ifanysinglediskislost,thedatacanberecoveredfromtheotherdiskswherethedataalsoresides.Withthepriceofdiskstoragedecreasing,thisapproachhasbecomeincreasinglypopulartothepointthatmanyindividualusersevenhaveRAIDarraysfortheirhomesystems.RAIDcanalsoincreasethespeedofdatarecovery,asmultipledrivescanbebusyretrievingrequesteddataatthesametimeinsteadofrelyingonjustonedisktodothework.SeveraldifferentRAIDapproachescanbeconsidered:

RAID0(stripeddisks)simplyspreadsthedatathatwouldbekeptontheonediskacrossseveraldisks.Thisdecreasesthetimeittakestoretrievedata,becausethedataisreadfrommultipledrivesatthesametime,butitdoesnotimprovereliability,becausethelossofanysingledrivewillresultinthelossofallthedata(sinceportionsoffilesarespreadoutamongthedifferentdisks).WithRAID0,thedataissplitacrossallthedriveswithnoredundancyoffered.

RAID1(mirroreddisks)istheoppositeofRAID0.RAID1copiesthedatafromonediskontotwoormoredisks.Ifanysinglediskislost,thedataisnotlostsinceitisalsocopiedontotheotherdisk(s).Thismethodcanbeusedtoimprovereliabilityandretrievalspeed,butitisrelativelyexpensivewhencomparedtootherRAIDtechniques.

RAID2(bit-levelerror-correctingcode)isnottypicallyused,asitstripesdataacrossthedrivesatthebitlevelasopposedtotheblocklevel.Itisdesignedtobeabletorecoverthelossofanysinglediskthroughtheuseoferror-correctingtechniques.

RAID3(byte-stripedwitherrorcheck)spreadsthedataacrossmultipledisksatthebytelevelwithonediskdedicatedtoparitybits.Thistechniqueisnotcommonlyimplemented,becauseinput/outputoperationscan’tbeoverlappedduetotheneedforalltoaccessthesamedisk(thediskwiththeparitybits).

RAID4(dedicatedparitydrive)stripesdataacrossseveraldisksbutinlargerstripesthaninRAID3,anditusesasingledriveforparity-basederrorchecking.RAID4hasthedisadvantageofnotimprovingdataretrievalspeeds,sinceallretrievalsstillneedtoaccessthesingleparitydrive.

RAID5(block-stripedwitherrorcheck)isacommonlyusedmethodthatstripesthedataattheblocklevelandspreadstheparitydataacrossthedrives.Thisprovidesbothreliabilityandincreasedspeedperformance.Thisformrequiresaminimumofthreedrives.

RAID0through5aretheoriginaltechniques,withRAID5beingthemostcommonmethodused,asitprovidesboththereliabilityandspeedimprovements.Additionalmethodshavebeenimplemented,suchasduplicatingtheparitydataacrossthedisks(RAID6)andastripeofmirrors(RAID10).

ExamTip:KnowledgeofthebasicRAIDstructuresbynumberdesignationisatestableelementandshouldbememorizedfortheexam.

SparePartsandRedundancy

RAIDincreasesreliabilitythroughtheuseofredundancy.Whendevelopingplansforensuringthatanorganizationhaswhatitneedstokeepoperating,evenifhardwareorsoftwarefailsorifsecurityisbreached,youshouldconsiderothermeasuresinvolvingredundancyandspareparts.Somecommonapplicationsofredundancyincludetheuseofredundantservers,redundantconnections,andredundantISPs.Theneedforredundantserversandconnectionsmaybefairlyobvious,buttheneedforredundantISPsmaynotbeso,atleastinitially.ManyISPsalreadyhavemultipleaccessestotheInternetontheirown,butbyhavingadditionalISPconnections,anorganizationcanreducethechancethataninterruptionofoneISPwillnegativelyimpacttheorganization.EnsuringuninterruptedaccesstotheInternetbyemployeesoraccesstotheorganization’se-commercesiteforcustomersisbecomingincreasinglyimportant.

AninterestinghistoricalnoteisthatRAIDoriginallystoodforRedundantArrayofInexpensiveDisksbutthenamewaschangedtothecurrentlyacceptedRedundantArrayofIndependentDisksasaresultofindustryinfluence.

Manyorganizationsdon’tseetheneedformaintainingasupplyofspareparts.Afterall,withthepriceofstoragedroppingandthespeedofprocessorsincreasing,whyreplaceabrokenpartwitholdertechnology?However,areadysupplyofsparepartscaneasetheprocessofbringingthesystembackonline.Replacinghardwareandsoftwarewithnewerversionscansometimesleadtoproblemswithcompatibility.Anolderversionofsomepieceofcriticalsoftwaremaynotworkwithnewerhardware,whichmaybemorecapableinavarietyofways.Havingcriticalhardware(orsoftware)sparesforcriticalfunctionsintheorganizationcangreatlyfacilitatemaintainingbusinesscontinuityintheeventofsoftwareorhardwarefailures.

Chapter19Review

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingregardingdisasterrecoveryandbusinesscontinuity.

Describethevariouscomponentsofabusinesscontinuityplan

Abusinesscontinuityplanshouldcontemplatethemanytypesofdisastersthatcancauseadisruptiontoanorganization.

Abusinessimpactassessment(BIA)canbeconductedtoidentifythemostcriticalfunctionsforanorganization.

Abusinesscontinuityplaniscreatedtooutlinetheorderinwhichbusinessfunctionswillberestoredsothatthemostcriticalfunctionsarerestoredfirst.

Oneofthemostcriticalelementsofanydisasterrecoveryplanistheavailabilityofsystembackups.

Describetheelementsofdisasterrecoveryplans

Criticalelementsofdisasterrecoveryplansincludebusinesscontinuityplansandcontingencyplanning.

Adisasterrecoveryplanoutlinesanorganization’splanstorecoverintheeventadisasterstrikes.

Describethevariouswaysbackupsareconductedandstored

Backupsshouldincludenotonlytheorganization’scriticaldatabutcriticalsoftwareaswell.

Backupsmaybeconductedbybackingupallfiles(fullbackup),onlythefilesthathavechangedsincethelastfullbackup(differentialbackup),onlythefilesthathavechangedsincethelastfullordifferentialbackup(incrementalbackup),oronlytheportionofthefilesthathaschangedsincethelastdeltaorfullbackup(deltabackup).

Backupsshouldbestoredbothonsiteforquickaccessifneededaswellasoffsiteincaseadisasterdestroystheprimaryfacility,itsprocessingequipment,andthebackupsthatarestoredonsite.

Explaindifferentstrategiesforalternativesiteprocessing

Plansshouldbecreatedtocontinueoperationsatanalternativesiteifadisasterdamagesordestroysafacility.

Possibilitiesforanalternativesiteincludehot,warm,andcoldsites.

Developingamutualaidagreementwithasimilarorganizationthatcouldhostyouroperationsforabriefperiodoftimeafteradisasterisanotheralternative.

KeyTermsbackoutplanning(601)businesscontinuityplan(BCP)(585)businessimpactanalysis(BIA)(586)coldsite(597)deltabackup(593)differentialbackup(593)disasterrecoveryplan(DRP)(587)faulttolerance(599)fullbackup(592)highavailability(599)hotsite(597)

incrementalbackup(593)mutualaidagreement(597)recoverypointobjective(RPO)(591)recoverytimeobjective(RTO)(591)RedundantArrayofIndependentDisks(RAID)(601)warmsite(597)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.1._______________isthemaximumperiodoftimeintermsofdata

lossthatisacceptableduringanoutage.

2.A(n)_______________isapartiallyconfiguredbackupprocessingfacilitythatusuallyhastheperipheralsandsoftwarebutperhapsnotthemoreexpensivemainprocessingcomputer.

3.Abackupthatincludesonlythefilesthathavechangedsincethelastfullbackupwascompletediscalleda(n)_______________.

4.A(n)_______________isanevaluationoftheimpactthatalossofcriticalfunctionswillhaveontheorganization.

5.Linkingmultiplesystemstogethertoappearasonelargesystemintermsofcapacityiscalled_______________.

6.A_______________isperformedtoidentifycriticalbusinessfunctionsneededduringtimesofdisasterorotherreducedcapability.

7.Anagreementinwhichsimilarorganizationsagreetoassumetheprocessingfortheotherintheeventadisasteroccursisknownasa(n)_______________.

8.Theaveragetimethatitwilltaketorestoreasystemtooperationalstatusiscalled_______________.

9.A(n)_______________isafullyconfiguredbackupenvironmentthatissimilartothenormaloperatingenvironmentandthatcanbeoperationalwithinafewhours.

10._______________isamethodtoensurehighavailabilitythatisaccomplishedbythemirroringofdataandsystems.Shouldaneventoccurthatcausesdisruptioninadevice,themirroredsystemprovidestherequesteddata,withnoapparentinterruptioninservice.

Multiple-ChoiceQuiz1.Whyisitimportantthatsecurityexercisesbeconducted?

A.Toprovidetheopportunityforallpartiestopracticetheproceduresthathavebeenestablishedtorespondtoasecurityincident.

B.Todetermineiftheorganization’splanandtheindividualsinvolvedperformastheyshouldduringasimulatedsecurityincident.

C.Todetermineifprocessesdevelopedtohandlesecurityincidentsaresufficientfortheorganization.

D.Alloftheabove.

2.Agoodbackupplanwillincludewhichofthefollowing?A.Thecriticaldataneededfortheorganizationtooperate

B.Anysoftwarethatisrequiredtoprocesstheorganization’sdata

C.Specifichardwaretorunthesoftwareortoprocessthedata

D.Alloftheabove

3.Inwhichbackupstrategyareonlythoseportionsofthefilesandsoftwarethathavechangedsincethelastbackupbackedup?

A.Full

B.Differential

C.Incremental

D.Delta

4.Whichofthefollowingisaconsiderationincalculatingthecostofabackupstrategy?

A.Thecostofthebackupmedia

B.Thestoragecostsforthebackupmedia

C.Thefrequencywithwhichbackupsarecreated

D.Alloftheabove

5.Whichofthefollowingisthenameforapartiallyconfiguredenvironmentthathastheperipheralsandsoftwarethatthenormalprocessingfacilitycontainsandthatcanbeoperationalwithinafewdays?

A.Hotsite

B.Warmsite

C.Onlinestoragesystem

D.Backupstoragefacility

6.Whichofthefollowingisconsideredanissuewithlong-termstorageofmagneticmedia,asdiscussedinthechapter?

A.Tapemediacanbeusedalimitednumberoftimesbeforeitdegrades.

B.Softwareandhardwareevolve,andthemediastoredmaynolongerbecompatiblewithcurrenttechnology.

C.BothAandB.

D.Noneoftheabove.

7.Whatcommonutilityorinfrastructureisimportanttoconsiderwhendevelopingyourrecoveryplans?

A.Transportation

B.Oilandgas

C.Communications

D.Television/cable

8.FororganizationsthatdrawadistinctionbetweenaBCPandaDRP,whichofthefollowingistrue?

A.TheBCPdetailsthefunctionsthataremostcriticalandoutlinestheorderinwhichcriticalfunctionsshouldbereturnedtoservicetomaintainbusinessoperations.

B.TheBCPisasubsetoftheDRP.

C.TheDRPoutlinestheminimumsetofbusinessfunctionsrequiredfortheorganizationtocontinuefunctioning.

D.TheDRPisalwaysdevelopedfirstandtheBCPnormallyisanattachmenttothisdocument.

9.Abusinessimpactassessment(BIA)isconductedto:A.Outlinetheorderinwhichcriticalfunctionsshouldbereturned

toservicetomaintainbusinessoperations

B.Identifythemostcriticalfunctionsforanorganization

C.IdentifythecriticalemployeeswhomustbeonsitetoimplementtheBCP

D.Establishthepoliciesgoverningtheorganization’sbackuppolicy

10.Toensurethatcriticalsystemsisnotlostduringafailure,itisimportantthatwhichofthefollowingbetrue?

A.MTTF<MTTR.

B.MTTR<RTO.

C.RPO<MTTF.

D.RTO=RPO.

EssayQuiz1.Writeaparagraphoutliningthedifferencesbetweenadisaster

recoveryplanandabusinesscontinuityplan.Isonemoreimportantthantheother?

2.Writeabriefdescriptionofthedifferentbackupstrategies.Includeadiscussionofwhichofthesestrategiesrequiresthegreatestamountofstoragespacetoconductandwhichofthestrategiesinvolvesthemostcomplicatedrestorationscheme.

3.Yourbossrecentlyattendedaseminarinwhichtheimportanceofcreatingandmaintainingabackupofcriticaldatawasdiscussed.Hesuggestedtoyouthatyouimmediatelymakeatapebackupofalldata,placeitinametalbox,lockit,andkeepitathome.Youdon’tagreewiththisspecificmethod,butyouneedtodevelopaplanthathewillunderstandandfindpersuasive.Writeaproposaldescribingyourrecommendations,makingsuretoincludetheissuesinvolvedwiththelong-termstorageofbackups.

LabProject

•LabProject19.1

TheWindowsoperatingsystemconsidersbackupstobeanessentialtaskandwillsendsystemmaintenanceremindersviatheActionCenter.DeterminethebackupconditionofyourPCusingtheActionCenteranddemonstratehowitchangeswhenbackedup.

chapter20 RiskManagement

Therevolutionaryideathatdefinestheboundarybetweenmoderntimesandthepastisthemasteryofrisk:thenotionthatthefutureismorethanawhimofthegodsandthatmenand

R

womenarenotpassivebeforenature.Untilhumanbeingsdiscoveredawayacrossthatboundary,thefuturewasthemirrorofthepastorthemurkydomainoforaclesandsoothsayerswhoheldamonopolyoverknowledgeofanticipatedevents.

—PETERBERNSTEIN

Inthischapter,youwilllearnhowto

Useriskmanagementtoolsandprinciplestomanageriskeffectively

Exploreriskmitigationstrategies

Describeriskmodels

Explainthedifferencesbetweenqualitativeandquantitativeriskassessment

Useriskmanagementtools

Examineriskmanagementbestpractices

iskmanagementcanbestbedescribedasadecision-makingprocess.Inthesimplestterms,whenyoumanagerisk,youdeterminewhatcouldhappentoyourbusiness,youassesstheimpactifitwereto

happen,andyoudecidewhatyoucoulddotocontrolthatimpactasmuchasyouoryourmanagementdeemsnecessary.Youthendecidetoactornottoact,and,finally,youevaluatetheresultsofyourdecision.Theprocessmaybeiterative,asindustrybestpracticesclearlyindicatethatanimportantaspectofeffectivelymanagingriskistoconsideritanongoingprocess.

CrossCheckChangeManagementandRiskManagementAreCriticalManagementToolsRiskmanagementisoneofthereasonsbehindchangemanagement.Changemanagementisaprocessdesignedtoenablemanagementeffortstounderstandimplicationsofchangespriortoincorporationinproductionsystems.Whensomeonerequestsachangetoproduction,dotheyhaveanswerstoquestionssuchasthese:

1.Whatarethesecurityimplicationsofthischange?2.Whatisthebackoutplanintheeventthechangecausesunintentionalproblems?

Formoredetail,refertoChapter21,whichexplainsdetailsofchangemanagementasacriticalmanagementtool.

AnOverviewofRiskManagementRiskmanagementisanessentialelementofmanagementfromtheenterpriseleveldowntotheindividualproject.Riskmanagementencompassesalltheactionstakentoreducecomplexity,increaseobjectivity,andidentifyimportantdecisionfactors.Therehasbeen,andwillcontinuetobe,discussionaboutthecomplexityofriskmanagementandwhetherornotitisworththeeffort.Businessesmusttakeriskstoretaintheircompetitiveedge,however,andasaresult,riskmanagementmustoccuraspartofmanaginganybusiness,program,orproject.

Riskmanagementisaboutmakingabusinessprofitable—notaboutbuyinginsurance.

Riskmanagementisbothaskillandataskthatisperformedbyallmanagers,eitherdeliberatelyorintuitively.Itcanbesimpleorcomplex,dependingonthesizeoftheprojectorbusinessandtheamountofriskinherentinanactivity.Everymanager,atalllevels,mustlearntomanagerisk.Therequiredskillscanbelearned.

ExampleofRiskManagementattheInternationalBankingLevelTheBaselCommitteeonBankingSupervisioncomprisesgovernmentcentral-bankgovernorsfromaroundtheworld.Thisbodycreatedabasic,globalriskmanagementframeworkformarketandcreditrisk.Itimplementedinternationallyaflat8percentcapitalchargetobankstomanagebankrisks.Inlayman’sterms,thismeansthatforevery$100a

bankmakesinloans,itmustpossess$8inreservetobeusedintheeventoffinancialdifficulties.However,ifbankscanshowtheyhaveverystrongriskmitigationproceduresandcontrolsinplace,thatcapitalchargecanbereducedtoaslowas$0.37(0.37percent).Ifabankhaspoorproceduresandcontrols,thatcapitalchargecanbeashighas$45(45percent)forevery$100thebankloansout.Seewww.bis.org/bcbs/forsourcedocumentationregardingtheBaselCommittee.

ExamTip:Thischaptercontainsseveralbulletedlists.ThesearedesignedforeasymemorizationinpreparationfortakingtheCompTIASecurity+exam.

Thisexampleshowsthatriskmanagementcanbeandisusedatveryhighlevels—theremainderofthischapterfocusesonsmallerimplementationsanddemonstratesthatriskmanagementisusedinmanyaspectsofbusinessconduct.

RiskManagementVocabularyYouneedtounderstandanumberofkeytermstomanagerisksuccessfully.Someofthesetermsaredefinedherebecausetheyareusedthroughoutthechapter.Thislistissomewhatorderedaccordingtotheorganizationofthischapter.Morecomprehensivedefinitionsandotherpertinenttermsarelistedalphabeticallyintheglossaryattheendofthisbook.

RiskRiskisthepossibilityofsufferingharmorloss.

RiskmanagementRiskmanagementistheoveralldecision-makingprocessofidentifyingthreatsandvulnerabilitiesandtheirpotentialimpacts,determiningthecoststomitigatesuchevents,anddecidingwhatactionsarecosteffectiveforcontrollingtheserisks.

RiskassessmentRiskassessmentistheprocessofanalyzinganenvironmenttoidentifytherisks(threatsandvulnerabilities)andmitigatingactionstodetermine(eitherquantitativelyorqualitatively)theimpactofaneventthatwouldaffectaproject,program,orbusiness.Alsoreferredtoasriskanalysis.

TechTip

TypesofControlsControlscanbeclassifiedbasedonthetypesofactionstheyperform.Threeclassesofcontrolsexist:

ManagementorAdministrative

TechnicalOperationalorPhysical

Foreachoftheseclasses,therearesixtypesofcontrols:Deterrent(todiscourageoccurrences)

Preventative(toavoidoccurrence)Detective(todetectoridentifyoccurrence)

Corrective(tocorrectorrestorecontrols)Recovery(torestoreresources,capabilities,orlosses)

Compensating(tomitigatewhendirectcontrolisnotpossible)

AssetAnassetisanyresourceorinformationanorganizationneedstoconductitsbusiness.

ThreatAthreatisanycircumstanceoreventwiththepotentialtocauseharmtoanasset.Forexample,amalicioushackermightchoosetohackyoursystembyusingreadilyavailablehackingtools.

ThreatactorAthreatactor(agent)istheentitybehindathreat.

ThreatvectorAthreatvectorisamethodusedtoeffectathreat—for

example,malware(threat)thatisdeliveredviaawatering-holeattack(vector).

VulnerabilityAvulnerabilityisanycharacteristicofanassetthatcanbeexploitedbyathreattocauseharm.Avulnerabilitycanalsobetheresultofalackofsecuritycontrols,orweaknessesincontrols.Yoursystemhasasecurityvulnerability,forexample,ifyouhavenotinstalledpatchestofixacross-sitescripting(XSS)erroronyourwebsite.

ImpactImpactistheloss(orharm)resultingwhenathreatexploitsavulnerability.Amalicioushacker(threatagent)usesanXSStool(threatvector)tohackyourunpatchedwebsite(thevulnerability),stealingcreditcardinformation(threat)thatisthenusedfraudulently.Thecreditcardcompanypursueslegalrecourseagainstyourcompanytorecoverthelossesfromthecreditcardfraud(theimpact).

ControlAcontrolisameasuretakentodetect,prevent,ormitigatetheriskassociatedwithathreat.Alsocalledcountermeasureorsafeguard.

QualitativeriskassessmentQualitativeriskassessmentistheprocessofsubjectivelydeterminingtheimpactofaneventthataffectsaproject,program,orbusiness.Completingtheassessmentusuallyinvolvestheuseofexpertjudgment,experience,orgroupconsensus.

QuantitativeriskassessmentQuantitativeriskassessmentistheprocessofobjectivelydeterminingtheimpactofaneventthataffectsaproject,program,orbusiness.Completingtheassessmentusuallyinvolvestheuseofmetricsandmodels.

Thedistinctionbetweenqualitativeandquantitativeriskassessmentwillbemoreapparentasyoureadthesection“Qualitativevs.QuantitativeRiskAssessment,”laterinthechapter.

MitigateThetermmitigatereferstotakingactiontoreducethelikelihoodofathreatoccurring,andtoreducetheimpactifathreatdoesoccur.

Singlelossexpectancy(SLE)Thesinglelossexpectancy(SLE)isthemonetarylossorimpactofeachoccurrenceofathreatexploitingavulnerability.

ExposurefactorExposurefactorisameasureofthemagnitudeoflossofanasset.Usedinthecalculationofsinglelossexpectancy.

Annualizedrateofoccurrence(ARO)Annualizedrateofoccurrence(ARO)isthefrequencywithwhichaneventisexpectedtooccuronanannualizedbasis.

ExamTip:Thesetermsareimportant,andyoushouldcompletelymemorizetheirmeaningsbeforetakingtheCompTIASecurity+exam.

Annualizedlossexpectancy(ALE)Annualizedlossexpectancy(ALE)ishowmuchaneventisexpectedtocostperyear.

SystematicRiskSystematicriskisthechanceoflossthatispredictableunderrelativelystablecircumstances.Examplessuchasfire,wind,orfloodproducelossesthat,intheaggregateovertime,canbeaccuratelypredicteddespiteshort-termfluctuations.Systematicriskcanbediversifiedaway,whichgivesmanagersalevelofcontrolthatcanbeemployed.

UnsystematicRiskUnsystematicriskisthechanceoflossthatisunpredictableintheaggregatebecauseitresultsfromforcesdifficulttopredict.Examplesinclude,butarenotlimitedto,recession,unemployment,epidemics,war-relatedevents,andsoforth.Unsystematic

riskcannotbemitigatedviadiversification,limitingmanagementresponses.

HazardAhazardisacircumstancethatincreasesthelikelihoodorprobableseverityofaloss.Forexample,runningsystemswithoutantivirusisahazardbecauseitincreasestheprobabilityoflossduetomalware.

WhatIsRiskManagement?Threedefinitionsrelatingtoriskmanagementrevealwhyitissometimesconsidereddifficulttounderstand:

Thedictionarydefinesriskasthepossibilityofsufferingharmorloss.CarnegieMellonUniversity’sSoftwareEngineeringInstitute(SEI)definescontinuousriskmanagementas“processes,methods,andtoolsformanagingrisksinaproject.Itprovidesadisciplinedenvironmentforproactivedecision-makingto1)assesscontinuouslywhatcouldgowrong(risks);2)determinewhichrisksareimportanttodealwith;and3)implementstrategiestodealwiththoserisks”(SEI,ContinuousRiskManagementGuidebook[Pittsburgh,PA:CarnegieMellonUniversity,1996],22).

TheInformationSystemsAuditandControlAssociation(ISACA)says,“Inmodernbusinessterms,riskmanagementistheprocessofidentifyingvulnerabilitiesandthreatstoanorganization’sresourcesandassetsanddecidingwhatcountermeasures,ifany,totaketoreducethelevelofrisktoanacceptablelevelbasedonthevalueoftheassettotheorganization”(ISACA,CertifiedInformationSystemsAuditor(CISA)ReviewManual,2002[RollingMeadows,IL:ISACA,2002],344).

TechTip

RiskManagementAppliestoAllBusinessProcessesEvenHumanResourceManagementreliesonriskmanagement.Forexample,riskmanagementtheoryusedtopositthatolderworkersweremorelikelytocreateliabilities.Recentstudieshaveshownthatastheworkforceages,ithasbecomeapparentthatolderworkershavelowerabsenteeism,aremoreproductive,andhavehigherlevelsofjobsatisfaction.Theirgreatestriskislongerrecoverytimefromaccidents—companiesarefindingwaystopreventaccidentstomanagethatrisk.

Thesethreedefinitionsshowthatriskmanagementisbasedonwhatcangowrongandwhatactionshouldbetaken,ifany.Figure20.1providesamacro-levelviewofhowtomanagerisk.

•Figure20.1Aplanningdecisionflowchartforriskmanagement

RiskManagementCultureOrganizationshaveacultureassociatedwiththeiroperation.Frequently,thiscultureissetanddrivenbytheactivitiesofseniormanagementpersonnel.Theriskmanagementcultureofanorganizationcanhaveaneffectuponactionsbeingtakenbyothers.Table20.1illustratesthesymptomsandresultsassociatedwithriskmanagementculture.

Table20.1 CharacteristicsofRiskManagementCulture

BusinessRisksNocomprehensiveidentificationofallrisksinabusinessenvironmentispossible.Intoday’stechnology-dependentbusinessenvironment,riskisoftensimplisticallydividedintotwoareas:businessriskand,amajorsubset,technologyrisk.

TechTip

TransferringRiskOnepossibleactiontomanageriskistotransferthatrisk.Themostcommonmethodoftransferringriskistopurchaseinsurance.Insuranceallowssomelevelofrisktobetransferredtoathirdpartythatmanagesspecifictypesofriskformultipleparties,thusreducingtheindividualcost.Notethattransferringriskusuallyappliestofinancialaspectsofrisk;itnormallydoesnotapplytolegalaccountability,orresponsibility.

ExamplesofBusinessRisksFollowingaresomeofthemostcommonbusinessrisks:

TreasurymanagementManagementofcompanyholdingsinbonds,futures,currencies,andsoon

RevenuemanagementManagementofconsumerbehaviorandthegenerationofrevenue

ContractmanagementManagementofcontractswithcustomers,vendors,partners,andsoon

FraudDeliberatedeceptionmadeforpersonalgain,toobtainpropertyorservices,andsoon

EnvironmentalriskmanagementManagementofrisksassociatedwithfactorsthataffecttheenvironment

RegulatoryriskmanagementManagementofrisksarisingfromneworexistingregulations

BusinesscontinuitymanagementManagementofrisksassociatedwithrecoveringandrestoringbusinessfunctionsafteradisasterormajordisruptionoccurs

TechnologyManagementofrisksassociatedwithtechnologyinitsmanyforms

Itisimportantthatyouunderstandthattechnology,itself,isabusinessrisk.Hence,itmustbemanagedalongwithotherrisks.Today,technologyrisksaresoimportanttheyshouldbeconsideredseparately.

ExamplesofTechnologyRisksFollowingaresomeofthemostcommontechnologyrisks:

SecurityandprivacyTherisksassociatedwithprotectingpersonal,private,orconfidentialinformation

InformationtechnologyoperationsTherisksassociatedwiththeday-to-dayoperationofinformationtechnologysystems

BusinesssystemscontrolandeffectivenessTherisksassociatedwithmanualandautomatedcontrolsthatsafeguardcompanyassetsandresources

BusinesscontinuitymanagementTherisksassociatedwiththetechnologyandprocessestobeusedintheeventofadisasterormajordisruption

InformationsystemstestingTherisksassociatedwithtestingprocessesandproceduresofinformationsystems

ReliabilityandperformancemanagementTherisksassociatedwithmeetingreliabilityandperformanceagreementsandmeasures

InformationtechnologyassetmanagementTherisksassociatedwithsafeguardinginformationtechnologyphysicalassets

ProjectriskmanagementTherisksassociatedwithmanaginginformationtechnologyprojects

ChangemanagementTherisksassociatedwithmanagingconfigurationsandchanges(seeChapter21)

TechTip

RiskAccordingtotheBaselCommitteeTheBaselCommitteereferencedearlierinthechapterhasdefinedthreetypesofriskspecificallytoaddressinternationalbanking:

MarketriskRiskoflossesduetofluctuationofmarketprices

CreditriskRiskofdefaultofoutstandingloansOperationalriskRiskfromdisruptionbypeople,systems,processes,ordisasters

RiskMitigationStrategiesRiskmitigationstrategiesaretheactionplansdevelopedafterathoroughevaluationofthepossiblethreats,hazards,andrisksassociatedwithbusinessoperations.Thesestrategiesareemployedtolessentherisksassociatedwithoperations.Thefocusofriskmitigationstrategiesistoreducetheeffectsofthreatsandhazards.Commonmitigationstrategiesincludechangemanagement,incidentmanagement,userrightsandpermissionreviews,audits,andtechnologycontrols.

ExamTip:Whentakingtheexam,bepreparedtoimplementappropriateriskmitigationstrategieswhenprovidedscenarios.

ChangeManagementChangemanagementhasitsrootsinsystemengineeringandtakestheoverallviewofsystemscomponentsandprocesses.Configurationmanagementspecificallyappliestoalowerlevelofdetail,theactualconfigurationofcomponents,suchashosts,devices,andsoforth.Configurationmanagementmightbeconsideredasubsetofchange

management,buttheyarenotthesamething.Mostoftoday’ssoftwareandhardwarechangemanagementpracticesderivefromlong-standingsystemengineeringconfigurationmanagementpractices.Computerhardwareandsoftwaredevelopmenthavealsoevolvedtothepointthatpropermanagementstructureandcontrolsmustexisttoensuretheproductsoperateasplanned.ItisnormalforanenterprisetohaveaChangeControlBoardtoapproveallproductionchangesandensurethechangemanagementproceduresarefollowedbeforechangesareintroducedtoasystem.Configurationcontrolistheprocessofcontrollingchangestoitemsthat

havebeenbaselined.Configurationcontrolensuresthatonlyapprovedchangestoabaselineareallowedtobeimplemented.Itiseasytounderstandwhyasoftwaresystem,suchasaweb-basedorder-entrysystem,shouldnotbechangedwithoutpropertestingandcontrol—otherwise,thesystemmightstopfunctioningatacriticaltime.Configurationcontrolisakeystepthatprovidesvaluableinsighttomanagers.Ifasystemisbeingchanged,andconfigurationcontrolisbeingobserved,managersandothersconcernedwillbebetterinformed.Thisensuresproperuseofassetsandavoidsunnecessarydowntimeduetotheinstallationofunapprovedchanges.

ExamTip:ChangemanagementensuresproperproceduresarefollowedwhenmodifyingtheITinfrastructure.

IncidentManagementWhenanincidentoccurs,havinganincidentresponsemanagementmethodologyisakeyriskmitigationstrategy.IncidentresponseandincidentmanagementareessentialsecurityfunctionsandarecoveredindetailinChapter22.

UserRightsandPermissionsReviewsUserrightsandpermissionsreviewsareoneofthemorepowerfulsecuritycontrols.Butthestrengthofthiscontroldependsuponitbeingkeptuptodateandproperlymaintained.Ensuringthatthelistofusersandassociatedrightsiscompleteanduptodateisachallengingtaskinanythingbiggerthanthesmallestenterprises.Acompensatingcontrolthatcanassistinkeepinguserrightslistscurrentisasetofperiodicauditsoftheuserbaseandassociatedpermissions.

DataLossorTheftDataistheprimarytargetofmostattackers.Thevalueofthedatacanvary,makingsomedatamorevaluableandhencemoreatriskoftheft.Datacanalsobelostthroughavarietyofmechanisms,withhardwarefailure,operatorerror,andsystemerrorsbeingcommoncauses.Regardlessofthecauseofloss,anorganizationcantakevariousactionstomitigatetheeffectsoftheloss.Backupsleadthelistofactions,forbackupscanprovidetheultimateinprotectionagainstloss.Topreventtheft,avarietyofcontrolscanbeemployed.Somearerisk

mitigationsteps,suchasdataminimization,whichistheactofnotstoringwhatisn’tneeded.Ifitmustbestoredandhasvalue,thentechnologiessuchasdatalosspreventioncanbeusedtoprovideameansofprotection.Simplesecuritycontrolssuchasfirewallsandnetworksegmentationcanalsoacttomakedatatheftmoredifficult.

ExamTip:Whentakingtheexam,understandthepoliciesandprocedurestopreventdatalossortheft.

RiskManagementModels

Riskmanagementconceptsarefundamentallythesamedespitetheirdefinitions,andtheyrequiresimilarskills,tools,andmethodologies.Severalmodelscanbeusedformanagingriskthroughitsvariousphases.Twomodelsarepresentedhere:thefirstcanbeappliedtomanagingrisksingeneral,andthesecondistailoredformanagingriskinsoftwareprojects.

GeneralRiskManagementModelThefollowingfivestepscanbeusedinvirtuallyanyriskmanagementprocess.Followingthesestepswillleadtoanorderlyprocessofanalyzingandmitigatingrisks.

TechTip

KeyPerformanceIndicators(KPIs)ThedevelopmentofKPIstomonitorperformanceofsystemsandprocessesiscriticaltoeffectiveriskmanagement.Ifyoucan’tmeasureit,youhavetorelyonmoresubjectiveevaluationmethods.

Step1.AssetIdentificationIdentifyandclassifytheassets,systems,andprocessesthatneedprotectionbecausetheyarevulnerabletothreats.Useaclassificationthatfitsyourbusiness.Thisclassificationleadstotheabilitytoprioritizeassets,systems,andprocessesandtoevaluatethecostsofaddressingtheassociatedrisks.Assetscanincludethefollowing:

Inventory

Buildings

Cash

Informationanddata

Hardware

Software

Services

Documents

Personnel

Brandrecognition

Organizationreputation

Goodwill

Step2:ThreatAssessmentAfteridentifyingtheassets,youidentifyboththepossiblethreatsandthepossiblevulnerabilitiesassociatedwitheachassetandthelikelihoodoftheiroccurrence.Threatscanbedefinedasanycircumstanceoreventwiththepotentialtocauseharmtoanasset.Commonclassesofthreatsinclude(withexamples):

NaturaldisastersHurricane,earthquake,lightning,andsoon.Man-madedisastersEarthendamfailure,suchasthe1976TetonDamfailureinIdaho;caraccidentthatdestroysamunicipalpowerdistributiontransformer;the1973explosionofarailcarcontainingpropanegasinKingman,Arizona.

TerrorismThe2001destructionoftheWorldTradeCenter,the1995gasattackontheShinjukutrainstationinTokyo.

ErrorsEmployeenotfollowingsafetyorconfigurationmanagementprocedures.

MaliciousdamageorattacksAdisgruntledemployeepurposelycorruptingdatafiles.

FraudAnemployeefalsifyingtravelexpensesorvendorinvoices

andpayments.

TheftAnemployeestealingfromtheloadingdockalaptopcomputerafterithasbeeninventoriedbutnotproperlysecured.

EquipmentorsoftwarefailureAnerrorinthecalculationofacompany-widebonusoverpayingemployees.

Vulnerabilitiesarecharacteristicsofresourcesthatcanbeexploitedbyathreattocauseharm.Commonclassesofvulnerabilitiesinclude(withexamples):

UnprotectedfacilitiesCompanyofficeswithnosecurityofficerpresentornocard-entrysystem.

UnprotectedcomputersystemsAservertemporarilyconnectedtothenetworkbeforebeingproperlyconfigured/secured.

UnprotecteddataNotinstallingcriticalsecuritypatchestoeliminateapplicationsecurityvulnerabilities.

InsufficientproceduresandcontrolsAllowinganaccountspayableclerktocreatevendorsintheaccountingsystem,enterinvoices,andauthorizecheckpayments.

InsufficientorunqualifiedpersonnelAjunioremployeenotsufficientlysecuringaserverduetoalackoftraining.

Step3:ImpactDeterminationandQuantificationAnimpactisthelosscreatedwhenathreatexploitsavulnerability.Whenathreatisrealized,itturnsriskintoimpact.Impactscanbeeithertangibleorintangible.Atangibleimpactresultsinfinanciallossorphysicaldamage.Foranintangibleimpact,assigningafinancialvalueoftheimpactcanbedifficult.Forexample,inamanufacturingfacility,storingandusingflammablechemicalscreatesariskoffiretothefacility.Thevulnerabilityisthatflammablechemicalsarestoredthere.Thethreatwouldbethatapersoncouldcauseafirebymishandlingthechemicals

(eitherintentionallyorunintentionally).Atangibleimpactwouldbethelossincurred(say,$500,000)ifapersonignitesthechemicalsandfirethendestroyspartofthefacility.Anexampleofanintangibleimpactwouldbethelossofgoodwillorbranddamagecausedbytheimpressionthatthecompanydoesn’tsafelyprotectitsemployeesorthesurroundinggeographicarea.

TechTip

BusinessDependenciesAnareaoftenoverlookedinriskassessmentistheneedtoaddressbusinessdependencies—eachorganizationmustassessriskscausedbyotherorganizationswithwhichitinteracts.Thisoccurswhentheorganizationiseitheraconsumeroforasuppliertootherorganizations(orboth).Forexample,ifacompanyisdependentonproductsproducedbyalaboratory,thenthecompanymustdeterminetheimpactofthelaboratorynotdeliveringtheproductwhenneeded.Likewise,anorganizationmustassessrisksthatcanoccurwhenitisthesuppliertosomeothercompanydependentonitsproducts.

Step4:ControlDesignandEvaluationInthisstep,youdeterminewhichcontrolstoputinplacetomitigatetherisks.Controls(alsocalledcountermeasuresorsafeguards)aredesignedtocontrolriskbyreducingvulnerabilitiestoanacceptablelevel.(Foruseinthistext,thetermscontrol,countermeasure,andsafeguardareconsideredsynonymousandareusedinterchangeably.)Controlscanbeactions,devices,orprocedures.Theycanbepreventive

ordetective.Preventivecontrolsaredesignedtopreventthevulnerabilityfromcausinganimpact.Detectivecontrolsarethosethatdetectavulnerabilitythathasbeenexploitedsothatactioncanbetaken.

ExamTip:Thestepsinthegeneralriskmanagementmodelshouldallowyoutoidentifythestepsinanyriskmanagementprocess.

Step5:ResidualRiskManagementUnderstandthatriskcannotbecompletelyeliminated.Ariskthatremainsafterimplementingcontrolsistermedaresidualrisk.Inthisstep,youfurtherevaluateresidualriskstoidentifywhereadditionalcontrolsarerequiredtoreduceriskevenmore.Thisleadsustotheearlierstatementthattheriskmanagementprocessisiterative.

SoftwareEngineeringInstituteModelInanapproachtailoredformanagingriskinsoftwareprojects,SEIusesthefollowingparadigm(SEI,ContinuousRiskManagementGuidebook[Pittsburgh,PA:CarnegieMellonUniversity,1996],23).Althoughtheterminologyvariesslightlyfromthepreviousmodel,therelationshipsareapparent,andeithermodelcanbeappliedwhereverriskmanagementisused.

TechTip

CanAllRisksBeIdentified?Itisimportanttonotethatnotallrisksneedtobemitigatedorcontrolled;however,asmanyrisksaspossibleshouldbeidentifiedandreviewed.Thosedeemedtohavepotentialimpactshouldbemitigatedbycountermeasures.

1.Identify—Lookforrisksbeforetheybecomeproblems.2.Analyze—Convertthedatagatheredintoinformationthatcanbeusedtomakedecisions.Evaluatetheimpact,probability,andtimeframeoftherisks.Classifyandprioritizeeachoftherisks.

3.Plan—Reviewandevaluatetherisksanddecidewhatactionstotaketomitigatethem.Implementthosemitigatingactions.

4.Track—Monitortherisksandthemitigationplans.Trendsmayprovideinformationtoactivateplansandcontingencies.Reviewperiodicallytomeasureprogressandidentifynewrisks.

5.Control—Makecorrectionsfordeviationsfromtheriskmitigationplans.Correctproductsandprocessesasrequired.Changesinbusinessproceduresmayrequireadjustmentsinplansoractions,asdofaultyplansandrisksthatbecomeproblems.

NISTRiskModelsNISThasseveralinformativeriskmodelsthatcanbeappliedtoanenterprise.NISThaspublishedseveralSpecialPublications(SPs)associatedwithriskmanagement.SP800-39,ManagingInformationSecurityRisk:Organization,Mission,andInformationSystemView,presentsseveralkeyinsights:

Establisharelationshipbetweenaggregatedriskfrominformationsystemsandmission/businesssuccess

Encourageseniorleaderstorecognizetheimportanceofmanaginginformationsecurityriskwithintheorganization

Helpthosewithsystem-levelsecurityresponsibilitiesunderstandhowsystem-levelissuesaffecttheorganization/missionasawhole

SP800-39doesthisthroughtheuseofamodel,illustratedinFigure20.2.Thismodelhastwodistinctlevelsofanalysis,whichworktogetherasoneindescribingriskmanagementactions.

•Figure20.2NISTriskmanagementprocessappliedacrossthetiers

Thefirstlevelofanalysisisrepresentedbyfourelements:Frame,Assess,Respond,andMonitor.Thesecondlevelisrelatedtothetiersrepresentedinthehierarchicaltriangles:Organization,Mission/Business

Processes,andInformationSystems.TheFrameelementrepresentstheorganization’sriskframingthat

establishesthecontextandprovidesacommonperspectiveonhowtheorganizationmanagesrisk.Riskframingiscentraltothemodel,asillustratedbythearrowstotheotherelements.Itsprincipaloutputisariskmanagementstrategythataddresseshowtheorganizationassessesrisk,respondstorisk,andmonitorsrisk.Thethreetiersrepresentthedifferentdistinctlayersinanorganizationthatareassociatedwithrisk.Tier1,representingtheexecutivefunction,iswheretheriskframingoccurs.AtTier2,themissionandbusinessprocesslayer,theriskmanagementfunctionsofassess,respond,andmonitoroccur.Tier3istheinformationsystemlayerwhereactivitiesofriskmanagementaremanifestedinthesystemsoftheorganization.

ModelApplicationThethreemodelexamplesdefinestepsthatcanbeusedinanygeneralorsoftwareriskmanagementprocess.Theseriskmanagementprinciplescanbeappliedtoanyproject,program,orbusinessactivity,nomatterhowsimpleorcomplex.Figure20.3showshowriskmanagementcanbeappliedacrossthecontinuumandthatthecomplexityofriskmanagementgenerallyincreaseswiththesizeoftheproject,program,orbusinesstobemanaged.

•Figure20.3Riskcomplexityversusprojectsize

QualitativelyAssessingRiskQualitativeriskanalysisallowsexpertjudgmentandexperiencetoassumeaprominentrole.Toassessriskqualitatively,youcomparetheimpactofthethreatwiththeprobabilityofoccurrenceandassignanimpactlevelandprobabilityleveltotherisk.Forexample,ifathreathasahighimpactandahighprobabilityofoccurring,theriskexposureishighandprobablyrequiressomeactiontoreducethisthreat(palegreenboxinFigure20.4).Conversely,iftheimpactislowwithalowprobability,theriskexposureislowandnoactionmayberequiredtoreducethelikelihoodoftheoccurrenceorimpactofthisthreat(whiteboxinFigure20.4).Figure20.4showsanexampleofabinaryassessment,whereonlytwooutcomesarepossibleeachforimpactandprobability.Eitheritwillhaveanimpactoritwillnot(oritwillhavealoworhighimpact),anditwilloccuroritwon’t(oritwillhaveahighprobabilityofoccurringoralowprobabilityofoccurring).

•Figure20.4Binaryassessment

Inreality,afewthreatscanusuallybeidentifiedaspresentinghigh-riskexposureandafewthreatspresentlow-riskexposure.Thethreatsthatfallsomewherebetween(paleblueboxesinFigure20.4)willhavetobeevaluatedbyjudgmentandmanagementexperience.Iftheanalysisismorecomplex,requiringthreelevelsofanalysis,such

aslow-medium-highorgreen-yellow-redninecombinationsarepossible,asshowninFigure20.5.Again,thepalegreenboxesprobablyrequireaction,thewhiteboxesmayormaynotrequireaction,andthepaleblueboxesrequirejudgment.(Notethatforbrevity,inFigure20.5thefirsttermineachboxreferstothemagnitudeoftheimpact,andthesecondtermreferstotheprobabilityofthethreatoccurring.)

•Figure20.5Threelevelsofanalysis

Otherlevelsofcomplexityarepossible.Withfivelevelsofanalysis,25valuesofriskexposurearepossible.Inthiscase,thepossiblevaluesofimpactandprobabilitycouldtakeonthevaluesverylow,low,medium,high,orveryhigh.Also,notethatthematrixdoesnothavetobe

symmetrical.Forexample,iftheprobabilityisassessedwiththreevalues(low,medium,high)andtheimpacthasfivevalues(verylow,low,medium,high,veryhigh),theanalysiswouldbeasshowninFigure20.6.(Again,notethatthefirsttermineachboxreferstotheimpact,andthesecondtermineachboxreferstotheprobabilityofoccurrence.)

•Figure20.6A3-by-5levelanalysis

Sofar,theexampleshavefocusedonassessinglikelihoodversusimpact.Qualitativeriskassessmentcanbeadaptedtoavarietyofattributesandsituationsincombinationwitheachother.Forexample,Figure20.7showsthecomparisonofsomespecificrisksthathavebeenidentifiedduringasecurityassessment.Theassessmentidentifiedtheriskareaslistedinthefirstcolumn(weakintranetsecurity,highnumberofmodems,Internetattackvulnerabilities,andweakincidentdetectionandresponsemechanism).Theassessmentalsoidentifiedvariouspotentialimpacts,listedacrossthetop(businessimpact,probabilityofattack,costtofix,anddifficultytofix).Eachoftheimpactshasbeenassessedaslow,medium,orhigh—depictedusinggreen,yellow,andred,respectively.Eachoftheriskareashasbeenassessedwithrespecttoeachofthepotentialimpacts,andanoverallriskassessmenthasbeendeterminedinthelastcolumn.

•Figure20.7Exampleofacombinationassessment

QuantitativelyAssessingRiskWhereasqualitativeriskassessmentreliesonjudgmentandexperience,quantitativeriskassessmentapplieshistoricalinformationandtrendstoattempttopredictfutureperformance.Thistypeofriskassessmentis

highlydependentonhistoricaldata,andgatheringsuchdatacanbedifficult.Quantitativeriskassessmentcanalsorelyheavilyonmodelsthatprovidedecision-makinginformationintheformofquantitativemetrics,whichattempttomeasurerisklevelsacrossacommonscale.Itisimportanttounderstandthatkeyassumptionsunderlieanymodel,

anddifferentmodelswillproducedifferentresultsevenwhengiventhesameinputdata.Althoughsignificantresearchanddevelopmenthavebeeninvestedinimprovingandrefiningthevariousriskanalysismodels,expertjudgmentandexperiencemuststillbeconsideredanessentialpartofanyriskassessmentprocess.Modelscanneverreplacejudgmentandexperience,buttheycansignificantlyenhancethedecision-makingprocess.

AddingObjectivitytoaQualitativeAssessmentItispossibletomoveaqualitativeassessmenttowardbeingmorequantitative.MakingaqualitativeassessmentmoreobjectivecanbeassimpleasassigningnumericvaluestooneofthetablesshowninFigures20.4through20.7.Forexample,theimpactslistedinFigure20.7canbeprioritizedfromhighesttolowestandthenweighted,asshowninTable20.2,withbusinessimpactweightedthemostanddifficultytofixweightedleast.

Table20.2 AddingWeightsandDefinitionstothePotentialImpacts

Next,valuescanbeassignedtoreflecthoweachriskwasassessed.Figure20.7canthusbemademoreobjectivebyassigningavaluetoeachcolorthatrepresentsanassessment.Forexample,aredassessmentindicatesmanycritical,unresolvedissues,andthiswillbegivenanassessmentvalueof3.Greenmeansfewissuesareunresolved,soitisgivenavalueof1.Table20.3showsvaluesthatcanbeassignedforanassessmentusingred,yellow,andgreen.

Table20.3 AddingValuestoAssessments

Thelaststepistocalculateanoverallriskvalueforeachriskarea(eachrowinFigure20.7)bymultiplyingtheweightsdepictedinTable20.2

timestheassessedvaluesfromTable20.3andsummingtheproducts:

Risk=W1*V1+W2*V2+…W4*V4Theriskcalculationandfinalriskvalueforeachriskarealistedin

Figure20.7havebeenincorporatedintoFigure20.8.Theassessedareascanthenbeorderedfromhighesttolowestbasedonthecalculatedriskvaluetoaidmanagementinfocusingontheriskareaswiththegreatestpotentialimpact.

•Figure20.8Finalquantitativeassessmentofthefindings

RiskCalculationMorecomplexmodelspermitavarietyofanalysesbasedonstatisticalandmathematicalmodels.Acommonmethodisthecalculationoftheannualizedlossexpectancy(ALE).CalculatingtheALEcreatesamonetaryvalueoftheimpact.Thiscalculationbeginsbycalculatingasinglelossexpectancy(SLE).

SLEThesinglelossexpectancyiscalculatedusingthefollowingformula:

SLE=assetvalue(AV)×exposurefactor(EF)Exposurefactorisameasureofthemagnitudeoflossofanasset.Forexample,tocalculatetheexposurefactor,assumetheassetvalueof

asmallofficebuildinganditscontentsis$2million.Alsoassumethatthisbuildinghousesthecallcenterforabusiness,andthecompletelossofthecenterwouldtakeawayabouthalfofthecapabilityofthecompany.Therefore,theexposurefactoris50percent.TheSLEis

$2million×0.5=$1million

ALETheALEisthencalculatedsimplybymultiplyingtheSLEbythelikelihoodornumberoftimestheeventisexpectedtooccurinayear,whichiscalledtheannualizedrateofoccurrence(ARO):

ALE=SLE×ARO

AROTheannualizedrateofoccurrence(ARO)isarepresentationofthefrequencyoftheevent,measuredinastandardyear.Iftheeventisexpectedtooccuroncein20years,thentheAROis1/20.TypicallytheAROisdefinedbyhistoricaldata,eitherfromacompany’sown

experienceorfromindustrysurveys.Continuingourexample,assumethatafireatthisbusiness’slocationisexpectedtooccuraboutoncein20years.Giventhisinformation,theALEis

TryThis!CalculateSLE,ARO,andALEAcompanyownsfivewarehousesthroughouttheUnitedStates,eachofwhichisvaluedat$1millionandcontributesequallytothecompany’scapacity.TrycalculatingtheSLE,ARO,andALEforitswarehouselocatedintheMountainWest,wheretheprobabilityofanearthquakeisonceevery500years.Solution:SLE=$1million×1.0;ARO=1/500;ALE=$1million/500,or$2000.

$1million×1/20=$50,000

TheALEdeterminesathresholdforevaluatingthecost/benefitratioofagivencountermeasure.Therefore,acountermeasuretoprotectthisbusinessadequatelyshouldcostnomorethanthecalculatedALEof$50,000peryear.Theexamplesinthischapterhavebeensimplistic,buttheydemonstrate

theconceptsofbothqualitativeandquantitativeriskanalysis.Morecomplexalgorithmsandsoftwarepackagesareavailableforaccomplishingriskanalyses,buttheseexamplessufficeforthepurposesofthistext.

ExamTip:ItisalwaysadvisabletomemorizethesefundamentalequationsforcertificationssuchasCompTIASecurity+:SLE=AV×EFALE=SLE×ARO

ImpactTheimpactofaneventisameasureoftheactuallosswhenathreatexploitsavulnerability.FederalInformationProcessingStandards(FIPS)

199definesthreelevelsofimpactusingthetermshigh,moderate,andlow.Theimpactneedstobedefinedintermsofthecontextofeachorganization,aswhatishighforsomefirmsmaybelowformuchlargerfirms.Thecommonmethodistodefinetheimpactlevelsintermsofimportantbusinesscriteria.Impactscanbeintermsofcost(dollars),performance(servicelevelagreement[SLA]orotherrequirements),schedule(deliverables),oranyotherimportantitem.Impactcanalsobecategorizedintermsoftheinformationsecurityattributethatisrelevanttotheproblem:confidentiality,integrity,oravailability.

MTTRMeantimetorepair(MTTR)isacommonmeasureofhowlongittakestorepairagivenfailure.Thisistheaveragetime,andmayormaynotincludethetimeneededtoobtainparts.

MTBFMeantimebetweenfailures(MTBF)isacommonmeasureofreliabilityofasystemandisanexpressionoftheaveragetimebetweensystemfailures.Thetimebetweenfailuresismeasuredfromthetimeasystemreturnstoserviceuntilthenextfailure.TheMTBFisanarithmeticmeanofasetofsystemfailures:

MTBF=σ(startofdowntime–startofuptime)/numberoffailures

MTTFMeantimetofailure(MTTF)isavariationofMTBF,onethatiscommonlyusedinsteadofMTBFwhenthesystemisreplacedinlieuofbeingrepaired.Otherthanthesemanticdifference,thecalculationsarethesame,andthemeaningisessentiallythesame.

MeasurementofAvailabilityAvailabilityisameasureoftheamountoftimeasystemperformsitsintendedfunction.Reliabilityisameasureofthefrequencyofsystemfailures.Availabilityisrelatedto,but

differentthan,reliabilityandistypicallyexpressedasapercentageoftimethesystemisinitsoperationalstate.Tocalculateavailability,boththeMTTFandtheMTTRareneeded:

Availability=MTTF/(MTTF+MTTR)

AssumingasystemhasanMTTFof6monthsandtherepairtakes30minutes,theavailabilitywouldbe

Availability=6months/(6months+30minutes)=99.9884%

Qualitativevs.QuantitativeRiskAssessmentItisrecognizedthroughoutindustrythatitisimpossibletoconductriskmanagementthatispurelyquantitative.Usuallyriskmanagementincludesbothqualitativeandquantitativeelements,requiringbothanalysisandjudgmentorexperience.Incontrasttoquantitativeassessment,itispossibletoaccomplishpurelyqualitativeriskmanagement.Itiseasytoseethatitisimpossibletodefineandquantitativelymeasureallfactorsthatexistinagivenriskassessment.Itisalsoeasytoseethatariskassessmentthatmeasuresnofactorsquantitativelybutmeasuresthemallqualitativelyispossible.Thedecisionofwhethertousequalitativeversusquantitativerisk

managementdependsonthecriticalityoftheproject,theresourcesavailable,andthemanagementstyle.Thedecisionwillbeinfluencedbythedegreetowhichthefundamentalriskmanagementmetrics,suchasassetvalue,exposurefactor,andthreatfrequency,canbequantitativelydefined.

TechTip

AcceptingRiskInadditiontomitigatingriskortransferringrisk,amanager,knowingthepotentialcostofagivenriskanditsassociatedprobability,mayacceptresponsibilityfortheriskifitdoeshappen.Forexample,amanagermaychoosetoallowaprogrammertomake“emergency”changestoaproductionsystem(inviolationofgoodsegregationofduties)becausethesystemcannotgodownduringagivenperiodoftime.Themanageracceptstheriskthatthe

programmercouldpossiblymakeunauthorizedchangesbecauseofthehighavailabilityrequirementofthatsystem.However,thereshouldalwaysbesomeadditionalcontrolssuchasamanagementrevieworastandardizedapprovalprocesstoensuretheassumedriskisadequatelymanaged.

ToolsManytoolscanbeusedtoenhancetheriskmanagementprocess.Thefollowingtoolscanbeusedduringthevariousphasesofriskassessmenttoaddobjectivityandstructuretotheprocess.UnderstandingthedetailsofeachofthesetoolsisnotnecessaryfortheCompTIASecurity+exam,butunderstandingwhattheycanbeusedforisimportant.Moreinformationonthesetoolscanbefoundinanygoodproject-managementtext.

AffinitygroupingAmethodofidentifyingitemsthatarerelatedandthenidentifyingtheprinciplethattiesthemtogether.

BaselineidentificationandanalysisTheprocessofestablishingabaselinesetofrisks.Itproducesa“snapshot”ofalltheidentifiedrisksatagivenpointintime.

CauseandeffectanalysisIdentifyingrelationshipsbetweenariskandthefactorsthatcancauseit.ThisisusuallyaccomplishedusingfishbonediagramsdevelopedbyDr.KaoruIshikawa,formerprofessorofengineeringattheScienceUniversityofTokyo.

Cost/benefitanalysisAstraightforwardmethodforcomparingcostestimateswiththebenefitsofamitigationstrategy.

GanttchartsAmanagementtoolfordiagrammingschedules,events,andactivityduration.

InterrelationshipdigraphsAmethodforidentifyingcause-and-effectrelationshipsbyclearlydefiningtheproblemtobesolved,identifyingthekeyelementsoftheproblem,andthendescribingtherelationshipsbetweeneachofthekeyelements.

ParetochartsAhistogramthatranksthecategoriesinachartfrom

mostfrequenttoleastfrequent,thusfacilitatingriskprioritization.PERT(programevaluationandreviewtechnique)chartsAdiagramdepictinginterdependenciesbetweenprojectactivities,showingthesequenceanddurationofeachactivity.Whencomplete,thechartshowsthetimenecessarytocompletetheprojectandtheactivitiesthatdeterminethattime(thecriticalpath).

RiskmanagementplanAcomprehensiveplandocumentinghowriskswillbemanagedonagivenproject.Itcontainsprocesses,activities,milestones,organizations,responsibilities,anddetailsofeachmajorriskmanagementactivityandhowitistobeaccomplished.Itisanintegralpartoftheprojectmanagementplan.

Cost-EffectivenessModelingCost-effectivenessmodelingassumesyouareincurringacostandfocusesonthequestionofwhatthevalueofthatcostis.Thisisarationalmeansofeconomicanalysisusedtodeterminetheutilityofaspecificstrategy.Itisanearlyforegoneconclusionyouwillbespendingresourcesonsecurity;thisjustreframesthequestiontooneofutilityandoutcomefromtheactivity.

TechTip

RisksReallyDon’tChange,butTheyCanBeMitigatedOnefinalthoughttokeepinmindisthattheriskitselfdoesn’treallychange,nomatterwhatactionsaretakentomitigatethatrisk.Ahighriskwillalwaysbeahighrisk.However,actionscanbetakentoreducethelikelihoodoftherisk,andtheimpactofthatriskifitoccurs.

Arelatedterm,totalcostofownership(TCO),isthesetofallcosts,everythingfromcapitalcoststooperationalandexception-handlingcosts,thatisassociatedwithatechnology.Therearealotofargumentsoverhow

tocalculateTCO,typicallytofavoronesolutionoveranother,butthatisnotimportantinthisinstance.Itisimportanttonotethedifferencesbetweennormaloperationalcostsandexceptionhandling.Exceptionhandlingisalwaysmoreexpensive.Theobjectiveinriskmanagementistohaveasetofoverlapping

controlssuchthattheTCOisminimized.Thismeansthatthesolutionhasameasuredeffectivenessacrosstheriskspectrumandthatexceptionsareminimalized.Thisiswherethecomplianceversussecuritydebatebecomesinteresting.Weestablishcompliancerulesforavarietyofreasons,butonceestablished,theirfutureeffectivenessdependsupontheassumptionthatthesameriskenvironmentexistsaswhentheywerecreated.Shouldtherisk,thevalue,ortheimpactchangeovertime,thecosteffectivenessofthecompliance-directedcontrolcanshift,frequentlyinanegativefashion.

RiskManagementBestPracticesBestpracticesarethebestdefensesthatanorganizationcanemployinanyactivity.Onemannerofexaminingbestpracticesistoensurethatthebusinesshasthesetofbestpracticestocoveritsoperationalresponsibilities.Atadeeperlevel,thedetailsofthesepracticesneedtothemselvesbebestpracticesifoneistogetthebestlevelofprotection.Ataminimum,riskmitigationbestpracticesincludebusinesscontinuity,highavailability,faulttolerance,anddisasterrecoveryconcepts.Noneoftheseoperateinisolation.Infact,theyareallinterconnected,

sharingelementsastheyallworktogethertoachieveacommonpurpose:thesecurityofthedataintheenterprise,whichismeasuredintermsofriskexposure.Keyelementsofbestpracticesincludeunderstandingofvulnerabilities,understandingthethreatvectorsandlikelihoodsofoccurrence,andtheuseofmitigationtechniquestoreduceresidualrisktomanageablelevels.

SystemVulnerabilitiesVulnerabilitiesarecharacteristicsofanassetthatcanbeexploitedbyathreattocauseharm.Allsystemshavebugsorerrors.Notallerrorsorbugsarevulnerabilities.Foranerrororbugtobeclassifiedasavulnerability,itmustbeexploitable,meaninganattackermustbeabletousethebugtocauseadesiredresult.Therearethreeelementsneededforavulnerabilitytooccur:

Thesystemmusthaveaflaw.

Theflawmustbeaccessiblebyanattacker.

Theattackermustpossesstheabilitytoexploittheflaw.

Vulnerabilitiescanexistinmanylevelsandfrommanycauses.Fromdesignerrors,codingerrors,orunintended(anduntested)combinationsincomplexsystems,therearenumerousformsofvulnerabilities.Vulnerabilitiescanexistinsoftware,hardware,andprocedures.Whetherintheunderlyingsystem,inasecuritycontroldesignedtoprotectthesystem,orintheproceduresemployedintheoperationaluseofthesystem,theresultisthesame:avulnerabilityrepresentsanexploitableweaknessthatincreasesthelevelofriskassociatedwiththesystem.

ExamTip:Vulnerabilitiescanbefixed,removed,andmitigated.Theyarepartofanysystemandrepresentweaknessesthatmaybeexploited.

ThreatVectorsAthreatisanycircumstanceoreventwiththepotentialtocauseharmtoanasset.Forexample,amalicioushackermightchoosetohackyoursystembyusingreadilyavailablehackingtools.Threatscanbeclassifiedingroups,withthetermthreatvectordescribingtheelementsofthese

groups.Athreatvectoristhepathortoolusedbyanattackertoattackatarget.Thereareawiderangeofthreatvectorsthatasecurityprofessionalneedstounderstand:

TheWeb(fakesites,sessionhijacking,malware,wateringholeattacks)

Wirelessunsecuredhotspots

Mobiledevices(iOS/Android)

USB(removable)media

E-mail(links,attachments,malware)

Socialengineering(deceptions,hoaxes,scams,andfraud)

Thislistingismerelyasampleofthreatvectors.Fromadefensivepointofview,itisimportantnottobecomefixatedonspecificthreats,butrathertopayattentiontothethreatvectors.Ifauservisitsawebsitethathasmaliciouscode,thenthenatureofthecode,althoughimportantfromatechnicalviewinonerespect,isnottheprimaryconcern.Theprimaryissueisthemalicioussite,asthisisthethreatvector.

Probability/ThreatLikelihoodTheprobabilityorlikelihoodofaneventisameasureofhowoftenitisexpectedtooccur.Fromaqualitativeassessmentusingtermssuchasfrequent,occasionally,andrare,tothequantitativemeasureARO,thepurposeistoallowscalingbasedonfrequencyofanevent.Determiningthespecificprobabilitiesofsecurityeventswithanyaccuracyisanearlyimpossiblefeat.Whatisimportantintheuseofprobabilitiesandlikelihoodsistherelationshipithaswithrespecttodeterminingrelativerisk.Justasaninsurancecompanycannottellyouwhenyouwillhaveanaccident,noonecanpredictwhenasecurityeventwilloccur.Whatcanbedeterminedisthatoversomecourseoftime—say,thenextyear—a

significantnumberofuserswillclickmaliciouslinksine-mails.Thethreatlikelihoodofdifferenttypesofattackswillchangeovertime.Yearsago,webdefacementswerealltherage.Today,spearphishingismoreprevalent.

Theuseofinsurance-typeactuarialmodelsforriskdeterminationisusefulwhenrisksareindependent,suchasinautoaccidents.Butcontrolsneedtobeaddedwhenafactorbecomeslessindependent,suchasabaddriver.Incybersecurity,onceanattackissuccessful,itisrepeatedlyemployedagainstavictim,breakinganyformofindependenceandmakingtheprobability=1.Thislessensthetrueusefulnessoftheinsurance-typeactuarialmodelsincybersecuritypractice.

Whenexaminingrisk,theprobabilityorthreatlikelihoodplaysasignificantroleinthedeterminationofriskandmitigationoptions.Inmanycases,thelikelihoodistreatedascertain,andforrepeatattacks,thismaybeappropriate,butitcertainlyisnotuniversallytrue.

Risk-Avoidance,Transference,Acceptance,Mitigation,DeterrenceRisksareabsolutes—theycannotberemovedoreliminated.Actionscanbetakentochangetheeffectsthatariskposestoasystem,buttheriskitselfdoesn’treallychange,nomatterwhatactionsaretakentomitigatethatrisk.Ahighriskwillalwaysbeahighrisk.However,actionscanbetakentoreducetheimpactofthatriskifitoccurs.Alimitednumberofstrategiescanbeusedtomanagerisk.Theriskcanbeavoided,transferred,mitigated,oraccepted.Avoidingtheriskcanbeaccomplishedinmanyways.Althoughthreats

cannotberemovedfromtheenvironment,one’sexposurecanbealtered.Notdeployingamodulethatincreasesriskisonemannerofriskavoidance.Anotherpossibleactiontomanageriskistotransferthatrisk.A

commonmethodoftransferringriskistopurchaseinsurance.Insuranceallowsrisktobetransferredtoathirdpartythatmanagesspecifictypesofriskformultipleparties,thusreducingtheindividualcost.Anothercommonexampleofrisktransferistheprotectionagainstfraudthatconsumershaveontheircreditcards.Theriskistransferredtoanotherparty,sopeoplecanusethecardinconfidence.Riskcanalsobemitigatedthroughtheapplicationofcontrolsthat

reducetheimpactofanattack.Controlscanalertoperatorssothatthelevelofexposureisreducedthroughprocessintervention.Whenanactionoccursthatisoutsidetheacceptedriskprofile,asecondsetofrulescanbeapplied,suchascallingthecustomerforverificationbeforecommittingatransaction.Controlssuchasthesecanacttoreducetheriskassociatedwithpotentialhigh-riskoperations.Acceptingriskisalwaysanoption;infact,ifrisksarenotaddressed,

thenthisactionoccursasadefault.Understandthatriskcannotbecompletelyeliminated.Ariskthatremainsafterimplementingcontrolsistermedaresidualrisk.Inthisstep,youfurtherevaluateresidualriskstoidentifywhereadditionalcontrolsarerequiredtoreduceriskevenmore.Thisleadsustotheearlierstatement,inthechapterintroduction,thattheriskmanagementprocessisiterative.

RisksAssociatedwithCloudComputingandVirtualizationWhenexaminingacomplexsystemsuchasacloudorvirtualcomputingenvironmentfromariskperspective,severalbasicconsiderationsalwaysneedtobeobserved.First,thefactthatasystemiseitherinthecloudorvirtualizeddoesnotchangehowriskworks.Riskiseverywhere,andchangingasystemtoanewenvironmentdoesnotchangethefactthattherearerisks.Second,complexitycanincreaseriskexposure.Therearespecificrisksassociatedwithbothvirtualizationandcloud

environments.Havingdataandcomputingoccurinenvironmentsthatarenotunderthedirectcontrolofthedataowneraddsbothalayerof

complexityandadegreeofrisk.Thepotentialforissueswithconfidentiality,integrity,andavailabilityincreaseswiththelossofdirectcontrolovertheenvironment.Thevirtualizationandcloudlayersalsopresentnewavenuesofattackintoasystem.Securityisaparticularchallengewhendataandcomputationare

handledbyaremoteparty,asincloudcomputing.Thespecificchallengeishowtoallowdataoutsideyourenterpriseandyetremainincontrolovertheuseofthedata.Thecommonanswerisencryption.Throughtheproperuseofencryptionofdatabeforeitleavestheenterprise,externalstoragecanstillbeperformedsecurelybyproperlyemployingcryptographicelements.Thesecurityrequirementsassociatedwithconfidentiality,integrity,andavailabilityremaintheresponsibilityofthedataowner,andmeasuresmustbetakentoensurethattheserequirementsaremet,regardlessofthelocationorusageassociatedwiththedata.Anotherlevelofprotectionsisthroughtheuseofservicelevelagreements(SLAs)withthecloudvendor,althoughthesefrequentlycannotoffermuchremedyintheeventofdataloss.

Chapter20Review

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutriskmanagement.

Useriskmanagementtoolsandprinciplestomanageriskeffectively

Riskmanagementisakeymanagementprocessthatmustbeusedateverylevel,whethermanagingaproject,aprogram,oranenterprise.

Riskmanagementisalsoastrategictooltomoreeffectivelymanageincreasinglysophisticated,diverse,andgeographicallyexpansive

businessopportunities.Commonbusinessrisksincludefraudandmanagementoftreasury,revenue,contracts,environment,regulatoryissues,businesscontinuity,andtechnology.

Technologyrisksincludesecurityandprivacy,informationtechnologyoperations,businesssystemscontrolandeffectiveness,informationsystemstesting,andmanagementofbusinesscontinuity,reliabilityandperformance,informationtechnologyassets,projectrisk,andchange.

Exploreriskmitigationstrategies

Manybusinessprocessescanbeusedtomitigatespecificformsofrisk.Thesetoolsincludechangeandincidentmanagement,userrightsandpermissionreviews,routinesystemaudits,andtheuseoftechnologicalcontrolstopreventoralertondataloss.

Describeriskmodels

Ageneralmodelformanagingriskincludesassetidentification,threatassessment,impactdeterminationandquantification,controldesignandevaluation,andresidualriskmanagement.

TheSEImodelformanagingriskincludesthesesteps:identify,analyze,plan,track,andcontrol.

Explainthedifferencesbetweenqualitativeandquantitativeriskassessment

Bothqualitativeandquantitativeriskassessmentapproachesmustbeusedtomanageriskeffectively,andanumberofapproacheswerepresentedinthischapter.

Qualitativeriskassessmentreliesonexpertjudgmentandexperiencebycomparingtheimpactofathreatwiththeprobabilityofitoccurring.

Qualitativeriskassessmentcanbeasimplebinaryassessmentweighing

highorlowimpactagainsthighorlowprobability.Additionallevelscanbeusedtoincreasethecomprehensivenessoftheanalysis.Thewell-knownred-yellow-greenstoplightmechanismisqualitativeinnatureandiseasilyunderstood.

Quantitativeriskassessmentapplieshistoricalinformationandtrendstoassessrisk.Modelsareoftenusedtoprovideinformationtodecision-makers.

Acommonquantitativeapproachcalculatestheannualizedlossexpectancyfromthesinglelossexpectancyandtheannualizedrateofoccurrence(ALE=SLE×ARO).

Itisimportanttounderstandthatitisimpossibletoconductapurelyquantitativeriskassessment,butitispossibletoconductapurelyqualitativeriskassessment.

Useriskmanagementtools

Numeroustoolscanbeusedtoaddcredibilityandrigortotheriskassessmentprocess.

Riskassessmenttoolshelpidentifyrelationships,causes,andeffects.Theyassistinprioritizingdecisionsandfacilitateeffectivemanagementoftheriskmanagementprocess.

Examineriskmanagementbestpractices

Explorebusinesscontinuityconcepts.

Exploretherelationshipsbetweenvulnerabilities,threatvectors,probabilities,andthreatlikelihoodsastheyapplytoriskmanagement.

Understandthedifferencesbetweenriskavoidance,transference,acceptance,mitigation,anddeterrence.

KeyTerms

annualizedlossexpectancy(ALE)(611)annualizedrateofoccurrence(ARO)(611)asset(610)availability(625)control(610)countermeasure(611)exposurefactor(611)hazard(611)impact(610)intangibleimpact(617)meantimebetweenfailures(MTBF)(624)meantimetofailure(MTTF)(625)meantimetorepair(MTTR)(624)mitigate(611)qualitativeriskassessment(611)quantitativeriskassessment(611)residualrisk(618)risk(610)riskanalysis(610)riskassessment(610)riskmanagement(610)safeguard(610)singlelossexpectancy(SLE)(611)systematicrisk(611)tangibleimpact(617)threat(610)threatactor(610)threatvector(610)unsystematicrisk(611)vulnerability(610)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.Assetvalue×exposurefactor=_______________.2.Acontrolmayalsobecalleda(n)______________ora(n)

_______________.

3.Whenathreatexploitsavulnerability,youexperiencea(n)_______________.

4.Singlelossexpectancy×annualizedrateofoccurrence=_______________.

5.Ifyoureducethelikelihoodofathreatoccurring,you_______________arisk.

6.The_______________measuresthemagnitudeofthelossofanasset.

7.Riskanalysisissynonymouswith____________.8.Anycircumstanceoreventwiththepotentialtocauseharmtoan

assetisa(n)_______________.

9.Acharacteristicofanassetthatcanbeexploitedbyathreattocauseharmisits_______________.

10._______________isacircumstancethatincreasesthelikelihoodorprobableseverityofaloss.

Multiple-ChoiceQuiz1.Whichofthefollowingcorrectlydefinesqualitativerisk

management?

A.Theprocessofobjectivelydeterminingtheimpactofanevent

thataffectsaproject,program,orbusiness

B.Theprocessofsubjectivelydeterminingtheimpactofaneventthataffectsaproject,program,orbusiness

C.Thelossthatresultswhenavulnerabilityisexploitedbyathreat

D.Toreducethelikelihoodofathreatoccurring

2.Whichofthefollowingcorrectlydefinesrisk?A.Theriskstillremainingafteraniterationofriskmanagement

B.Thelossthatresultswhenavulnerabilityisexploitedbyathreat

C.Anycircumstanceoreventwiththepotentialtocauseharmtoanasset

D.Thepossibilityofsufferingharmorloss

3.Singlelossexpectancy(SLE)canbestbedefinedbywhichofthefollowingequations?

A.SLE=annualizedlossexpectancy×annualizedrateofoccurrence

B.SLE=assetvalue×exposurefactor

C.SLE=assetvalue×annualizedrateofoccurrence

D.SLE=annualizedlossexpectancy×exposurefactor

4.Whichofthefollowingcorrectlydefinesannualizedrateofoccurrence?

A.Howmuchaneventisexpectedtocostperyear

B.Ameasureofthemagnitudeoflossofanasset

C.Onanannualizedbasis,thefrequencywithwhichaneventis

expectedtooccur

D.Theresourcesorinformationanorganizationneedstoconductitsbusiness

Forquestions5and6,assumethefollowing:Theassetvalueofasmalldistributionwarehouseis$5million,andthiswarehouseservesasabackupfacility.Itscompletedestructionbyadisasterwouldtakeawayabout1/5ofthecapabilityofthebusiness.Alsoassumethatthissortofdisasterisexpectedtooccuraboutonceevery50years.

5.Whichofthefollowingisthecalculatedsinglelossexpectancy(SLE)?

A.SLE=$25million

B.SLE=$1million

C.SLE=$2.5million

D.SLE=$5million

6.Whichofthefollowingisthecalculatedannualizedlossexpectancy(ALE)?

A.ALE=$50,000

B.ALE=$1million

C.ALE=$20,000

D.ALE=$50million

7.Whendiscussingqualitativeriskassessmentversusquantitativeriskassessment,whichofthefollowingistrue?

A.Itisimpossibletoconductapurelyquantitativeriskassessment,anditisimpossibletoconductapurelyqualitativeriskassessment.

B.Itispossibletoconductapurelyquantitativeriskassessment,

butitisimpossibletoconductapurelyqualitativeriskassessment.

C.Itisimpossibletoconductapurelyquantitativeriskassessment,butitispossibletoconductapurelyqualitativeriskassessment.

D.Itispossibletoconductapurelyquantitativeriskassessment,anditispossibletoconductapurelyqualitativeriskassessment.

8.Whichofthefollowingcorrectlydefinesresidualrisk?A.Theriskstillremainingafteraniterationofriskmanagement

B.Thepossibilityofsufferingaloss

C.Theresultofavulnerabilitybeingexploitedbyathreatthatresultsinaloss

D.Characteristicsofanassetthatcanbeexploitedbyathreattocauseharm

9.Whichofthefollowingstatementsaboutriskistrue?A.Amanagercanaccepttherisk,whichwillreducetherisk.

B.Theriskitselfdoesn’treallychange.However,actionscanbetakentoreducetheimpactoftherisk.

C.Amanagercantransfertherisk,whichwillreducetherisk.

D.Amanagercantakestepstoincreasetherisk.

10.Fillintheblanks.AvailabilityiscalculatedusingtheformulaAvailability=A/(B+C)

A=________

B=________

C=________

EssayQuiz1.Youaredraftingane-mailtoyourriskmanagementteammembers

toexplainthedifferencebetweentangibleassetsandintangibleassets.Relatepotentialthreatsandrisktotangibleandintangibleimpacts.Writeashortparagraphthatexplainsthedifferenceandincludetwoexamplesofeach.

2.Youhavebeentaskedtoinitiateariskmanagementprogramforyourcompany.TheCEOhasjustaskedyoutosuccinctlyexplaintherelationshipbetweenimpact,threat,andvulnerability.Thinkquickonyourfeetandgiveasinglesentencethatexplainstherelationship.

3.YourCEOnowsays,“Youmentionedthatrisksalwaysexist.IfItakeenoughmeasures,can’tIeliminatetherisk?”Explainwhyrisksalwaysexist.

4.Youareexplainingyourriskmanagementplantoanewteammemberjustbroughtonaspartofacollegeinternshipprogram.Theinternasks,“Withrespecttoimpact,whatdoesathreatdotoarisk?”Howwouldyouanswer?

5.TheinternmentionedinQuestion4nowasksyoutocompareandcontrastacceptingrisk,transferringrisk,andmitigatingrisk.What’syourresponse?

LabProjects

•LabProject20.1Theassetvalueofadistributioncenter(locatedinthemidwesternUnitedStates)andits

inventoryis$10million.Itisoneoftwoidenticalfacilities(theotherisinthesouthwesternUnitedStates).Itscompletedestructionbyadisasterwouldthustakeawayhalfofthecapabilityofthebusiness.Alsoassumethatthissortofdisasterisexpectedtooccuraboutonceevery100years.Fromthis,calculatetheannualizedlossexpectancy.

•LabProject20.2Youhavejustcompletedaqualitativethreatassessmentofthecomputersecurityofyourorganization,withtheimpactsandprobabilitiesofoccurrencelistedinthetablethatfollows.Properlyplacethethreatsina3-by-3tablesimilartothatinFigure20.5.Whichofthethreatsshouldyoutakeactionon,whichshouldyoumonitor,andwhichonesmaynotneedyourimmediateattention?

chapter21 ChangeManagement

Itisnotthestrongestofthespeciesthatsurvive,northemostintelligent,buttheonemostresponsivetochange.

I

—CHARLESDARWIN

Inthischapter,youwilllearnhowto

Usechangemanagementasanimportantenterprisemanagementtool

Institutethekeyconceptofseparationofduties

Identifytheessentialelementsofchangemanagement

Implementchangemanagement

UsetheconceptsoftheCapabilityMaturityModelIntegration

tiswellrecognizedthattoday’scomputersystemsareextremelycomplex,anditisobviousthatinventorymanagementsystemsforlargeinternationalenterprisessuchasWal-MartandHomeDepotare

probablyascomplexasanaircraftorskyscraper.ProminentoperatingsystemssuchasWindowsandUNIXarealsoverycomplex,asarecomputerprocessorsonachip.Manyoftoday’sweb-basedapplicationsareextremelycomplexaswell.Forexample,today’sweb-basedapplicationstypicallyconsistofflashcontentonwebsitesinteractingwithremotedatabasesthroughavarietyofservicesorservice-orientedarchitectureshostedonwebserverslocatedanywhereintheworld.Youwouldn’tthinkofconstructinganaircraft,largebuilding,computer

chip,orautomobileintheinformalmannersometimesusedtodevelopandoperatecomputersystemsofequalcomplexity.Computersystemshavegrowntobesocomplexandmission-criticalthatenterprisescannotaffordtodevelopandmaintaintheminanadhocmanner.

Changemanagementprocedurescanaddstructureandcontroltothedevelopmentandmanagementoflargesoftwaresystemsastheymovefromdevelopmenttoimplementationandduringoperation.Inthischapter,changemanagementreferstoastandardmethodologyforperformingandrecordingchangesduringsoftwaredevelopmentandsystemoperation.Themethodologydefinesstepsthatensurethatsystemchangesarerequiredbytheorganizationandareproperlyauthorized,documented,tested,and

approvedbymanagement.Inmanyconversations,thetermconfigurationmanagementisconsideredsynonymouswithchangemanagementand,inamorelimitedmanner,versioncontrolorreleasecontrol.Thetermchangemanagementisoftenappliedtothemanagementof

changesinthebusinessenvironment,typicallyasaresultofbusinessprocessreengineeringorqualityenhancementefforts.Thetermchangemanagementasusedinthischapterisdirectlyrelatedtomanagingandcontrollingsoftwaredevelopment,maintenance,andsystemoperation.Configurationmanagementistheapplicationofchangemanagementprinciplestoconfigurationofbothsoftwareandhardware.

WhyChangeManagement?Tomanagethesystemdevelopmentandmaintenanceprocesseseffectively,youneeddisciplineandstructuretohelpconserveresourcesandenhanceeffectiveness.Changemanagement,likeriskmanagement,isoftenconsideredexpensive,nonproductive,unnecessary,andconfusing—animpedimenttoprogress.However,likeriskmanagement,changemanagementcanbescaledtocontrolandmanagethedevelopmentandmaintenanceofsystemseffectively.

CrossCheckRiskManagementandChangeManagementAreEssentialBusinessProcessesChapter20presentedriskmanagementasanessentialdecision-makingprocess.Inmuchthesameway,changemanagementisanessentialpracticeformanagingasystemduringitsentirelifecycle,fromdevelopmentthroughdeploymentandoperation,untilitistakenoutofservice.Whatsecurity-specificrisk-basedquestionsshouldbeaskedduringchangemanagementreviews?

Changemanagementshouldbeusedinallphasesofasystem’slife:development,testing,qualityassurance(QA),andproduction.Shortdevelopmentcycleshavenotchangedtheneedforanappropriateamount

ofmanagementcontroloversoftwaredevelopment,maintenance,andoperation.Infact,shortturnaroundtimesmakechangemanagementmorenecessary,becauseonceasystemgoesactiveintoday’sservices-basedenvironments,itoftencannotbetakenofflinetocorrecterrors—itmuststayupandonlineorbusinesswillbelostandbrandrecognitiondamaged.Intoday’svolatilestockmarket,forexample,evensmallindicatorsoflaggingperformancecanhavedramaticimpactsonacompany’sstockvalue.Thefollowingscenariosexemplifytheneedforappropriatechange

managementpolicyandforproceduresoversoftware,hardware,anddata:

Thedeveloperscan’tfindthelatestversionoftheproductionsourcecode.Changemanagementpracticessupportversioningofsoftwarechanges.

Abugcorrectedafewmonthsagomysteriouslyreappears.Properchangemanagementensuresdevelopersalwaysusethemostrecentlychangedsourcecode.

Fieldedsoftwarewasworkingfineyesterdaybutdoesnotworkproperlytoday.Goodchangemanagementcontrolsaccesstopreviouslymodifiedmodulessothatpreviouslycorrectederrorsaren’treintroducedintothesystem.

Developmentteammembersoverwroteeachother’schanges.Today’schangemanagementtoolssupportcollaborativedevelopment.

Aprogrammerspentseveralhourschangingthewrongversionofthesoftware.Changemanagementtoolssupportviablemanagementofprevioussoftwareversions.

Newtaxratesstoredinatablehavebeenoverwrittenwithlastyear’staxrates.Changecontrolpreventsinadvertentoverwritingofcriticalreferencedata.

Anetworkadministratorinadvertentlybringsdownaserverasheincorrectlypuncheddownthewrongwires.Justlikeablueprintshows

keyelectricalpaths,datacenterconnectionpathscanbeversion-controlled.

Anewlyinstalledserverishackedsoonafterinstallationbecauseitisimproperlyconfigured.Networkandsystemadministratorsusechangemanagementtoensureconfigurationsconsistentlymeetsecuritystandards.

TryThis!

ScopeofChangeManagementSeeifyoucanexplainwhyeachofthefollowingshouldbeplacedunderanappropriatechangemanagementprocess:

WebpagesServicepacks

SecuritypatchesThird-partysoftwarereleases

TestdataandtestscriptsParameterfiles

Scripts,storedprocedures,orjobcontrollanguage–typeprogramsCustomizedvendorcode

SourcecodeofanykindApplications

TechTip

TypesofChangesTheITILv3GlossaryofTerms,DefinitionsandAcronyms(https://www.axelos.com/glossaries-of-terms)definesthefollowingtypesofchanges(withexamplesaddedinparentheses):

Change“Theaddition,modificationorremovalofanythingthatcouldhaveaneffect

onITServices.”(Forexample,themodificationtoamoduletoimplementanewcapability.)

StandardChange“Apreapprovedchangethatislowrisk,relativelycommonandfollowsaprocedureorworkinstruction.”(Forexample,eachmonthfinancemustmakeasmallroundingadjustmenttoreconciletheGeneralLedgertoaccountforforeigncurrencycalculations.)

EmergencyChange“Achangethatmustbeintroducedassoonaspossible.”(Forexample,toresolveamajorincidentorimplementasecuritypatch.Thechangemanagementprocesswillnormallyhaveaspecificprocedureforhandlingemergencychanges.)

Seehttps://www.axelos.com/best-practice-solutions/itil.aspxformoreinformation.

Justaboutanyonewithmorethanayear’sexperienceinsoftwaredevelopmentorsystemoperationscanrelatetoatleastoneoftheprecedingscenarios.However,eachofthesescenarioscanbecontrolled,andimpactsmitigated,throughproperchangemanagementprocedures.TheSarbanes-OxleyActof2002,officiallyentitledthePublicCompany

AccountingReformandInvestorProtectionActof2002,wasenactedJuly30,2002,tohelpensuremanagementestablishesviablegovernanceenvironmentsandcontrolstructurestoensureaccuracyoffinancialreporting.Section404outlinestherequirementsmostapplicabletoinformationtechnology.ChangemanagementisanessentialpartofcreatingaviablegovernanceandcontrolstructureandcriticaltocompliancewiththeSarbanes-OxleyAct.

TheKeyConcept:SeparationofDutiesAfoundationforchangemanagementistherecognitionthatinvolvingmorethanoneindividualinaprocesscanreducerisk.Goodbusinesscontrolpracticesrequirethatdutiesbeassignedtoindividualsinsuchawaythatnooneindividualcancontrolallphasesofaprocessortheprocessingandrecordingofatransaction.Thisiscalledseparationofduties(alsocalledsegregationofduties).Itisanimportantmeansbywhicherrorsandfraudulentormaliciousactscanbediscouragedand

prevented.Separationofdutiescanbeappliedinmanyorganizationalscenariosbecauseitestablishesabasisforaccountabilityandcontrol.Properseparationofdutiescansafeguardenterpriseassetsandprotectagainstrisks.Theyshouldbedocumented,monitored,andenforced.Awell-understoodbusinessexampleofseparationofdutiesisinthe

managementandpaymentofvendorinvoices.Ifapersoncancreateavendorinthefinancesystem,enterinvoicesforpayment,andthenauthorizeapaymentchecktobewritten,itisapparentthatfraudcouldbeperpetratedbecausethepersoncouldwriteachecktohimselfforservicesneverperformed.Separatingdutiesbyrequiringonepersontocreatethevendorsandanotherpersontoenterinvoicesandwritechecksmakesitmoredifficultforsomeonetodefraudanemployer.Informationtechnology(IT)organizationsshoulddesign,implement,

monitor,andenforceappropriateseparationofdutiesfortheenterprise’sinformationsystemsandprocesses.Today’scomputersystemsarerapidlyevolvingintoanincreasinglydecentralizedandnetworkedcomputerinfrastructure.IntheabsenceofadequateITcontrols,suchrapidgrowthmayallowexploitationoflargeamountsofenterpriseinformationinashorttime.Further,theknowledgeofcomputeroperationsheldbyITstaffissignificantlygreaterthanthatofanaverageuser,andthisknowledgecouldbeabusedformaliciouspurposes.Someofthebestpracticesforensuringproperseparationofdutiesinan

ITorganizationareasfollows:

Separationofdutiesbetweendevelopment,testing,QA,andproductionshouldbedocumentedinwrittenproceduresandimplementedbysoftwareormanualprocesses.

Programdevelopers’andprogramtesters’activitiesshouldbeconductedon“test”dataonly.Theyshouldberestrictedfromaccessing“live”productiondata.Thiswillassistinensuringanindependentandobjectivetestingenvironmentwithoutjeopardizingtheconfidentialityandintegrityofproductiondata.

Endusersorcomputeroperationspersonnelshouldnothavedirect

accesstoprogramsourcecode.Thiscontrolhelpslessentheopportunityofexploitingsoftwareweaknessesorintroducingmaliciouscode(orcodethathasnotbeenproperlytested)intotheproductionenvironmenteitherintentionallyorunintentionally.

Functionsofcreating,installing,andadministratingsoftwareprogramsshouldbeassignedtodifferentindividuals.Forexample,sincedeveloperscreateandenhanceprograms,theyshouldnotbeabletoinstallitontheproductionsystem.Likewise,databaseadministratorsshouldnotbeprogramdevelopersondatabasesystemstheyadminister.

Allaccessesandprivilegestosystems,software,ordatashouldbegrantedbasedontheprincipleofleastprivilege,whichgivesusersnomoreprivilegesthanarenecessarytoperformtheirjobs.Accessprivilegesshouldbereviewedregularlytoensurethatindividualswhonolongerrequireaccesshavehadtheiraccessremoved.

Formalchangemanagementpolicyandproceduresshouldbeenforcedthroughouttheenterprise.Anychangesinhardwareandsoftwarecomponents(includingemergencychanges)thatareimplementedafterthesystemhasbeenplacedintoproductionmustgothroughtheapprovedformalchangemanagementmechanism.

TechTip

StepstoImplementSeparationofDuties

1.Identifyanindispensablefunctionthatispotentiallysubjecttoabuse.2.Dividethefunctionintoseparatesteps,eachcontainingasmallpartofthepowerthat

enablesthefunctiontobeabused.

3.Assigneachsteptoadifferentpersonororganization.

Managersatalllevelsshouldreviewexistingandplannedprocessesand

systemstoensureproperseparationofduties.Smallerbusinessentitiesmaynothavetheresourcestoimplementalloftheprecedingpracticesfully,butothercontrolmechanisms,includinghiringqualifiedpersonnel,bondingcontractors,andusingtraining,monitoring,andevaluationpractices,canreduceanyorganization’sexposuretorisk.Theestablishmentofsuchpracticescanensurethatenterpriseassetsareproperlysafeguardedandcanalsogreatlyreduceerrorandthepotentialforfraudulentormaliciousactivities.Changemanagementpracticesimplementandenforceseparationof

dutiesbyaddingstructureandmanagementoversighttothesoftwaredevelopmentandsystemoperationprocesses.Changemanagementtechniquescanensurethatonlycorrectandauthorizedchanges,asapprovedbymanagementorotherauthorities,areallowedtobemade,followingadefinedprocess.

TechTip

ChangeManagementTheITILv3Glossarydefineschangemanagementas“Theprocessresponsibleforcontrollingthelifecycleofallchanges.Theprimaryobjectiveofchangemanagementistoenablebeneficialchangestobemade,withminimumdisruptiontoITservices.”Seehttps://www.axelos.com/glossaries-of-terms.

ElementsofChangeManagementChangemanagementhasitsrootsinsystemengineering,whereitiscommonlyreferredtoasconfigurationmanagement.Mostoftoday’ssoftwareandhardwarechangemanagementpracticesderivefromlong-standingsystemengineeringconfigurationmanagementpractices.Computerhardwareandsoftwaredevelopmenthaveevolvedtothepointthatpropermanagementstructureandcontrolsmustexisttoensuretheproductsoperateasplanned.IssuessuchastheHeartbleedandShellshockincidentsillustratetheneedtounderstandconfigurationsandchange.

Changemanagementandconfigurationmanagementusedifferenttermsfortheirvariousphases,buttheyallfitintothefourgeneralphasesdefinedunderconfigurationmanagement:

Configurationidentification

Configurationcontrol

Configurationstatusaccounting

Configurationauditing

Configurationidentificationistheprocessofidentifyingwhichassetsneedtobemanagedandcontrolled.Theseassetscouldbesoftwaremodules,testcasesorscripts,tableorparametervalues,servers,majorsubsystems,orentiresystems.Theideaisthat,dependingonthesizeandcomplexityofthesystem,anappropriatesetofdataandsoftware(orotherassets)mustbeidentifiedandproperlymanaged.Theseidentifiedassetsarecalledconfigurationitemsorcomputersoftwareconfigurationitems.Relatedtoconfigurationidentification,andtheresultofit,isthe

definitionofabaseline.Abaselineservesasafoundationforcomparisonormeasurement.Itprovidesthenecessaryvisibilitytocontrolchange.Forexample,asoftwarebaselinedefinesthesoftwaresystemasitisbuiltandrunningatapointintime.Asanotherexample,networksecuritybestpracticesclearlystatethatanylargeorganizationshouldbuilditsserverstoastandardbuildconfigurationtoenhanceoverallnetworksecurity.Theserversaretheconfigurationitems,andthestandardbuildistheserverbaseline.Configurationcontrolistheprocessofcontrollingchangestoitems

thathavebeenbaselined.Configurationcontrolensuresthatonlyapprovedchangestoabaselineareallowedtobeimplemented.Itiseasytounderstandwhyasoftwaresystem,suchasaweb-basedorderentrysystem,shouldnotbechangedwithoutpropertestingandcontrol—otherwise,thesystemmightstopfunctioningatacriticaltime.

Configurationcontrolisakeystepthatprovidesvaluableinsighttomanagers.Ifasystemisbeingchanged,andconfigurationcontrolisbeingobserved,managersandothersconcernedwillbebetterinformed.Thisensuresproperuseofassetsandavoidsunnecessarydowntimeduetotheinstallationofunapprovedchanges.

Largeenterpriseapplicationsystemsrequireviablechangemanagementsystems.Forexample,SAPhasitsownchangemanagementsystemcalledtheTransportManagementSystem(TMS).Third-partysoftwaresuchasPhireArchitect(www.phire-soft.com)andStatforPeopleSoft(http://software.dell.com/products/stat-peoplesoft/)providechangemanagementapplicationsforOracle’sPeopleSoftorE-BusinessSuite.

Configurationstatusaccountingconsistsoftheproceduresfortrackingandmaintainingdatarelativetoeachconfigurationiteminthebaseline.Itiscloselyrelatedtoconfigurationcontrol.Statusaccountinginvolvesgatheringandmaintaininginformationrelativetoeachconfigurationitem.Forexample,itdocumentswhatchangeshavebeenrequested;whatchangeshavebeenmade,when,andforwhatreason;whoauthorizedthechange;whoperformedthechange;andwhatotherconfigurationitemsorsystemswereaffectedbythechange.

Itisimportantthatyouunderstandthateventhoughallserversmaybeinitiallyconfiguredtothesamebaseline,individualapplicationsmightrequireasystem-specificconfigurationtorunproperly.Changemanagementactuallyfacilitatessystem-specificconfigurationinthatallexceptionsfromthestandardconfigurationaredocumented.Allpeopleinvolvedinmanagingandoperatingthesesystemswillhavedocumentationtohelpthemquicklyunderstandwhyaparticularsystemisconfiguredinauniqueway.

Returningtoourexampleofserversbeingbaselined,iftheoperatingsystemofthoseserversisfoundtohaveasecurityflaw,thenthebaselinecanbeconsultedtodeterminewhichserversarevulnerabletothis

particularsecurityflaw.Thosesystemswiththisweaknesscanbeupdated(andonlythosethatneedtobeupdated).Configurationcontrolandconfigurationstatusaccountinghelpensurethatsystemsaremoreconsistentlymanagedand,ultimatelyinthiscase,theorganization’snetworksecurityismaintained.Itiseasytoimaginethestateofanorganizationthathasnotbuiltallserverstoacommonbaselineandhasnotproperlycontrolleditssystems’configurations.Itwouldbeverydifficulttoknowtheconfigurationofindividualservers,andsecuritycouldquicklybecomeweak.Configurationauditingistheprocessofverifyingthatthe

configurationitemsarebuiltandmaintainedaccordingtotherequirements,standards,orcontractualagreements.Itissimilartohowauditsinthefinancialworldareusedtoensurethatgenerallyacceptedaccountingprinciplesandpracticesareadheredtoandthatfinancialstatementsproperlyreflectthefinancialstatusoftheenterprise.Configurationauditsensurethatpoliciesandproceduresarebeingfollowed,thatallconfigurationitems(includinghardwareandsoftware)arebeingproperlymaintained,andthatexistingdocumentationaccuratelyreflectsthestatusofthesystemsinoperation.Configurationauditingtakesontwoforms:functionalandphysical.A

functionalconfigurationauditverifiesthattheconfigurationitemperformsasdefinedbythedocumentationofthesystemrequirements.Aphysicalconfigurationauditconfirmsthatallconfigurationitemstobeincludedinarelease,install,change,orupgradeareactuallyincluded,andthatnoadditionalitemsareincluded—nomore,noless.

ImplementingChangeManagementChangemanagementrequiressomestructureanddisciplineinordertobeeffective.Thechangemanagementfunctionisscalablefromsmalltoenterprise-levelprojects.Figure21.1illustratesasamplesoftwarechangemanagementflowappropriateformediumtolargeprojects.Itcanbeadaptedtosmallorganizationsbyhavingthedeveloperperformworkonly

onherworkstation(neverontheproductionsystem)andhavingthesystemadministratorserveinthebuildmasterfunction.Thebuildmasterisusuallyanindependentpersonresponsibleforcompilingandincorporatingchangedsoftwareintoanexecutableimage.

•Figure21.1Softwarechangecontrolworkflow

TechTip

ReleaseManagementTheITILv3Glossarydefinesreleasemanagementas“Theprocessresponsibleforplanning,schedulingandcontrollingthemovementofreleasestotestandliveenvironments.Theprimaryobjectiveofreleasemanagementistoensurethattheintegrityoftheliveenvironmentisprotectedandthatthecorrectcomponentsarereleased.”Seehttps://www.axelos.com/glossaries-of-terms.

Figure21.1showsthatdevelopersneverhaveaccesstotheproductionsystemordata.Italsodemonstratesproperseparationofdutiesbetweendevelopers,QAandtestpersonnel,andproduction.Itimpliesthatadistinctseparationexistsbetweendevelopment,testingandQA,andproductionenvironments.Thisworkflowisforchangesthathaveamajorimpactonproductionorthecustomer’sbusinessprocess.Forminorchangesthathaveminimalriskorimpactonbusinessprocesses,someofthestepsmaybeomitted.Thechangemanagementworkflowproceedsasfollows:

1.Thedeveloperchecksoutsourcecodefromthecode-controltoolarchivetothedevelopmentsystem.

2.Thedevelopermodifiesthecodeandconductsunittestingofthechangedmodules.

3.Thedeveloperchecksthemodifiedcodeintothecode-controltoolarchive.

4.Thedevelopernotifiesthebuildmasterthatchangesarereadyforanewbuildandtesting/QA.

5.Thebuildmastercreatesabuildincorporatingthemodifiedcodeandcompilesthecode.

6.Thebuildmasternotifiesthesystemadministratorthattheexecutableimageisreadyfortesting/QA.

7.Thesystemadministratormovestheexecutablestothetest/QAsystem.

8.QAteststhenewexecutables.Ifthetestsarepassed,test/QAnotifiesthemanager.Iftestsfail,theprocessstartsover.

9.Uponmanagerapproval,thesystemadministratormovestheexecutabletotheproductionsystem.

TechTip

IdentifyingSeparationofDutiesUsingFigure21.1,observetheseparationofdutiesbetweendevelopment,test/QA,andproduction.Thefunctionsofcreating,installing,andadministratingareassignedtodifferentindividuals.Notealsoappropriatemanagementreviewandapproval.Thisimplementationalsoensuresthatnocompilerisnecessaryontheproductionsystem.Indeed,compilersshouldnotbeallowedtoexistontheproductionsystem.

BackoutPlanOneofthekeyelementsofachangeplanisacomprehensivebackoutplan.Ifinthecourseofaplannedchangeactivityinproductionaproblemoccursthatpreventsgoingforward,itisessentialtohaveabackoutplantorestorethesystemtoitspreviousoperatingcondition.Acommonelementinmanyoperatingsystemupdatesistheinabilitytogobacktoapreviousversion.Thisisfineprovidedthattheupdategoesperfectly,butifforsomereasonitfails,whatthen?Forapersonaldevice,theremaybesomeinconvenience.Foraserverinproduction,thiscanhavesignificantbusinessimplications.Theultimateinbackoutplansistherestorationofacompletebackupofthesystem.Backupscanbetimeconsuminganddifficultinsomeenvironments,butthespreadofvirtualizationintotheenterpriseprovidesmanymoreoptionsinconfigurationmanagementandbackoutplans.

ThePurposeofaChangeControlBoard

Tooverseethechangemanagementprocess,mostorganizationsestablishachangecontrolboard(CCB).Inpractice,aCCBnotonlyfacilitatesadequatemanagementoversight,butalsofacilitatesbettercoordinationbetweenprojects.TheCCBconvenesonaregularbasis,usuallyweeklyormonthly,andcanbeconvenedonanemergencyoras-neededbasisaswell.Figure21.2showstheprocessforimplementingandproperlycontrollinghardwareorsoftwareduringchanges.

•Figure21.2Changecontrolboardprocess

TheCCB’smembershipshouldconsistofdevelopmentprojectmanagers,networkadministrators,systemadministrators,test/QAmanagers,aninformationsecuritymanager,anoperationscentermanager,andahelpdeskmanager.Otherscanbeaddedasnecessary,dependingonthesizeandcomplexityoftheorganization.

TechTip

IncidentManagementTheITILv3Glossarydefinesincidentmanagementas“Theprocessresponsibleformanagingthelifecycleofallincidents.TheprimaryobjectiveofincidentmanagementistoreturntheITservicetousersasquicklyaspossible.”

Asystemproblemreport(SPR)isusedtotrackchangesthroughtheCCB.TheSPRdocumentschangesorcorrectionstoasystem.Itreflectswhorequestedthechangeandwhy,whatanalysismustbedoneandbywhom,andhowthechangewascorrectedorimplemented.Figure21.3showsasampleSPR.Mostlargeenterprisescannotrelyonapaper-basedSPRprocessandinsteaduseoneofthemanysoftwaresystemsavailabletoperformchangemanagementfunctions.Whilethisexampleshowsapaper-basedSPR,itcontainsalltheelementsofchangemanagement:itdescribestheproblemandwhoreportedit,itoutlinesresolutionoftheproblem,anditdocumentsapprovalofthechange.

•Figure21.3Samplesystemproblemreport

Figure21.4showstheentirechangemanagementprocessanditsrelationshiptoincidentmanagementandreleasemanagement.

•Figure21.4Change,incident,andreleasemanagement

CodeIntegrityOnekeybenefitofadequatechangemanagementistheassuranceofcodeconsistencyandintegrity.Wheneveramodifiedprogramismovedtotheproductionsource-codelibrary,theexecutableversionshouldalsobemovedtotheproductionsystem.Automatedchangemanagementsystemsgreatlysimplifythisprocessandarethereforebettercontrolsforensuringexecutableandsource-codeintegrity.Rememberthatatnotimeshouldtheuserorapplicationdeveloperhaveaccesstoproductionsourceandexecutablecodelibrariesintheproductionenvironment.Finally,intoday’snetworkedenvironment,theintegrityofthe

executablecodeiscritical.Acommonhackingtechniqueistoreplacekeysystemexecutablecodewithmodifiedcodethatcontainsbackdoors,allowingunauthorizedaccessorfunctionstobeperformed.Executablecodeintegritycanbeverifiedusinghost-basedintrusiondetectionsystems.Thesesystemscreateandmaintainadatabaseofthesizeandcontentofexecutablemodules.Conceptually,thisisusuallydonebyperformingsomekindofhashingorsophisticatedchecksumoperationontheexecutablemodulesandstoringtheresultsinadatabase.Theoperationisperformedonaregularscheduleagainsttheexecutablemodules,andtheresultsarecomparedtothedatabasetoidentifyanyunauthorizedchangesthatmayhaveoccurredtotheexecutablemodules.

TheCapabilityMaturityModelIntegrationAnimportantsetofprocessmodelsaretheCapabilityMaturityModelIntegration(CMMI)seriesdevelopedatCarnegieMellonUniversity’sSoftwareEngineeringInstitute(SEI).SEIhascreatedthreecapabilitymaturitymodelintegrationsthatreplacetheolderCapabilityMaturityModel(CMM):theCapabilityMaturityModelIntegrationforAcquisition(CMMI-ACQ),theCapabilityMaturityModelIntegrationforDevelopment(CMMI-DEV),andtheCapabilityMaturityModelIntegrationforServices(CMMI-SVC).CMMI-DEVisrepresentativeofthethreemodels.OneofthefundamentalconceptsofCMMI-DEVisconfigurationorchangemanagement,whichprovidesorganizationswiththeabilitytoimprovetheirsoftwareandotherprocessesbyprovidinganevolutionarypathfromadhocprocessestodisciplinedmanagementprocesses.TheCMMI-DEVdefinesfivematuritylevels:

Level1:InitialAtmaturitylevel1,processesaregenerallyadhocandchaotic.Theorganizationdoesnotprovideastableenvironmenttosupportprocesses.

Level2:ManagedAtmaturitylevel2,processesareplannedandexecutedinaccordancewithpolicy.Theprojectsemployskilledpeoplewhohaveadequateresourcestoproducecontrolledoutputs;involverelevantstakeholders;aremonitored,controlled,andreviewed;andareevaluatedforadherencetotheirprocessdescriptions.

Level3:DefinedAtmaturitylevel3,processesarewellcharacterizedandunderstood,andaredescribedinstandards,procedures,tools,andmethods.Thesestandardprocessesareusedtoestablishconsistencyacrosstheorganization.

Level4:QuantitativelyManagedAtmaturitylevel4,theorganizationestablishesquantitativeobjectivesforqualityandprocessperformanceandusesthemascriteriainmanagingprojects.Quantitativeobjectivesarebasedontheneedsofthecustomer,endusers,organization,andprocessimplementers.Qualityandprocessperformanceisunderstoodinstatisticaltermsandismanagedthroughoutthelifeofprojects.

Level5:OptimizingAtmaturitylevel5,anorganizationcontinuallyimprovesitsprocessesbasedonaquantitativeunderstandingofitsbusinessobjectivesandperformanceneeds.Theorganizationusesaquantitativeapproachtounderstandingthevariationinherentintheprocessandthecausesofprocessoutcomes.

ExamTip:TocompleteyourpreparationsfortheCompTIASecurity+exam,itisrecommendedthatyouconsultSEI’swebsite(www.sei.cmu.edu)forspecificCMMIdefinitions.BesurethatyouunderstandthedifferencesbetweencapabilitylevelsandmaturitylevelsasdefinedinCMMI.

ChangemanagementisakeyprocesstoimplementingtheCMMI-DEVinanorganization.Forexample,ifanorganizationisatCMMI-DEVlevel1,itprobablyhasminimalformalchangemanagementprocessesinplace.

Atlevel3,anorganizationhasadefinedchangemanagementprocessthatisfollowedconsistently.Atlevel5,thechangemanagementprocessisaroutine,quantitativelyevaluatedpartofimprovingsoftwareproductsandimplementinginnovativeideasacrosstheorganization.Foranorganizationtomanagesoftwaredevelopment,operation,andmaintenance,itshouldhaveeffectivechangemanagementprocessesinplace.Changemanagementisanessentialmanagementtoolandcontrol

mechanism.Theconceptofsegregationofdutiesensuresthatnosingleindividualororganizationpossessestoomuchcontrolinaprocess,helpingtopreventerrorsandfraudulentormaliciousacts.Theelementsofchangemanagement—configurationidentification,configurationcontrol,configurationstatusaccounting,andconfigurationauditing—coupledwithadefinedprocessandachangecontrolboard,willprovidemanagementwithproperoversightofthesoftwarelifecycle.Oncesuchaprocessandmanagementoversightexists,thecompanycanuseCMMI-DEVtomovefromadhocactivitiestoadisciplinedsoftwaremanagementprocess.

Chapter21Review

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutchangemanagement.

Usechangemanagementasanimportantenterprisemanagementtool

Changemanagementshouldbeusedinallphasesofthesoftwarelifecycle.

Changemanagementcanbescaledtoeffectivelycontrolandmanagesoftwaredevelopmentandmaintenance.

Changemanagementcanpreventsomeofthemostcommonsoftwaredevelopmentandmaintenanceproblems.

Institutethekeyconceptofseparationofduties

Separationofdutiesensuresthatnosingleindividualororganizationpossessestoomuchcontrolinaprocess.

Separationofdutieshelpspreventerrorsandfraudulentormaliciousacts.

Separationofdutiesestablishesabasisforaccountabilityandcontrol.

Separationofdutiescanhelpsafeguardenterpriseassetsandprotectagainstrisks.

Identifytheessentialelementsofchangemanagement

Configurationidentificationidentifiesassetsthatneedtobecontrolled.

Configurationcontrolkeepstrackofchangestoconfigurationitemsthathavebeenbaselined.

Configurationstatusaccountingtrackseachconfigurationiteminthebaseline.

Configurationauditingverifiestheconfigurationitemsarebuiltandmaintainedappropriately.

Implementchangemanagement

Astandardizedprocessandachangecontrolboardprovidemanagementwithproperoversightandcontrolofthesoftwaredevelopmentlifecycle.

Agoodchangemanagementprocesswillexhibitgoodseparationofdutiesandhaveclearlydefinedroles,responsibilities,andapprovals.

Aneffectivechangecontrolboardfacilitatesgoodmanagementoversightandcoordinationbetweenprojects.

UsetheconceptsoftheCapabilityMaturityModelIntegration

Oncepropermanagementoversightexists,thecompanywillbeabletouseCMMItohelptheorganizationmovefromadhocactivitiestoadisciplinedsoftwaremanagementprocess.

CMMIreliesheavilyonchangemanagementtoprovideorganizationswiththecapabilitytoimprovetheirsoftwareprocesses.

KeyTermsbaseline(639)CapabilityMaturityModelIntegration(CMMI)(644)changecontrolboard(CCB)(642)changemanagement(635)computersoftwareconfigurationitems(639)configurationauditing(640)configurationcontrol(640)configurationidentification(639)configurationitems(639)configurationmanagement(635)configurationstatusaccounting(640)separationofduties(637)systemproblemreport(SPR)(643)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.The_______________isthebodythatprovidesoversighttothechangemanagementprocess.

2._______________isastandardmethodologyforperformingand

recordingchangesduringsoftwaredevelopmentandoperation.

3._______________istheprocessofassigningresponsibilitiestodifferentindividualssuchthatnosingleindividualcancommitfraudulentormaliciousactions.

4.Proceduresfortrackingandmaintainingdatarelativetoeachconfigurationiteminthebaselineare_______________.

5.A_______________describesasystemasitisbuiltandfunctioningatapointintime.

6.Astructuredmethodologythatprovidesanevolutionarypathfromadhocprocessestodisciplinedsoftwaremanagementisthe_______________.

7.Theprocessofverifyingthatconfigurationitemsarebuiltandmaintainedaccordingtorequirements,standards,orcontractualagreementsis_______________.

8.Thedocumentusedbythechangecontrolboardtotrackchangestosoftwareiscalleda_______________.

9.Whenyouidentifywhichassetsneedtobemanagedandcontrolled,youareperforming_______________.

10._______________istheprocessofcontrollingchangestoitemsthathavebeenbaselined.

Multiple-ChoiceQuiz1.Whyshoulddevelopersandtestersavoidusing“live”production

datatoperformvarioustestingactivities?

A.Theuseof“live”productiondataensuresafullandrealistictestdatabase.

B.Theuseof“live”productiondatacanjeopardizetheconfidentialityandintegrityoftheproductiondata.

C.Theuseof“live”productiondataensuresanindependentandobjectivetestenvironment.

D.Developersandtestersshouldbeallowedtouse“live”productiondataforreasonsofefficiency.

2.Softwarechangemanagementproceduresareestablishedto:A.Ensurecontinuityofbusinessoperationsintheeventofa

naturaldisaster

B.Addstructureandcontroltothedevelopmentofsoftwaresystems

C.Ensurechangesinbusinessoperationscausedbyamanagementrestructuringareproperlycontrolled

D.Identifythreats,vulnerabilities,andmitigatingactionsthatcouldimpactanenterprise

3.Whichofthefollowingcorrectlydefinestheprincipleofleastprivilege?

A.Accessprivilegesarereviewedregularlytoensurethatindividualswhonolongerrequireaccesshavehadtheirprivilegesremoved.

B.Authorizationofasubject’saccesstoanobjectdependsonsensitivitylabels.

C.Theadministratordetermineswhichsubjectscanhaveaccesstocertainobjectsbasedonorganizationalsecuritypolicy.

D.Usershavenomoreprivilegesthanarenecessarytoperformtheirjobs.

4.Whichofthefollowingdoesnotadheretotheprinciplesofseparationofduties?

A.Softwaredevelopment,testing,qualityassurance,and

productionshouldbeassignedtothesameindividuals.

B.Softwaredevelopersshouldnothaveaccesstoproductiondataandsource-codefiles.

C.Softwaredevelopersandtestersshouldberestrictedfromaccessing“live”productiondata.

D.Thefunctionsofcreating,installing,andadministratingsoftwareprogramsshouldbeassignedtodifferentindividuals.

5.Configurationauditingis:A.Theprocessofcontrollingchangestoitemsthathavebeen

baselined

B.Theprocessofidentifyingwhichassetsneedtobemanagedandcontrolled

C.Theprocessofverifyingthattheconfigurationitemsarebuiltandmaintainedproperly

D.Theproceduresfortrackingandmaintainingdatarelativetoeachconfigurationiteminthebaseline

6.Whyshouldendusersnotbegivenaccesstoprogramsourcecodes?A.Itcouldallowanendusertoidentifyweaknessesorerrorsin

thesourcecode.

B.Itensuresthattestingandqualityassuranceperformtheirproperfunctions.

C.Itassistsinensuringanindependentandobjectivetestingenvironment.

D.Itcouldallowanendusertoexecutethesourcecode.

7.Configurationcontrolis:A.Theprocessofcontrollingchangestoitemsthathavebeen

baselined

B.Theprocessofidentifyingwhichassetsneedtobemanagedandcontrolled

C.Theprocessofverifyingthattheconfigurationitemsarebuiltandmaintainedproperly

D.Theproceduresfortrackingandmaintainingdatarelativetoeachconfigurationiteminthebaseline

8.Configurationidentificationis:A.Theprocessofverifyingthattheconfigurationitemsarebuilt

andmaintainedproperly

B.Theproceduresfortrackingandmaintainingdatarelativetoeachconfigurationiteminthebaseline

C.Theprocessofcontrollingchangestoitemsthathavebeenbaselined

D.Theprocessofidentifyingwhichassetsneedtobemanagedandcontrolled

9.Whichpositionisresponsibleforapprovingthemovementofexecutablecodetotheproductionsystem?

A.Systemadministrator

B.Developer

C.Manager

D.Qualityassurance

10.Thepurposeofachangecontrolboard(CCB)isto:A.Facilitatemanagementoversightandbetterprojectcoordination

B.Identifywhichassetsneedtobemanagedandcontrolled

C.Establishsoftwareprocessesthatarestructuredenoughthatsuccesswithoneprojectcanberepeatedforanothersimilarproject

D.Trackandmaintaindatarelativetoeachconfigurationiteminthebaseline

EssayQuiz1.Youaretheprojectmanagerforanewweb-basedonlineshopping

system.Duetomarketcompetition,yourmanagementhasdirectedyoutogolivewithyoursystemsoneweekearlierthanoriginallyscheduled.Onememberofyourdevelopmentteamisasharp,smartprogrammerwithlessthanoneyearofexperience.Heasksyouwhyyourteamisrequiredtofollowwhathecallscumbersome,out-of-datechangemanagementprocedures.Whatwouldyoutellhim?

2.Explainwhythechangemanagementprinciplesdiscussedinthischaptershouldbeusedwhenmanagingoperatingsystempatches.

3.Explainwhyadatabaseadministrator(DBA)shouldnotbeallowedtodevelopprogramsonthesystemstheyadminister.

4.YourcompanyhasjustdecidedtofollowtheCapabilityMaturityModelIntegration.Youmanageadevelopmentshopof15programmerswithfourteamleaders.YouandyourteamhavedeterminedthatyouarecurrentlyatCMMI-DEVlevel1,Initial.Describetheactionsyoumighttaketomoveyourshoptolevel3,theDefinedmaturitylevel.

5.YouhavejustbeenmadeDirectorofE-commerceApplications,responsibleforover30programmersandtenmajorsoftwareprojects.Yourprojectsincludemultiplewebpagesontendifferentproductionservers,systemsecurityforthoseservers,threedevelopmentservers,threetest/QAservers,andsomethird-partysoftware.Whichofthoseresourceswouldyouplaceunderchange

managementpracticesandwhy?

LabProjects

•LabProject21.1UsingatypicalITorganizationfromamedium-sizedcompany(100developers,managers,andsupportpersonnel),describethepurpose,organization,andresponsibilitiesofachangecontrolboardappropriateforthisorganization.

•LabProject21.2YouaretheITstaffauditorforthecompanymentionedinthefirstlabproject.Youhavereviewedthechangecontrolboardprocessesandfoundtheyhaveinstitutedthefollowingchangemanagementprocess.Describetwomajorcontrolweaknessesinthisparticularchangemanagementprocess.Whatwouldyoudotocorrectthesecontrolweaknesses?

chapter22 IncidentResponse

Badguyswillfollowtherulesofyournetworktoaccomplishtheirmission.

—RONSCHAFFER,SANSINCIDENTDETECTIONSUMMIT

I

Inthischapter,youwilllearnhowto

Understandthefoundationsofincidentresponseprocesses

Implementthedetailedstepsofanincidentresponseprocess

Describestandardsandbestpracticesthatareinvolvedinincidentresponse

ncidentresponseisbecomingthenewnorminsecurityoperations.Thenewrealityisthatkeepingadversariesoffyournetworkandpreventingunauthorizedactivityisnotgoingtoprovidethelevelofsecuritythe

enterpriserequires.Thismeansthatthesystemneedstobeabletooperateinastateofcompromise,yetstillachievethedesiredsecurityobjectives.Themindsethastochangefrompreventingintrusionandattacktopreventingloss.Thischapterexplorestheuseofanincidentresponsefunctiontoachieve

thegoalsofminimizinglossunderalloperatingconditions.Thiswillmeanashiftinfocus,andachangeinprioritiesaswellassecuritystrategy.Theseeffortscanonlysucceedontopofasolidfoundationofsecurityfundamentalsaspresentedearlierinthebook,sothisisnotastartingplace,butratherthenextstepintheevolutionofdefense.

FoundationsofIncidentResponse

Asuccessfulincidentresponseeffortrequirestwocomponents,knowledgeofone’sownsystemsandknowledgeoftheadversary.Theancientwarrior/philosopherSunTzuexplainsitwellinTheArtofWar:“Ifyouknowtheenemyandknowyourself,youneednotfeartheresultofahundredbattles.Ifyouknowyourselfbutnottheenemy,foreveryvictorygainedyouwillalsosufferadefeat.Ifyouknowneithertheenemynoryourself,youwillsuccumbineverybattle”.

Anincidentisanyeventinaninformationsystemornetworkwheretheresultsaredifferentthannormal.Incidentresponseisnotjustan

informationsecurityoperation.Incidentresponseisaneffortthatinvolvestheentirebusiness.Thesecurityteammayformanucleusoftheeffort,butthekeytasksareperformedbymanypartsofthebusiness.Incidentresponseisatermusedtodescribethestepsanorganization

performsinresponsetoanysituationdeterminedtobeabnormalintheoperationofacomputersystem.Thecausesofincidentsaremany,fromtheenvironment(storms),toerrorsonthepartofusers,tounauthorizedactionsbyunauthorizedusers,tonameafew.Althoughthecausesmaybemany,theresultscanbeclassifiedintoclasses.Alow-impactincidentmaynotresultinanysignificantriskexposure,sonoactionotherthanrepairingthebrokensystemisneeded.Amoderate-riskincidentwillrequiregreaterscrutinyandresponseefforts,andahigh-levelriskexposureincidentwillrequirethegreatestscrutiny.Tomanageincidentswhentheyoccur,atableofguidelinesfortheincidentresponseteamneedstobecreatedtoassistindeterminingthelevelofresponse.Twomajorelementsplayaroleindeterminingthelevelofresponse.

Informationcriticalityistheprimarydeterminant,andthiscomesfromthedataclassificationandthequantityofdatainvolved.Informationcriticalityisdefinedastherelativeimportanceofspecificinformationtothebusiness.Informationcriticalityisakeymeasureusedintheprioritizationofactionsthroughouttheincidentresponseprocess.Thelossofoneadministratorpasswordislessseriousthanthelossofallofthem.Thesecondmajorelementinvolvesabusinessdecisiononhowthisincidentplaysintocurrentbusinessoperations.Aseriesofbreaches,whetherminorornot,indicatesapatternthatcanhavepublicrelationsandregulatoryissues.Onceanincidenthappens,itistimetoreact,andproperreaction

requiresagameplan.Contrarytowhatmanywanttobelieve,therearenomagicsilverbulletstokillthesecuritydemons.Whatisrequiredisasolid,well-rehearsedincidentresponseplan.Thisplaniscustom-tailoredtotheinformationcriticalities,theactualhardwareandsoftwarearchitectures,andthepeople.Likealllarge,complexprojects,thechallengesrapidlybecomeorganizationalinnature—budget,manpower,resources,and

commitment.

IncidentManagement

CERTisatrademarkofCarnegieMellon,andisfrequentlyusedinsomesituations,suchastheUS-CERT.

Havinganincidentresponsemanagementmethodologyisakeyriskmitigationstrategy.OneofthestepsthatshouldbetakentoestablishaplantohandlebusinessinterruptionsasaresultofacybereventofsomesortistheestablishmentofaComputerIncidentResponseTeam(CIRT)oraComputerEmergencyResponseTeam(CERT).Theorganization’sCIRTwillconducttheinvestigationintotheincident

andmaketherecommendationsonhowtoproceed.TheCIRTshouldconsistofnotonlypermanentmembersbutalsoadhocmemberswhomaybecalledupontoaddressspecialneedsdependingonthenatureoftheincident.Inadditiontoindividualswithatechnicalbackground,theCIRTshouldincludenontechnicalpersonneltoprovideguidanceonwaystohandlemediaattention,legalissuesthatmayarise,andmanagementissuesregardingthecontinuedoperationoftheorganization.TheCIRTshouldbecreatedandteammembersshouldbeidentifiedbeforeanincidentoccurs.Policiesandproceduresforconductinganinvestigationshouldalsobeworkedoutinadvanceofanincidentoccurring.Itisalsoadvisabletohavetheteamperiodicallymeettoreviewtheseprocedures.

AnatomyofanAttackAttackershaveamethodbywhichtheyattackasystem.Althoughthespecificsmaydifferfromeventtoevent,therearesomecommonstepsthatarecommonlyemployed.Therearenumeroustypesofattacks,fromold-schoolhackingtothenewadvancedpersistentthreat(APT)attack.The

differencesaresubtleandarerelatedtotheobjectivesofeachformofattack.

OldSchoolAttacksarenotanewphenomenoninenterprisesecurity,andahistoricalexaminationoflargenumbersofattacksshowsomecommonmethods.Thesearethetraditionalsteps:

1.Footprinting2.Scanning3.Enumeration4.Gainaccess5.Escalateprivilege6.Pilfer7.Createbackdoors8.Covertracks9.Denialofservice(DOS)

TechTip

UsingnmaptoFingerprintanOperatingSystemTousenmaptofingerprintanoperatingsystem,usethe–Ooption:

Thiscommandperformsascanofinterestingportsonthetarget(scanme.nmap.org)andattemptstoidentifytheoperatingsystem.The–voptionindicatesthatyouwantverboseoutput.

Footprintingisthedeterminationoftheboundariesofatargetspace.Therearenumeroussourcesofinformation,includingwebsites,DNSrecords,andIPaddressregistrations.Understandingtheboundariesassistsanattackerinknowingwhatisintheirtargetrangeandwhatisn’t.Scanningistheexaminationofmachinestodeterminewhatoperatingsystems,services,andvulnerabilitiesexist.Theenumerationstepisalistingofthesystemsandvulnerabilitiestobuildanattackgameplan.Thefirstactualincursionisthegainingofaccesstoanaccountonthesystem,almostalwaysanordinaryuser,ashigher-privilegeaccountsarehardertotarget.Thenextstepistogainaccesstoahigher-privilegeaccount.Froma

higher-privilegeaccount,therangeofaccessibleactivitiesisgreater,includingpilferingfiles,creatingbackdoorssoyoucanreturn,andcoveringyoutracksbyerasinglogs.Thedetailassociatedwitheachstepmayvaryfromhacktohack,butinmostcases,thesestepswereemployedinthismannertoachieveanobjective.

AdvancedPersistentThreatArelativelynewattackphenomenonhasbeenlabeledtheadvancedpersistentthreat.Anadvancedpersistentthreat(APT)isanattackthatalwaysmaintainsaprimaryfocusonremaininginthenetwork,operatingundetected,andhavingmultiplewaysinandout.APTsbeganwithnation-stateattackers,buttheutilityofthelong-termattackhasprovenvaluable,andmanysophisticatedattackshavemovedtothisroute.MostAPTsbeginviaaphishingorspearphishingattack,whichestablishesafootholdinthesystemunderattack.Fromthisfoothold,theattackmethodologyissimilartothetraditionalattackmethoddescribedintheprevioussection,butadditionalemphasisisplacedonthestepsneededtomaintainapresenceonanetwork:

1.Definetarget2.Researchtarget

3.Selecttools4.Testfordetection5.Initialintrusion6.Establishoutboundconnection7.Obtaincredentials8.Expandaccess9.Strengthenfoothold10.Covertracks11.Exfiltratedata

Theinitialintrusionisusuallyperformedviasocialengineering(spearphishing),overe-mail,usingzero-day-basedcustommalware.Anotherpopularinfectionmethodistheuseofawateringholeattack,plantingthemalwareonawebsitethatthevictimemployeeswilllikelyvisit.Theuseofcustommalwaremakesdetectionoftheattackbyantivirus/malwareprogramsanearimpossibility.Aftertheattackersgainaccess,theyattempttoexpandaccessandstrengthenthefoothold.ThisisdonebyplantingremoteadministrationTrojan(RAT)softwareinthevictim’snetwork,creatingnetworkbackdoorsandtunnelsallowingstealthaccesstoitsinfrastructure.Thenextstep,obtainingcredentialsandescalatingprivileges,is

performedthroughtheuseofexploitsandpasswordcracking.Thetrueobjectiveistoacquireadministratorprivilegesoveravictim’scomputerandultimatelyexpandittoWindowsdomainadministratoraccounts.OneofthehallmarksofanAPTattackistheemphasisonmaintainingapresenceonthesystemtoensurecontinuedcontroloveraccesschannelsandcredentialsacquiredinprevioussteps.Acommontechniqueusedislateralmovementacrossanetwork.Movinglaterallyallowsanattackertoexpandcontroltootherworkstations,servers,andinfrastructureelementsandperformdataharvestingonthem.Attackersalsoperforminternal

reconnaissance,collectinginformationonsurroundinginfrastructure,trustrelationships,andinformationconcerningtheWindowsdomainstructure.

TechTip

APTattackmodelThecomputersecurityinvestigativefirmMandiant(nowadivisionofFireEye)wasoneofthepioneersintheuseofincidentresponsetechniquesagainstAPT-styleattacks.TheypublishedamodelofanAPTattacktouseasaguide:

1.Initialcompromise2.Establishfoothold3.Escalateprivileges4.Internalreconnaissance5.Movelaterally6.Maintainpresence7.Completemission

Thekeystepisstep5,lateralmovement.Thisiswheretheadversarytraversesyournetwork,usingmultipleaccounts,anddoessotodiscovermaterialworthstealingaswellastoavoidbeinglockedoutbynormaloperationalchanges.Thisisoneelementthatcanbeleveragedtohelpslowdown,detect,anddefeatAPTattacks.BlockinglateralmovementcandefeatAPT-styleattacksfromspreadingthroughanetworkandlimittheirstealth.

GoalsofIncidentResponseThegoalsofanincidentresponseprocessaremultidimensionalinnature:

Confirmordispelincident

Promoteaccurateinformationaccumulation

Establishcontrolsforevidence

Protectprivacyrights

Minimizedisruptiontooperations

Allowforlegal/civilrecourse

Provideaccuratereports/recommendations

Incidentresponsedependsuponaccurateinformation.Withoutit,thechanceoffollowingdatainthewrongdirectionisapossibility,asismissingcrucialinformationandonlyfindingdeadends.Theprecedinggoalsareessentialfortheviabilityofanincidentresponseprocessandthedesiredoutcomes.

IncidentResponseProcessIncidentresponseisthesetofactionssecuritypersonnelperforminresponsetoawiderangeoftriggeringevents.Theseactionsarevastandvariedbecausetheyhavetodealwithawiderangeofcausesandconsequences.Throughtheuseofastructuredframework,coupledwithproperlypreparedprocesses,incidentresponsebecomesamanageabletask.Withoutproperpreparation,thistaskcanquicklybecomeimpossibleorintractablyexpensive.Incidentresponseisthenewbusinessculturalnormininformation

security.Thekeyistodesigntheprocedurestoincludeappropriatebusinesspersonnel,notkeepitasapureinformationsecurityendeavor.Thechallengesaremany,includingtheaspectoftimingastheactivitiesquicklybecomeacaseofonegroupofprofessionalspursuinganother.Incidentresponseisamultistepprocesswithseveralcomponent

elements.Thefirstisorganizationpreparation,followedbysystempreparation.Aninitialdetectionisfollowedbyinitialresponse,thenisolation,investigation,recovery,andreporting.Thereareadditionalprocessstepsoffollow-upandlessonslearned,eachofwhichispresentedinfollowingsections.Incidentresponseisakeyelementofasecuritypostureandmustinvolvemanydifferentaspectsofthebusinesstoproperlyrespond.Thisisbestbuiltuponthefoundationofacomprehensiveincidentresponsepolicythatdetailstherolesandresponsibilitiesoftheorganizationalelementswithrespecttotheprocesselementsdetailedinthischapter.

TechTip

IncidentResponseDefinedNISTSpecialPublication800-61definesanincidentastheactofviolatinganexplicitorimpliedsecuritypolicy.Thisviolationcanbeintentional,incidental,oraccidental,withcausesbeingwideandvariedinnature.Theseincludebutarenotlimitedtothefollowing:

Attempts(eitherfailedorsuccessful)togainunauthorizedaccesstoasystemoritsdataUnwanteddisruptionordenialofservice

TheunauthorizeduseofasystemfortheprocessingorstorageofdataChangestosystemhardware,firmware,orsoftwarecharacteristicswithouttheowner’sknowledge,instruction,orconsent

EnvironmentalchangesthatresultindatalossordestructionAccidentalactionsthatresultindatalossordestruction

Preparation

Theoldadagethat“thosewhofailtoprepare,preparetofail”certainlyappliestoincidentresponse.Withoutadvancepreparation,anorganization’sresponsetoasecurityincidentwillbehaphazardandineffective.Establishingtheprocessesandprocedurestofollowinadvanceofaneventiscritical.

Incidentresponseeffortsbeginbeforeanincidentoccurs—thatis,before“somethinggoeswrong.”Preparingforanincidentisthefirstphase.Theorganizationneedstoestablishthestepstobetakenwhenanincidentisdiscovered(orsuspected);determinepointsofcontact;trainallemployeesandsecurityprofessionalssotheyunderstandthestepstotakeandwhotocall;establishanincidentresponseteam;acquiretheequipmentnecessarytodetect,contain,andrecoverfromanincident;establishtheproceduresandguidelinesfortheuseoftheequipmentobtained;andtrainthosewhowillusetheequipment.Duringthisphase,generalusertraininginareas

suchassocialengineeringshouldbeaccomplished,aswellasanyadditionalspecializedtraininginareassuchascomputerforensicsthatisdeterminedtobenecessary.

OrganizationPreparationPreparinganorganizationrequiresaplan,bothfortheinitialeffortandformaintenanceofthateffort.Overtime,theorganizationshiftsbasedonbusinessobjectives,personnelchange,businesseffortsandfocuschange,newprograms,newcapabilities;virtuallyanychangecannecessitateshiftsintheincidentresponseactivities.Ataminimum,thefollowingitemsshouldbeaddressedandperiodicallyreviewedintermsofincidentresponsepreparation:

Developandmaintaincomprehensiveincidentresponsepoliciesandprocedures

EstablishandmaintainanIncidentResponseTeam

Obtaintop-levelmanagementsupport

Agreetogroundrules/rulesofengagement

Developscenariosandresponses

Developandmaintainanincidentresponsetoolkit

Systemplansanddiagrams

Networkarchitectures

Criticalassetlists

Practiceresponseprocedures

Firedrills

Scenarios(“Whodoyoucall?”)

SystemPreparation

Systemsrequirepreparationforeffectiveincidentresponseefforts.Incidentrespondersaredependentupondocumentationforunderstandinghardware,software,andnetworklayouts.Understandinghowaccesscontrolisemployed,includingspecificsacrossallsystems,iskeywhendeterminingwhocandowhat—acommonincidentresponsequestion.Understandingtheloggingmethodologyandarchitecturewillmakeincidentresponsedataretrievaleasier.Allofthesequestionsshouldbeaddressedinplanningofdiagrams,accesscontrol,andlogging,toensurethatthesecriticalsecurityelementsarecapturingthecorrectinformationbeforeanincident.

TechTip

PreparingforIncidentDetectionToensurethatdiscoveringincidentsisnotanadhoc,hit-or-missproposition,theorganizationneedstoestablishproceduresthatdescribetheprocessadministratorsmustfollowtomonitorforpossiblesecurityevents.Thetoolsforaccomplishingthistaskareidentifiedduringthepreparationphase,aswellasanyrequiredtraining.Theproceduresgoverningthemonitoringtoolsusedshouldbeestablishedaspartofthespecificguidelinesgoverningtheuseofthetoolsbutshouldincludereferencestotheincidentresponsepolicy.

Havinglistsofcriticalfilesandtheirhashvalues,allstoredoffline,canmakesysteminvestigationamoreefficientprocess.Intheend,whenarchitectingasystem,takingthetimetoplanforincidentresponseprocesseswillbecrucialtoasuccessfulresponseonceanincidentoccurs.Preparingsystemsforincidentresponseissimilartopreparingthemformaintainability,sotheseeffortscanyieldregulardividendstothesystemowners.Determiningthestepstoisolatespecificmachinesandservicescanbeacomplexendeavor,andisonebestaccomplishedbeforeanincident,throughthepreparationphase.

ResearchingVulnerabilitiesAfterthehackerhasalistofsoftwarerunningonthesystems,hewillstart

researchingtheInternetforvulnerabilitiesassociatedwiththatsoftware.Numerouswebsitesprovideinformationonvulnerabilitiesinspecificapplicationprogramsandoperatingsystems.Understandinghowhackersnavigatesystemsisimportant,forsystemadministratorsandsecuritypersonnelcanusethesamestepstoresearchpotentialvulnerabilitiesbeforeahackerstrikes.Thisinformationisvaluabletoadministratorswhoneedtoknowwhatproblemsexistandhowtopatchthem.

IncidentResponseTeamEstablishinganincidentresponseteamisanessentialstepinthepreparationphase.Althoughtheinitialresponsetoanincidentmaybehandledbyanindividual,suchasasystemadministrator,thecompletehandlingofanincidenttypicallytakesanentireteam.Anincidentresponseteamisagroupofpeoplethatpreparesforandrespondstoanyemergencyincident,suchasanaturaldisasteroraninterruptionofbusinessoperations.Acomputersecurityincidentresponseteaminanorganizationtypicallyincludeskeyskilledmemberswhobringawiderangeofskillstobearintheresponseeffort.Incidentresponseteamsarecommonincorporationsaswellasinpublicserviceorganizations.Incidentresponseteammembersideallyaretrainedandpreparedto

fulfilltherolesrequiredbythespecificsituation(forexample,toserveasincidentcommanderintheeventofalarge-scalepublicemergency).Incidentresponseteamsarefrequentlydynamicallysizedtothescaleandnatureofanincident,andasthesizeofanincidentgrowsandasmoreresourcesaredrawnintotheevent,thecommandofthesituationmayshiftthroughseveralphases.Inasmall-scaleevent,orinthecaseofasmallfirm,usuallyonlyavolunteeroradhocteammayexisttorespond.Incaseswheretheincidentspreadsbeyondthelocalcontroloftheincidentresponseteam,higher-levelresourcesthroughindustrygroupsandgovernmentgroupsexisttoassistintheincident.Advancedpreparationintheformofcontactingandestablishingworkingrelationswithhigher-levelgroupsisanimportantpreparationstep.Theincidentresponseteamisacriticalpartoftheincidentresponse

plan.Teammembershipwillvarydependingonthetypeofincidentorsuspectedincident,butmayincludethefollowingmembers:

Teamlead

Network/securityanalyst

Internalandexternalsubjectmatterexperts

Legalcounsel

Publicaffairsofficer

Securityofficecontact

TechTip

IncidentResponseTeamQuestionsWell-executedplansareoftenwelltested;whenandhowoftendoyoutestyourresponseplans?Howwillyourteamoperateundetectedinanenvironmentownedbytheadversary?Doyouhaveabackup,separatee-mailsystemthatisexternaltotheenterprisesolution?Isitencrypted?

Indeterminingthespecificmakeupoftheteamforaspecificincident,therearesomegeneralpointstothinkabout.Theteamneedsaleader,preferablyahigher-levelmanagerwhohastheabilitytoobtaincooperationfromemployeesasneeded.Italsoneedsacomputerornetworksecurityanalyst,sincetheassumptionisthattheteamwillberespondingtoacomputersecurityincident.Specialistsmaybeaddedtotheteamforspecifichardwareorsoftwareplatformsasneeded.Theorganization’slegalcounselshouldbepartoftheteamonatleastapart-timeoras-neededbasis.Thepublicaffairsofficeshouldalsobeavailableonanas-neededbasis,becauseitisresponsibleforformulatingthepublicresponseshouldasecurityincidentbecomepublic.Theorganization’ssecurityofficeshouldalsobekeptinformed.Itshoulddesignateapointofcontactfortheteamincasecriminalactivityissuspected.Inthiscase,care

mustbetakentopreserveevidenceshouldtheorganizationdecidetopushforprosecutionoftheindividual(s).Thisisbynomeansacompletelist,aseachorganizationisdifferentand

needstoevaluatewhatthebestmixtureisforitsownresponseteam.Whateverthedecision,thecompositionoftheteam,andhowandwhenitwillbeformedneedstobeclearlyaddressedinthepreparationphaseoftheincidentresponsepolicy.Tofunctioninatimelyandefficientmanner,ideallyateamhasalready

definedaprotocolorsetofactionstoperformtomitigatethenegativeeffectsofmostcommonformsofanincident.Onekeyandoftenoverlookedmemberoftheincidentresponseteamisthebusiness.ItmaybeanITsystembeinginvestigated,butthedata,processes,andvalueallbelongtothebusiness,andthebusinessistheelementthatunderstandstheriskandvalueofwhatisunderattack.Havingkey,knowledgeablebusinessmembersontheincidentresponseteamisanecessitytoensurethatthesecurityactionsremainalignedwiththebusinessgoalsandobjectivesoftheorganization.

SecurityMeasureImplementationAlldatathatisstoredissubjecttobreachorcompromise.Giventhisassumption,thequestionbecomes,whatisthebestmitigationstrategytoreducetheriskassociatedwithbreachorcompromise?Datarequiresprotectionineachofthethreestatesofthedatalifecycle:instorage,intransit,andduringprocessing.Thelevelofriskineachstatediffersduetoseveralfactors:

TimeDatatendstospendmoretimeinstorage,andhenceissubjecttobreachorcompromiseoverlongertimeperiods.

QuantityDatainstoragetendstoofferagreaterquantitytobreachorcompromisethandataintransit,anddatainprocessingoffersevenless.Ifrecordsarebeingcompromisedwhilebeingprocessed,thenonlyrecordsbeingprocessedaresubjectedtorisk.

AccessDifferentprotectionmechanismsexistineachofthedomains,andthishasadirecteffectontheriskassociatedwithbreachorcompromise.Operatingsystemstendtohaveverytightcontrolstopreventcross-processdataissuessuchaserrorandcontamination.

Thenextaspectofriskduringprocessingiswithinprocessaccesstothedata,andavarietyofattacktechniquesaddressthischannelspecifically.Dataintransitissubjecttobreachorcompromisefromavarietyofnetwork-levelattacksandvulnerabilities.Someoftheseareunderthecontroloftheenterprise,andsomearenot.Oneprimarymitigationstepisdataminimization.Dataminimization

effortscanplayakeyroleinbothoperationalefficiencyandsecurity.Oneofthefirstrulesassociatedwithdataisthis:Don’tkeepwhatyoudon’tneed.Asimpleexampleofthisisthecaseofspamremediation.Ifspamisseparatedfrome-mailbeforeithitsamailbox,onecanassertthatitisnotmailandnotsubjecttostorage,backup,ordataretentionissues.Asspamcancomprisegreaterthan50percentofincomingmail,spamremediationcandramaticallyimproveoperationalefficiencyintermsofbothspeedandcost.Thissameprincipleholdstrueforotherformsofinformation.When

processingcreditcardtransactions,certaindataelementsarerequiredfortheactualtransaction,butoncethetransactionisapproved,theyhavenofurtherbusinessvalue.Storingofthisinformationprovidesnobusinessvalue,yetitdoesrepresentariskinthecaseofadatabreach.Datastorageshouldbegovernednotbywhatyoucanstore,butbythebusinessneedtostore.Whatisnotstoredisnotsubjecttobreach,andminimizingstoragetoonlywhatissupportedbybusinessneedreducesriskandcosttotheenterprise.Minimizationeffortsbeginbeforedataevenhitsasystem,letalonea

breach.Duringsystemdesign,theappropriatesecuritycontrolsaredeterminedanddeployed,withperiodicauditstoensurecompliance.Thesecontrolsarebasedonthesensitivityoftheinformationbeingprotected.Onetoolthatcanbeusedtoassistintheselectionofcontrolsis

adataclassificationscheme.Notalldataisequallyimportant,norisitequallydamagingintheeventofloss.Developinganddeployingadataclassificationschemecanassistinpreventativeplanningeffortswhendesigningsecurityfordataelements.

ExamTip:Databreachesmaynotbepreventable,buttheycanbemitigatedthroughminimizationandencryptionefforts.

IncidentIdentification/DetectionAnincidentisdefinedasasituationthatdepartsfromnormal,routineoperations.Whetheranincidentisimportantornotisthefirstdeterminationtobemadeaspartofanincidentresponseprocess.Asinglefailedloginistechnicallyanincident,butifitisfollowedbyacorrectlogin,thenitisnotofanyconsequence.Infact,thiscouldevenbeconsideredasnormal.But10,000failedattemptsonasystem,orfailuresacrossalargenumberofaccounts,aredistinctlydifferentandmaybeworthyoffurtherinvestigation.Akeyfirststepisintheprocessingofinformationandthedetermination

ofwhetherornottoinvokeincidentresponseprocesses.Incidentinformationcancomefromawiderangeofsources,includinglogs,employees,helpdeskcalls,systemmonitoring,securitydevices,andmore.Thechallengeistodetectthatsomethingotherthansimplecommon,routineerrorsisoccurring.Whenevidenceaccumulates,orinsomecaseswhenspecificitemssuchassecuritydevicelogsindicateapotentialincident,thenextstepistoescalatethesituationtotheincidentresponseteam.

DetectionOfcourse,anincidentresponseteamcan’tbeginaninvestigationuntilasuspectedincidenthasbeendetected.Atthatpoint,thedetectionphaseof

theincidentresponsepolicykicksin.Oneofthefirstjobsoftheincidentresponseteamistodeterminewhetheranactualsecurityincidenthasoccurred.Manythingscanbemisinterpretedasapossiblesecurityincident.Forexample,asoftwarebuginanapplicationmaycauseausertoloseafile,andtheusermayblamethisonavirusorsimilarmalicioussoftware.Theincidentresponseteammustinvestigateeachreportedincidentandtreatitasapotentialsecurityincidentuntilitcandeterminewhetheritisorisn’t.Thismeansthatyourorganizationwillwanttorespondinitiallywithalimitedresponseteambeforewastingalotoftimehavingthefullteamrespond.Thisistheinitialsteptotakewhenareportisreceivedthatapossibleincidenthasbeendetected.Securityincidentscantakeavarietyofforms,andwhodiscoversthe

incidentwillvaryaswell.Oneofthegroupsmostlikelytodiscoveranincidentistheteamofnetworkandsecurityadministratorswhorundevicessuchastheorganization’sfirewallsandintrusiondetectionsystems.Anothercommonincidentisavirus.Severalpackagesareavailablethat

canhelpanorganizationdetectpotentialvirusactivityorothermaliciouscode.Administratorswilloftenbetheonestonoticesomethingisamiss,butsomightanaverageuserwhohasbeenhitbythevirus.Socialengineeringisacommontechniqueusedbypotentialintrudersto

acquireinformationthatmaybeusefulingainingaccesstocomputersystems,networks,orthephysicalfacilitiesthathousethem.Anybodyintheorganizationcanbethetargetofasocialengineeringattack,soallemployeesneedtoknowwhattobelookingforregardingthistypeofattack.Infact,thetargetmightnotevenbeoneofyourorganization’semployees—itcouldbeacontractor,suchassomebodyonthecustodialstaffornighttimesecuritystaff.Whateverthetypeofsecurityincidentsuspected,andnomatterwhosuspectsit,areportingprocedureneedstobeinplacefortheemployeestousewhenanincidentisdetected.Everybodyneedstoknowwhotocallshouldtheysuspectsomething,andeverybodyneedstoknowwhattodo.Acommontechniqueistodevelopareportingtemplatethatcanbesuppliedtoanindividualwhosuspectsanincident,so

thatthenecessaryinformationisgatheredinatimelymanner.

Detectingthatasecurityeventisoccurringorhasoccurredisnotnecessarilyaneasymatter.Incertainsituations,suchastheactivationofamaliciouspayloadforavirusorwormthatdeletescriticalfiles,itwillbeobviousthataneventhasoccurred.Inothersituations,suchaswhereanindividualhaspenetratedyoursystemandhasbeenslowlycopyingcriticalfileswithoutchangingordestroyinganything,theeventmaytakealotlongertodetect.Often,thefirstindicationthatasecurityeventhasoccurredmightbeauseroradministratornoticingthatsomethingis“funny”aboutthesystemoritsresponse.

InitialResponseAlthoughthereisnosuchthingasatypicalincident,foranyincidentthereisaseriesofquestionsthatcanbeansweredtoformaproperinitialresponse.Regardlessofthesource,thefollowingitemsareimportanttodetermineduringaninitialresponse:

Currenttimeanddate

Who/whatisreportingtheincident

Natureoftheincident

Whentheincidentoccurred

Hardware/softwareinvolved

Pointofcontactforinvolvedpersonnel

TechTip

InitialResponseErrorsMistakessuchasthesearecommonduringinitialresponse:

Failuretodocumentfindingsappropriately

Failuretonotifyorprovideaccurateinformationtodecision-makers

FailuretorecordandcontrolaccesstodigitalevidenceWaitingtoolongbeforereporting

Underestimatingthescopeofevidencethatmaybefound

Thepurposeofaninitialresponseistobegintheincidentresponseactionandplaceitonaproperpathwaytowardsuccess.Theinitialresponsemustsupportthegoalsoftheinformationsecurityprogram.Ifsomethingisverycritical,treatingitasroutinewouldbeamistake,sotriagewithrespecttoinformationcriticalityisimportant.Theinitialresponsemustalsobealignedwiththebusinesspracticesandobjectives.Triagewithrespecttocurrentbusinessimperativesandconditionsisimportant.Theinitialresponseactionsneedtobedesignedtocomplywithadministrativeandlegalpoliciesaswellastosupportdecisionswithregardtocivil,administrative,orcriminalinvestigations/actions.Forthesepurposes,maintainingaforensicallysoundprocessfromthebeginningisimportant.Itisalsoimportantthattheinformationisdeliveredaccuratelyandexpeditiouslytotheappropriatedecision-makerssothatfutureactionscanbetimely.Oneofthegreatesttoolstoachieveallofthesegoalsisasimpleandefficientprocess,soestablishingfewerstepsthatareclearandcleanispreferred.Complexityintheinitialresponseprocessonlyleadstoissueslaterbecauseofdelays,confusion,andincompleteinformation.

FirstResponderAcyberfirstrespondermustdoasmuchaspossibletocontroldamageorlossofevidence.Obviously,astimepasses,evidencecanbetamperedwithordestroyed.Lookaroundonthedesk,ontheRolodex,underthekeyboard,indesktopstorageareas,andoncubiclebulletinboardsforanyinformationthatmightberelevant.Securefloppydisks,opticaldiscs,flashmemorycards,USBdrives,tapes,andotherremovablemedia.Requestcopiesoflogsassoonaspossible.MostISPswillprotectlogsthatcouldbesubpoenaed.Takephotos(somelocalitiesrequireuseofPolaroid

photos,astheyaremoredifficulttomodifywithoutobvioustampering)orvideo.Includephotosofoperatingcomputerscreensandhardwarecomponentsfrommultipleangles.Besuretophotographinternalcomponentsbeforeremovingthemforanalysis.Thefirstrespondercandomuchtopreventdamage,orcancausesignificantlossbydigitallyalteringevidence,eveninadvertently.Collectingdatashouldbedoneinaforensicallysoundnature(seeChapter23fordetails),andbesuretopayattentiontorecordingtimevaluessotimeoffsetscanbecalculated.

TechTip

CommonTechnicalErrorsCommontechnicalmistakesduringinitialresponseinclude:

Alteringtime/datestampsonevidencesystems“Killing”rogueprocesses

PatchingthesystemNotrecordingthestepstakenonthesystem

Notactingpassively

IncidentIsolationOnceanincidentisdiscoveredandcharacterized,themostimportantstepintheincidentresponseprocessinvolvestheisolationoftheproblem.Manyincidentscanspreadtoothermachinesandexpandthedamagefootprintifnotcontainedbytheincidentresponseteam.Whenaparticularmachineorservicebecomescompromised,theteamcaninvokethepreplannedstepstoisolatetheinfectedunitfromothers.Thismayhaveanimpactonperformance,butitwillstillbelessthanifthecompromiseisallowedtospreadandmoremachinesbecomecompromised.

ContainmentandEradication

Oncetheincidentresponseteamhasdeterminedthatanincidentmostlikelyhasoccurred,itmustattempttoquicklycontaintheproblem.Atthispoint,orverysoonaftercontainmentbegins,dependingontheseverityoftheincident,managementneedstodecidewhethertheorganizationintendstoprosecutetheindividualwhohascausedtheincident(inwhichcasecollectionandpreservationofevidenceisnecessary),orsimplywantstorestoreoperationsasquicklyaspossiblewithoutregardtopossiblydestroyingevidence.Incertaincircumstances,managementmightnothaveachoice,suchasifspecificregulationsorlawsrequireittoreportparticularincidents.Ifmanagementmakesthedecisiontoprosecute,specificproceduresneedtobefollowedinhandlingpotentialevidence.Individualstrainedinforensicsshouldbeusedinthiscase.Theincidentresponseteammustdecidehowtoaddresscontainmentas

soonasithasdeterminedthatanactualincidenthasoccurred.Ifanintruderisstillconnectedtotheorganization’ssystem,oneresponseistodisconnectfromtheInternetuntilthesystemcanberestoredandvulnerabilitiescanbepatched.This,however,meansthatyourorganizationisnotaccessibletocustomersovertheInternetduringthattime,whichmayresultinlostrevenue.Anotherresponsemightbetostayconnectedandattempttodeterminetheoriginoftheintruder.Adecisionwillneedtobemadeastowhichismoreimportantforyourorganization.Yourincidentresponsepolicyshouldidentifywhoisauthorizedtomakethisdecision.Otherpossiblecontainmentactivitiesmightincludeaddingfiltering

rulesormodifyingexistingrulesonfirewalls,routers,andintrusiondetectionsystems,updatingantivirussoftware,andremovingspecificpiecesofhardwareorhaltingspecificsoftwareapplications.Ifanintruderhasgainedaccessthroughaspecificaccount,disablingorremovingthataccountmayalsobenecessary.

QakbotWormIsolationThefollowingaresummarynotesmadebyafirmthatwashitbytheQakbotworm.Considerhowyourincidentresponseprocesswouldrespondtothisscenario.

Laptopinfectedwhileoffnetwork

WhenrejoinedcompanynetworkSpreadtoopennetworkdriveswithinminutes

Spreadtoagroupofcomputerswithin60minutesusingacommonadministratorcredential

Infectionidentifiedbyserverantivirusdetectingdroppedfiles

MalwareanalysisidentifiedcommandandcontrolconnectionsIdentifiedadditionalinfectedsystemsfromnetworklogs

Couldnotimmediatelytakeinfectedcomputersoutofservicebecausetheywerebeingusedinacriticalfunction

Computerswerealsogeographicallydispersed

Hadtoisolateaportionofthenetwork(whilestillallowingcriticaldataflows)whileremediatingonecomputeratatimeduringamaintenancewindow

Oncetheimmediateproblemshavebeencontained,theincidentresponseteamneedstoaddressthecauseoftheincident.Iftheincidentistheresultofavulnerabilitythatwasnotpatched,thepatchmustbeobtained,tested,andapplied.Accountsmayneedtobedisabledorpasswordsmayneedtobechanged.Completereloadingoftheoperatingsystemmightbenecessaryiftheintruderhasbeeninthesystemforanunknownlengthoftimeorhasmodifiedsystemfiles.Determiningwhenanintruderfirstgainedaccesstoyoursystemornetworkiscriticalindetermininghowfarbacktogoinrestoringthesystemornetwork.

QuarantineOnemethodofisolatingamachineisthroughaquarantineprocess.Quarantineisaprocessofisolatinganobjectfromitssurroundings,preventingnormalaccessmethods.Themachinemaybeallowedtorun,butitsconnectiontoothermachinesisbrokeninamannertopreventthespreadofinfection.Quarantinecanbeaccomplishedthroughavarietyofmechanisms,includingtheerectionoffirewallsrestrictingcommunicationbetweenmachines.Thiscanbeafairlycomplexprocess,butifproperlyconfiguredinadvance,thelimitationsofthequarantineoperationcan

allowthemachinetocontinuetorunfordiagnosticpurposes,evenifitnolongerprocessesaworkload.

DeviceRemovalAmoreextremeresponseisdeviceremoval.Intheeventthatamachinebecomescompromised,itissimplyremovedfromproductionandreplaced.Whendeviceremovalentailsthephysicalchangeofhardware,thisisaresource-intensiveoperation.Thereimagingofamachinecanbeatime-consuminganddifficultendeavor.Theadventofvirtualmachineschangesthisentirely,astheprovisioningofvirtualimagesonhardwarecanbeaccomplishedinamuchquickerfashion.

EscalationandNotificationOnekeydecisionpointininitialresponseisthatofescalation.Whenathresholdofinformationbecomesknowntoanoperatorandtheoperatordecidestoescalatethesituation,theincidentresponseprocessmovestoanotificationandescalationphase.Notallincidentsareofthesameriskprofile,andincidentresponseeffortsshouldmaptotheactualrisklevelassociatedwiththeincident.Whentheincidentresponseteamisnotifiedofapotentialincident,itsfirststepsaretoconfirmtheexistence,scope,andmagnitudeoftheeventandthenrespondaccordingly.Thisistypicallydonethroughatwo-stepescalationprocess,whereaminimalquick-responseteambeginsandthenaddsmembersasnecessitatedbytheissue.Makinganassessmentoftheriskassociatedwithanincidentisan

importantfirststep.Ifthecharacteristicsofanincidentincludealargenumberofpacketsdestinedfordifferentservicesonamachine(anattackcommonlyreferredtoasaportscan),thentheactionsneededaredifferentthanthoseneededtorespondtoalargenumberofpacketsdestinedtoasinglemachineservice.Portscansarecommon,andtoadegreerelativelyharmless,whileportfloodingcanresultindenialofservice.Makingadeterminationofthespecificdownstreamrisksisimportantinprioritizingresponseactions.

StrategyFormulationTheresponsetoanincidentwillbehighlydependentupontheparticularcircumstancesoftheintrusion.Therearemanypathsonecantakeinthestepsassociatedwithanincident;thechallengeisinchoosingthebeststepsineachcase.Duringthepreparationstage,awiderangeofscenarioscanbeexamined,allowingtimetoformulatestrategies.Evenafteranincidentresponseteamhasplannedaseriesofstrategiestorespondtovariousscenarios,determininghowtoemploythosepreplannedstrategiestopropereffectstilldependsonthecircumstancesofaparticularincident.Avarietyoffactorsshouldbeconsideredintheplanninganddeploymentofstrategies,including,butnotlimitedto,thefollowing:

Howcriticalaretheimpactedsystems?

Howsensitiveisthedata?

Whatisthepotentialoveralldollarlossinvolved/rateofloss?

Howmuchdowntimecanbetolerated?

Whoaretheperpetrators?

Whatistheskillleveloftheattacker?

Doestheincidenthaveadversepublicitypotential?

Thesepiecesofinformationprovideboundariesfortheupcominginvestigations.Therearestillnumerousissuesthatneedtobedeterminedwithrespecttotheupcominginvestigation.Addressingtheseissueshelpsprovidefocalpointsduringtheinvestigation:

Restorenormaloperations

Offlinerecovery?

Onlinerecovery?

Determinepublicrelationsplay

“Tospinornottospin?”

Determineprobableattacker

Internal:handleinternallyorprosecute?

External:prosecute?

Involvelawenforcement?

Determinetypeofattack

DoS,theft,vandalism,policyviolation?

Ongoingintrusion?

Pivoting?

Classifyvictimsystem

Criticalserver/application?

Numberofusers?

Whatothersystemsareaffected?

TechTip

InvestigationBestPracticeThefirstruleofincidentresponseinvestigationsis“Donoharm.”Iftheinvestigationitselfcausesissuesforthebusiness,howisthisdifferentfromabusinessperspectivethantheoriginalattackvector?Infact,inadvancedthreats,theattackerstakegreatcarenottoimpactthesystemorbusinessoperationsinanywaythatcouldleadtotheirdiscovery.Itisimportantfortheresponseteamtoexerciseextremecautionandtodonoharm,lesttheymakefutureinvestigationsimpracticalordeemedtobenotworthpursuing.

Usingtheanswerstothesequestionshelpstheteamdeterminethenecessarystepsintheupcominginvestigationphase.Althoughitisimpossibletoaccountforallcircumstances,thislevelofstrategycangreatlyassistinscopingtheworkaheadduringtheinvestigationphase.

InvestigationThetrueinvestigationphaseofanincidentisamultistep,multipartyevent.Withtheexceptionofverysimpleevents,mostincidentswillinvolvemultiplemachinesandpotentiallyimpactthebusinessinmultipleways.Theprimaryobjectiveoftheinvestigativephaseistomakethe

followingdeterminations:

Whathappened

Whatsystemsareaffected

Whatwascompromised

Whatwasthevulnerability

Whodidit(ifpossibletodetermine)

Whataretherecovery/remediationoptions

Lookingatthelist,itisdaunting,butthisiswheretherealworkofincidentresponseoccurs.Itwilltakeateameffort,partlybecauseofworkload,partlybecauseofspecializedskills,andpartlybecausetheentireeffortisbeingperformedinaraceagainsttime.

DuplicationDuplicationofdrivesisacommonforensicsprocess.Itisimportanttohaveaccuratecopiesandproperhashvaluessothatanyanalysisisperformedunderproperconditions.Properdiskduplicationisnecessarytoensurealldata,includingmetadata,isproperlycapturedandanalyzedaspartoftheoverallprocess.

NetworkMonitoringTomonitornetworkflowdata,includingwhoistalkingtowhom,onesourceofinformationisNetFlowdata.NetFlowisaprotocol/standardforthecollectionofnetworkmetadataontheflowsofnetworktraffic.

NetFlowisnowanIETFstandard,andallowsforunidirectionalcapturesofcommunicationmetadata.NetFlowcanidentifybothcommonanduniquedataflows,andinthecaseofincidentresponse,typicallythenewanduniqueNetFlowpatternsareofmostinteresttoincidentresponders.

TechTip

NetFlowDataAflowisunidirectional,sobidirectionalflowwouldberecordedastwoseparateflows.NetFlowdataisdefinedbysevenuniquekeys:

1.SourceIPaddress2.DestinationIPaddress3.Sourceport4.Destinationport5.Layer3protocol6.TOSbyte(DSCP)7.Inputinterface(ifIndex)

Recovery/ReconstitutionProceduresRecoveryisanimportantstepinallincidents.Oneofthefirstrulesistonottrustasystemthathasbeencompromised,andthisincludesallaspectsofanoperatingsystem.Whetherthereisknowndestructionornot,thesafepathisonewheretherecoverystepincludesreconstructionofaffectedmachines.Recoveryeffortsfromanincidentinvolveseveralspecificelements.First,thecauseoftheincidentneedstobedeterminedandresolved.Thisisdonethroughanincidentresponsemechanism.Attemptingtorecoverbeforethecauseisknownandcorrectedwillcommonlyresultinacontinuationoftheproblem.Second,thedata,ifsensitiveandsubjecttomisuse,needstobeexaminedinthecontextofhowitwaslost,whowouldhaveaccess,andwhatbusinessmeasuresneedtobetakentomitigatespecificbusinessdamageasaresultoftherelease.Thismayinvolvethechangingofbusinessplansifthereleasemakesthem

suspectorsubjecttoadverseimpacts.Akeyaspectinmanyincidentsisthatofexternalcommunications.

Havingacommunicationsexpertwhoisfamiliarwithdealingwiththepressandhasthelanguagenuancesnecessarytoconveythecorrectinformationandnotinflamethesituationisessentialtothesuccessofanycommunicationplan.Manyfirmsattempttousetheirlegalcounselforthis,butgenerallyspeaking,thelegallypreciselanguageusedbyanattorneyisnotusefulfromaPRstandpoint,andamorenuancedcommunicatormayprovideabetterimage.Inmanycasesofcrisismanagement,itisnotthecrisisthatdeterminesthefinalcosts,butthereactiontoandcommunicationofdetailsaftertheinitialcrisis.Recoverycanbeatwo-stepprocess.First,theessentialbusiness

functionscanberecovered,enablingbusinessoperationstoresume.Thesecondstepisthecompleterestorationofallservicesandoperations.Becauseofthedifficultyanduncertaintyinvolvedinrepairingsystems,mostbestpracticestodayinvolvereconstitutingtheunderlyingsystemandthentransferringtheoperationaldata.Stagingtherecoveryoperationsinaprioritizedfashionallowsagracefulreturntoanoperatingcondition.Restorationcanbedoneinawidevarietyofways.Formanysystems,

thereconstitutionofacleanoperatingsystemcanrestoreasystem.Thistypeofrestorationrequiresasignificantamountofpreparation.Havingacleanversionofeachofyourassetsprovidesforthistypeofrestorationeffort.Recoverysoundssimple,butinlarge-scaleincidents,thenumberofmachinescanbesignificant.Addtothisthechanceofreinfectionasmachinesarerestored.Thismeansthatsimplyreplacingthemachinewithacleanmachineisnotsufficient,butratherthereplacementneedsprotectionagainstreinfection.Theotherchallengeinlarge-scalerecoveryeventsisthesequencingof

theeffort.Whentherearemanymachinestoberestored,andtherestorationprocesstakestimeandresources,schedulingisessential.Settingupaprioritizedscheduleisoneofthestepsthatneedstobeconsideredintheplanningprocess.Thetimetodothistypeofplanningisbeforethehecticpaceofanincidentoccurs.

ReportingAfterthesystemhasbeenrestored,theincidentresponseteamcreatesareportoftheincident.Detailingwhatwasdiscovered,howitwasdiscovered,whatwasdone,andtheresults,thisreportactsasacorporatememoryandcanbeusedforfutureincidents.Havingaknowledgebaseofpreviousincidentsandtheactionsusedisavaluableresourcebecauseitisinthecontextoftheparticularenterprise.Thesereportsalsoallowamechanismtoclosetheloopwithmanagementovertheincidentand,mostimportantly,providearoadmapoftheactionsthatcanbeusedinthefuturetopreventeventsofidenticalorsimilarnature.Partofthereportwillberecommendations,ifappropriate,tochange

existingpoliciesandprocedures,includingdisasterrecoveryandbusinesscontinuity.Thesimilarityinobjectivesmakesanaturaloverlap,andthecross-pollinationbetweentheseoperationsisimportanttomakeallprocessesasefficientaspossible.

Follow-up/LessonsLearnedOncetheexcitementoftheincidentisoverandoperationshavebeenrestoredtotheirpre-incidentstate,itistimetotakecareofafewlastitems.Senior-levelmanagementmustbeinformedaboutwhatoccurredandwhatwasdonetoaddressit.Anafter-actionreportshouldbecreatedtooutlinewhathappenedandhowitwasaddressed.Recommendationsforimprovingprocessesandpoliciesshouldbeincorporatedsothatarepeatincidentwillnotoccur.Ifprosecutionoftheindividualresponsibleisdesired,additionaltimewillbespenthelpinglawenforcementagenciesandpossiblytestifyingincourt.Trainingmaterialmayalsoneedtobedevelopedormodifiedaspartofthenew,modifiedpoliciesandprocedures.Inthereportingprocess,acriticalassessmentofwhatwentright,what

wentwrong,whatcanbeimproved,andwhatshouldbecontinuedispreparedasaformoflessonslearned.Thisisacriticalpartofself-

improvement,andisnotmeanttoplaceblame,butrathertoassistinfutureprevention.Havingthingsgowronginacomplexenvironmentispartofnormaloperations;havingrepeatfailuresthatarepreventableisnot.Thekeytothelessonslearnedsectionofthereportistomakethenecessarychangessothatarepeateventwillnotoccur.Becausemanyincidentsarearesultofattackersusingknownmethods,oncetheattackpatternsareknowninanenterpriseandmethodsexisttomitigatethem,thenitisthetaskoftheentireenterprisetotakethenecessaryactionstomitigatefutureevents.

StandardsandBestPracticesTherearemanyoptionsavailabletoateamwhenplanningandperformingprocessesandprocedures.Toassisttheteaminchoosingapath,therearebothstandardsandbestpracticestoconsultintheproperdevelopmentofprocesses.Fromgovernmentsourcestoindustrysources,therearemanyopportunitiestogatherideasandmethods,evenfromfellowfirms.

StateofCompromiseThenewstandardofinformationsecurityinvolveslivinginastateofcompromise,whereoneshouldalwaysexpectthatadversariesareactiveintheirnetworks.Itisunrealistictoexpectthatyoucankeepattackersoutofyournetwork.Operatinginastateofcompromisedoesnotmeanthatonemustsuffersignificantlosses.Aworkingassumptionwhenplanningfor,respondingto,andmanagingtheoverallincidentresponseprocessisthatthesystemsarecompromisedandthatpreventioncannotbetheonlymeansofdefense.

NISTTheNationalInstitutesofStandardsandTechnology,aU.S.governmentalentityundertheDepartmentofCommerce,producesawiderangeof

SpecialPublications(SPs)intheareaofcomputersecurity.Groupedinseveraldifferentcategories,themostrelevantSPsforincidentresponsecomefromtheSpecialPublications800series:

ComputerSecurityIncidentHandlingGuide,SP800-61Rev.2NISTSecurityContentAutomationProtocol(SCAP),SP800-126Rev2

InformationSecurityContinuousMonitoringforFederalInformationSystemsandOrganizations,SP800-137

GuidetoSelectingInformationTechnologySecurityProducts,NISTSP800-36

GuidetoEnterprisePatchManagementTechnologies,NISTSP800-40Version3

GuidetoUsingVulnerabilityNamingSchemes[CVE/CCE],NISTSP800-51,Rev.1

DepartmentofJustice

TechTip

WhatNottoDoasPartofIncidentResponseTheU.S.DepartmentofJusticehastwospecificrecommendedstepsthatyoushouldnottakeaspartofanincidentresponseaction.

Donotusethecompromisedsystemtocommunicate.Donothackintoordamageanothernetworkorsystem.

Thevictimorganizationshouldalwaysassumethatanycommunicationsacrossaffectedmachineswillbecompromised.Thiseavesdroppingactionisstandardhackerbehavior,andifyoutipoffyouractions,theycanbecounteredbeforeyouregaincontrolofyoursystem.Hacking,evenretaliatoryhacking,isillegal,andgiventhedifficultyinattribution,attemptstorespondbyhackingthehackermayaccidentlyresultinhackinganinnocentthird-partymachine.

InApril2015,theU.S.DepartmentofJustice’sCybersecurityUnitreleasedabestpracticesdocument,BestPracticesforVictimResponseandReportingofCyberIncidents.Thisdocumentidentifiesstepstotakebeforeacyberincident,thestepstotakeduringanincidentresponseaction,alistofactionstonottake,andwhattodoaftertheincident.TheURLforthedocumentisinthe“ForMoreInformation”sectionattheendofthechapter.

IndicatorsofCompromiseIndicatorsofCompromise(IOCs)areartifactsleftbehindfromcomputerintrusionactivity.DetectionofIOCsisaquickwaytojumpstartaresponseelement.OriginatedbythesecurityfirmMandiant,IOCshavespreadinusagetoawiderangeoffirms.IOCsactasatripwireforresponders.AnIOCcanbetiedtoaspecificobservableevent,whichthencanbetracedtorelatedevents,andtostatefuleventssuchasRegistrykeys.Oneofthebiggestchallengesinincidentresponseisgettingonthetrailofanattacker,andIOCsprovideameansofgettingonthetrail.

TechTip

CommonIndicatorsofCompromise

UnusualoutboundtrafficThisprobablyistheclearestindicatorthatdataisgoingwhereitshouldn’t.

GeographicalirregularitiesCommunicationsgoingtocountriesinwhichnobusinesstiesexistisanotherkeyindicatorthatdataisgoingwhereitshouldn’t.

UnusualloginactivityFailedlogins,loginfailurestononexistentaccounts,andsoforth,indicatecompromise.

AnomaloususagepatternsforprivilegedaccountsChangesinpatternsofwhenadministratorstypicallyoperateandwhattheytypicallyaccessindicatecompromise.

ChangesindatabaseaccesspatternsThisindicateshackersaresearchingfordata,orreadingittocollectlargequantities.

AutomatedwebtrafficTimingcanshowsomerequestsarescripts,nothumans.

ChangeinHTMLresponsesizesSQLinjectioncanresultinlargeHTMLresponsesizes.

LargenumbersofrequestsforspecificfilesNumerousrequestsforspecificfiles,suchasjoin.php,mayindicateautomatedattackpatterns.

MismatchedporttoapplicationtrafficCommonmethodofattemptingtohideactivity.UnusualDNSrequestsCommandandcontrolservertraffic.

UnusualRegistrychangesIndicationsofchangestoasystemstate.UnexpectedpatchingSomehackers/malwarewillpatchtopreventotherhackersfromenteringatarget.

Bundlesofdata/filesinwrongplaceLargeaggregationsofdata,frequentlyencrypted,maybefilesbeingpreparedforexfiltration.

ChangestomobiledeviceprofilesMobileisthenewperimeter,andchangesmayindicatemalware.

DDoS/DoSattacksDenialofserviceisusedasatooltoprovidesmokescreenordistraction.

ThereareseveralstandardsassociatedwithIOCs,butthethreemainonesareCyberObservableeXpression(CybOX),amethodofinformationsharingdevelopedbyMITRE;OpenIOC,anopensourceinitiativeestablishedbyMandiantthatisdesignedtofacilitaterapidcommunicationofspecificthreatinformationassociatedwithknownthreats;andtheIncidentObjectDescriptionExchangeFormat(IODEF),anXMLformatspecifiedinRFC5070forconveyingincidentinformationbetweenresponseteams,bothinternallyandexternallywithrespecttoorganizations.The“ForMoreInformation”sectionattheendofthechapterprovidesURLsforallthreestandards.

CyberKillChainAmoderncyberattackisacomplex,multistageprocess.Theconceptofakillchainisthetargetingofspecificstepsofamultistepprocesswiththegoalofdisruptingtheoverallprocess.Thetermcyberkillchainistheapplicationofthisphilosophytoacyberincident,withtheexpressed

purposeofdisruptingtheattack.Takingtheinformationalreadypresented,weknowthestepsthat

hackerstakeandwehaveindicatorsthatcanclueusintothecurrentstatusofanattack.Usingthisinformation,wecanplanspecificinterventionstoeachstepoftheattacker’sprocess.ThekillchainprocesshasreceivedalotofpresssinceitwasintroducedbyLockheedMartin,somepositiveandsomenegative.Inmostcases,thenegativepressisrelatedtowhatmanywouldcallamisapplicationofthemodel.Aswithallsecuritymodelsanddefensivestrategies,itisimportanttocustomizeandadapthowitinteractswiththespecificprocessesitismeanttoprotect.

MakingSecurityMeasurableMITRE,workingtogetherwithpartnersfromgovernment,industry,andacademia,hascreatedasetoftechniques(calledMakingSecurityMeasurable)toimprovethemeasurabilityofsecurity.Thisisacomprehensiveeffort,includingregistriesofspecificbaselinedata,standardizedlanguagesfortheaccuratecommunicationofsecurityinformation,andformatsandstandardizedprocessestofacilitateaccurateandtimelycommunications.Theentiretyoftheprojectisbeyondthescopeofthistext,butTable

22.1listssomeofthecommonitemsbycategory,afewofwhicharedescribednextinabitmoredetail.

Table22.1 SampleElementsofMakingSecurityMeasurable

STIXandTAXII

MITREhascontinueditseffortsintheprocessofmakingsecuritymeasurableandaddingautomationtothemix.StructuredThreatInformationeXpression(STIX)isastructuredlanguageforcyberthreatintelligenceinformation.MITREcreatedTrustedAutomatedeXchangeofIndicatorInformation(TAXII)asthemaintransportmechanismforcyberthreatinformationrepresentedbySTIX.TAXIIservicesalloworganizationstosharecyberthreatinformationinasecureandautomatedmanner.

CybOXCyberObservableeXpression(CybOX)isastandardizedschemaforthecommunicationofobserveddatafromtheoperationaldomain.Designedtostreamlinecommunicationsassociatedwithincidents,CybOXprovidesameansofcommunicatingkeyelements,includingeventmanagement,incidentmanagement,andmore,inanefforttoimproveinteroperability,consistency,andefficiency.

Chapter22Review

ForMoreInformationCybOXhttps://cybox.mitre.org/DOJBestPracticesforVictimResponseandReportingofCyberIncidentswww.justice.gov/sites/default/files/criminal-ccips/legacy/2015/04/30/04272015reporting-cyber-incidents-final.pdf

IncidentObjectDescriptionExchangeFormat(IODEF)https://tools.ietf.org/html/rfc5070

MakingSecurityMeasurablehttp://makingsecuritymeasurable.mitre.org/

OpenIOCFrameworkwww.openioc.org/

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutincidentresponse.

Understandthefoundationsofincidentresponseprocesses

Theroleofincidentmanagementisthecontrolofacoordinatedandcomprehensiveresponsetoanincident.

Learntheanatomyofanattack,botholdversionsandnewerAPT-styleattacks.

Thegoalsofincidentresponseinanorganizationaretorestoresystemstofunctioningorderandpreventfuturerisk.

Implementthedetailedstepsofanincidentresponseprocess

Themajorstepsintheincidentresponseprocessarepreparation,incidentidentification,initialresponse,incidentisolation,strategyformulation,investigation,recovery,reporting,andfollow-up.

Developadetailedunderstandingofthecomponentsofeachofthesteps.

Understandthelinkagesandinterconnectionsbetweenkeyprocesssteps.

Describestandardsandbestpracticesthatareinvolvedinincidentresponse

Modernsystemsshouldexpecttoexistinastateofcompromiseandhavepoliciesandprocessesdesignedtooperateundertheseconditions.

TheU.S.government,includingNISTandtheDepartmentofJustice,havepublishedusefulguidance.

Indicatorsofcompromiseprovideearly-warningtriggersforincidentresponseinvestigators.

Takingactionsagainstanincidentinprogresscanbeplannedusingacyberkillchainphilosophy.

TheMakingSecurityMeasurablematerialfromMITREcanassistintheincidentresponseprocess.

KeyTermsadvancedpersistentthreat(APT)(653)ComputerEmergencyResponseTeam(CERT)(651)ComputerIncidentResponseTeam(CIRT)(651)cyberkillchain(669)CyberObservableeXpression(CybOX)(669)dataminimization(658)footprinting(652)incident(651)incidentresponse(651)incidentresponsepolicy(655)IndicatorofCompromise(IOC)(668)informationcriticality(651)quarantine(662)remoteadministrationTrojan(RAT)(653)StructuredThreatInformationeXpression(STIX)(669)TrustedAutomatedeXchangeofIndicatorInformation(TAXII)(669)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.A(n)_______________isanyeventinaninformationsystemornetworkwheretheresultsaredifferentthannormal.

2.Whentheattackersarefocusedonmaintainingapresenceduringanincident,thetypeofattackistypicallycalleda(n)_______________.

3.Thedeterminationofboundariesduringanattackisaprocesscalled_______________.

4.Thestepsanorganizationperformsinresponsetoanysituationdeterminedtobeabnormalintheoperationofacomputersystemarecalled_______________.

5.Onemethodologyforplanningincidentresponsedefensesisknownas_______________.

6.A(n)_______________isanartifactthatcanbeusedtodetectthepresenceofanattack.

7.Toremoveanitemfromnormaloperationanduseisaprocessreferredtoas_______________.

8.A(n)_______________isateam-basedapproachtoincidentresponseinanorganization.

9.Akeymeasureusedtoprioritizeincidentresponseactionsis________________.

10._______________and_______________areusedtocommunicatecyberthreatinformationbetweenorganizations.

Multiple-ChoiceQuiz1.WhichofthefollowingisnotanIndicatorofCompromise(IOC)?

A.Unusualoutboundtraffic

B.Increaseintrafficoverport80

C.TraffictounusualforeignIPaddresses

D.Discoveryoflargeencrypteddatablocksthatyoudon’tknowthepurposeof

2.Asysadminthinksamachineisunderattack,sohelogsinasrootandattemptstoseewhatishappeningonthemachine.Whichcommontechnicalmistakeismostlikelytooccur?

A.Thealterationofdate/timestampsonfilesandobjectsinthesystem

B.FailuretorecognizetheattackerbyprocessID

C.Erasureoflogsassociatedwithanattack

D.Thecuttingofanetworkconnectionbetweenanattackerandthecurrentmachine

3.Whatisthelaststepoftheincidentresponseprocess?A.Reconstitution

B.Recovery

C.Follow-up

D.Lessonslearned

4.Whichofthefollowingarecriticalelementsinanincidentresponsetoolkit?(Chooseallthatapply.)

A.Accuratenetworkdiagram

B.Findingsoflastpenetrationtestreport

C.Listofcriticaldata/systems

D.Phonelistofpeopleon-callbyarea

5.YourorganizationexperiencedanAPThackinthepastandisveryinterestedinpreventingareoccurrence.Whatstepoftheattackpath

isthebeststepatwhichtocombatAPT-styleattacks?

A.Escalateprivilege

B.Establishfoothold

C.Lateralmovement

D.Initialcompromise

6.Thegoalsofanincidentresponseprocessincludeallofthefollowingexcept:

A.Confirmordispelanincidentoccurrence

B.Minimizesecurityexpenditures

C.Protectprivacyrights

D.Minimizesystemdisruption

7.Duringaninitialresponsetoanincident,whichofthefollowingismostimportant?

A.Whoorwhatisreportingtheincident

B.Thetimeofthereport

C.Whotakestheinitialreport

D.Accurateinformation

8.Whendeterminingthelevelofriskofexposurefordatainstorage,intransit,orduringprocessing,whichofthefollowingisnotafactor?

A.Time

B.Quantity

C.Datatype

D.Access

9.Whileworkingonaninvestigation,acolleaguehandsyoualistoffilecreationandaccesstimestakenfromacompromisedworkstation.Tomatchthetimeswithfileaccessandcreationtimesfromothersystems,whatdoyouneedtoaccountfor?

A.Recordtimeoffsets

B.NetworkTimeProtocol

C.Created,modified,andaccessedtimes

D.Operatingsystemoffsets

10.WhichofthefollowingactivitiesshouldyounotdoduringanincidentresponseinvestigationassociatedwithanAPT?

A.Usethecorporatee-mailsystemtocommunicate

B.Determinesystemtimeoffsets

C.Useonlyqualifiedandtrustedtools

D.Createanoff-networksitefordatacollection

EssayQuiz1.TheChiefFinancialOfficer(CFO)seesyouinthelunchroom.

Knowingthatyouareleadingthecompany’sincidentresponseinitiative,shecomesovertoyourtableandasksifyouhavetimetoansweraquestion.Youaresurprised,butsayyes.Herquestionissimpleandtothepoint:“Canyouexplainthisincidentresponsethingtome,innontechnicalterms,soIcanrespondappropriatelyatthenextboardmeetinginthediscussion?”Inresponse,youoffertoprepareawrittenoutlinefortheCFO.Inonepage,outlinethemajorpointsthatneedtobeaddressedandgiveexamplesinlanguagesuitablefortheaudience.

2.Explaintherelationshipbetweentheanatomyofahackand

IndicatorsofCompromise.

chapter23 ComputerForensics

“HowoftenhaveIsaidtoyouthatwhenyouhaveeliminatedtheimpossible,whateverremains,howeverimprobable,mustbethetruth?”

C

—SIRARTHURCONANDOYLE

Inthischapter,youwilllearnhowto

Explorethebasicsofdigitalforensics

Identifytherulesandtypesofevidence

Collectevidence

Preserveevidence

Maintainaviablechainofcustody

Investigateacomputercrimeorpolicyviolation

Examinesystemartifacts

Developforensicpoliciesandprocedures

Examinethepoliciesandproceduresassociatedwithe-discovery

omputerforensicsiscertainlyapopularbuzzwordincomputersecurity.ThischapteraddressesthekeyaspectsofcomputerforensicsinpreparationfortheCompTIASecurity+certificationexam.Itisnot

intendedtobeatreatiseonthetopicoralegaltutorialregardingthepresentationofevidenceinacourtoflaw.Thismaterialisonlyanintroductiontothetopic,andbeforeoneentersintoforensicworkorpractice,muchadditionalstudyisnecessary.Theprinciplespresentedinthischapterareofvalueinconductinganyinvestigativeprocesses,includinginternalorexternalauditprocedures,butmanynuancesofhandlinglegalcasesarefarbeyondthescopeofthistext.

Thetermforensicsrelatestotheapplicationofscientificknowledgetolegalproblems.Specifically,computerforensicsinvolvesthepreservation,identification,documentation,andinterpretationofcomputerdata.Intoday’spractice,computerforensicscanbeperformedforthreepurposes:

Investigatingandanalyzingcomputersystemsasrelatedtoaviolationoflaw

Investigatingandanalyzingcomputersystemsforcompliancewithanorganization’spolicies

Respondingtoarequestfordigitalevidence(e-discovery)

Forensicsisoftenassociatedwithincidentresponse,theproceduresusedtorespondtoanabnormalconditioninasystem.Thereissubtledifference,however:incidentresponseisaboutcorrectiveaction—returningthesystemtoanormaloperationalstate—whereasforensicsisaboutfiguringoutwhathappened.

CrossCheckIncidentResponseIncidentresponseandassociatedpoliciesandproceduresarecoveredinChapter22.

Ifanunauthorizedpersonaccessesasystem,thatpersonlikelyhasviolatedthelaw.However,acompanyemployeewhoperformssimilaracts(accessingdataremotely)mayormaynotviolatelaws,thedeterminationofwhichdependsonmanyfactors,includingspecificauthorizationsandjobduties.Onecanviolatecorporatepolicieswhileactinglawfullywithrespecttocomputerlaws.Itisworthnotingthatknowinglyexceedingone’sauthorizationswithrespecttosystemaccessisaviolationofthelaw.Anyofthesesituationscouldultimatelyresultinlegalactionandmay

requirelegaldisclosure.Therefore,itisimportanttonotethatcomputerforensicactionsmay,atsomepointintime,dealwithlegalviolations,andinvestigationscouldgotocourtproceedings.Asapotentialfirstresponder,youshouldalwaysseeklegalcounsel.Alsoseeklegalcounselaheadoftimeasyoudevelopandimplementcorporatepoliciesandprocedures.Itisextremelyimportanttounderstandthatevenminorproceduralmisstepscanhavesignificantlegalconsequences.Theruletofollowissimple:alwaysassumethatthematerialwillbeusedinacourtoflawandthus

mustbehandledinaperfectlypropermanneratalltimes.Thisfurthermeansthatwhendealingwithforensics,youmustensurethatallstepsareperformedbyqualifiedforensicexaminers.

EvidenceEvidenceconsistsofthedocuments,verbalstatements,andmaterialobjectsthatareadmissibleinacourtoflaw.Evidenceiscriticaltoconvincingmanagement,juries,judges,orotherauthoritiesthatsomekindofviolationhasoccurred.Thesubmissionofevidenceischallenging,butitisevenmorechallengingwhencomputersareusedbecausethepeopleinvolvedmaynotbetechnicallyeducatedandthusmaynotfullyunderstandwhat’shappened.Computerevidencepresentsyetmorechallengesbecausethedataitself

cannotbeexperiencedwiththephysicalsenses—thatis,youcanseeprintedcharacters,butyoucan’tseethebitswherethatdataisstored.Bitsofdataaremerelymagneticpulsesonadiskorsomeotherstoragetechnology.Therefore,datamustalwaysbeevaluatedthroughsomekindof“filter”ratherthansenseddirectly.Thisisoftenofconcerntoauditors,becausegoodauditingtechniquesrecommendaccessingtheoriginaldataoraversionthatisascloseaspossibletotheoriginaldata.

TypesofEvidence

Thedigitalforensicprocessisatechnicallydemandingone,withnoroomforerrors.Themostcommoncauseofevidencefromaninvestigationbeingexcludedfromcourtproceedingsisspoliation,theunauthorizedalterationofdigitalevidence.Iftheforensicprocessislessthanperfect,spoliationisassumed.Thebestguidanceis1)alwaysperformforensicsasifyouaregoingtocourtwiththeevidence,and2)ifyoudonothavequalifieddigitalforensicinvestigatorsin-house,donothingtothedevice/media—letaprofessionalhandleit.

Allevidenceisnotcreatedequal.Someevidenceisstrongerandbetterthanotherevidence.Severaltypesofevidencecanbegermane:

DirectevidenceOraltestimonythatprovesaspecificfact(suchasaneyewitness’sstatement).Theknowledgeofthefactsisobtainedthroughthefivesensesofthewitness,withnoinferencesorpresumptions.

RealevidenceAlsoknownasassociativeorphysicalevidence,thisincludestangibleobjectsthatproveordisproveafact.Physicalevidencelinksthesuspecttothesceneofacrime.

DocumentaryevidenceEvidenceintheformofbusinessrecords,printouts,manuals,andthelike.Muchoftheevidencerelatingtocomputercrimesisdocumentaryevidence.

DemonstrativeevidenceUsedtoaidthejuryandcanbeintheformofamodel,experiment,chart,andsoon,offeredtoprovethataneventoccurred.

StandardsforEvidenceEvidenceinU.S.federalcourtcasesisgovernedbyaseriesoflegalprecedents,themostnotableofwhichistheDaubertstandard.ThreeU.S.SupremeCourtcasesarticulatetheDaubertstandardandshapehowmaterialsareenteredintoevidence.Fourspecificelementsareassociatedwiththeadmissionofscientificexperttestimony.Thisisimportantwithrespecttodigitalforensicsbecausetheformoftheevidencemeansthatitcanrarelyspeakforitself;rather,itmustbeinterpretedbyanexpertandpresentedtothecourt.ThefirstelementisthattheJudgeisthegatekeeper.Materialsarenot

consideredevidenceuntildeclaredsobythejudge.Thisistoensurethatexpertsaredeterminedtobeexpertsbeforethecourtreliesupontheirjudgment.Asecondelementisreliabilityandrelevance.Thetrialjudgeistodeterminethattheexpert’stestimonyisrelevanttotheproceedingsat

hand,andthattheexpert’smethodsarereliablewithrespecttothematerialbeingattestedto.Thethirdelementisthatexpertknowledgeshouldbebasedonscience,specificallysciencethatisbasedonthescientificmethodwithareplicablemethodology.Thefinalelementrelatestothisscientificmethodology,statingthatitmustbebasedonprovenscience,subjectedtopeerreview,withaknownerrorrateorpotentialerrorrateandconsensusamongthescientificcommunitythatthemethodologyisgenerallyaccepted.Aftertheseelementsaresatisfied,thejudgecanadmittheexpert’stestimonyasevidence.ThesefactorsallrelatetoaU.S.federalcourtdecisionandthereforeare

onlybindingintheU.S.federaljudiciary,butthetestisrecognizedandappliedinsimilarformatmanylevelsofjurisdiction.Thebottomlineissimple:thedatacan’tspeakforitself,andexpertswhocaninterpretthedataoperateunderstrictguidelineswithrespecttoconduct,qualifications,principles,andmethods.Tobecredible,especiallyifevidencewillbeusedincourtproceedings

orincorporatedisciplinaryactionsthatcouldbechallengedlegally,evidencemustmeetthreestandards:

SufficientevidenceItmustbeconvincingormeasureupwithoutquestion.

CompetentevidenceItmustbelegallyqualifiedandreliable.RelevantevidenceItmustbematerialtothecaseorhaveabearingonthematterathand.

TechTip

EvidenceControlMentalChecklistKeepthesepointsinmindasyoucollectevidence:

Whocollectedtheevidence?

Howwasitcollected?

Wherewasitcollected?

Whohashadpossessionoftheevidence?Howwasitprotectedandstored?

Whenwasitremovedfromstorage?Why?Whotookpossession?

ThreeRulesRegardingEvidenceAnitemcanbecomeevidencewhenitisadmittedbyajudgeinacase.Threerulesguidetheuseofevidencewithregardtoitsuseincourtproceedings:

BestevidenceruleCourtspreferoriginalevidenceratherthanacopytoensurethatnoalterationoftheevidence(whetherintentionalorunintentional)hasoccurred.Insomeinstances,anevidenceduplicatecanbeaccepted,suchaswhentheoriginalislostordestroyedbyactsofGodorinthenormalcourseofbusiness.Aduplicateisalsoacceptablewhenathirdpartybeyondthecourt’ssubpoenapowerpossessestheoriginal.

ExclusionaryruleTheFourthAmendmenttotheU.S.Constitutionprecludesillegalsearchandseizure.Therefore,anyevidencecollectedinviolationoftheFourthAmendmentisnotadmissibleasevidence.Additionally,ifevidenceiscollectedinviolationoftheElectronicCommunicationsPrivacyAct(ECPA)orotherrelatedprovisionsoftheU.S.Code,itmaynotbeadmissibletoacourt.Forexample,ifnopolicyexistsregardingthecompany’sintenttomonitornetworktrafficorsystemselectronically,andtheemployeehasnotacknowledgedthispolicybysigninganagreement,sniffingtheemployee’snetworktrafficcouldbeaviolationoftheECPA.

HearsayruleHearsayissecondhandevidence—evidenceofferedbythewitnessthatisnotbasedonthepersonalknowledgeofthewitnessbutisbeingofferedtoprovethetruthofthematterasserted.Typically,computer-generatedevidenceisconsideredhearsay

evidence,asthemakeroftheevidence(thecomputer)cannotbeinterrogated.Thereareexceptionsbeingmadewhereitemssuchaslogsandheaders(computer-generatedmaterials)arebeingacceptedincourt.Thereareexceptions,buttheyrarelyapplytodigitalevidence.

ThelawsmentionedhereareU.S.laws.Othercountriesandjurisdictionsmayhavesimilarlawsthatwouldneedtobeconsideredinasimilarmanner.

ForensicProcessForensicsistheuseofscientificmethodsintheanalysisofmattersinconnectionwithcrimeorotherlegalmatters.Becauseoftheconnectiontolaw,itisanexactingprocess,withnoroomforerror.Indigitalforensics,theissueofalterationbecomesparamount,becausechanging1’sto0’sdoesnotleaveatraceinmanysituations.Becauseoftheissueofcontaminationorspoliationofevidence,detailedprocessesareusedintheprocessingofinformation.Fromahigh-levelpointofview,multiplestepsareemployedinadigital

forensicinvestigation:

1.IdentificationRecognizeanincidentfromindicatorsanddetermineitstypeandscope.Thisisnotexplicitlywithinthefieldofforensicsbutissignificantbecauseitimpactsothersteps.Whattoolswereused?Howmanysystemsareinvolved?Howmuchdataistobecopied?Thesequestionsallhaveramificationsonthesuccessfuloutcomeofaforensicprocess.

2.PreparationPreparetools,techniques,andsearchwarrantsandmonitorauthorizationsandmanagementsupport.

3.Approach/strategyDynamicallyformulateanapproachbasedonpotentialimpactonbystandersandthespecifictechnologyin

question.Thegoalofthestrategyshouldbetomaximizethecollectionofuntaintedevidencewhileminimizingimpacttothevictimorowner.

4.PreservationIsolate,secure,andpreservethestateofphysicalanddigitalevidence.Thisincludespreventingpeoplefromusingthedigitaldeviceorallowingotherelectromagneticdevicestobeusedwithinacertainproximity.Properpreservationisessentialtopreventalterationofthesource.

5.CollectionRecordthephysicalsceneandduplicatedigitalevidenceusingstandardizedandacceptedprocedures.Thisiswhereadigitalcameraandmicrophonearevitaltoolsforcapturingdetails—serialnumbers,layouts,andsoforth—quicklyanddefinitively.

6.ExaminationIn-depth,systematicsearchofevidencerelatingtothesuspectedcrime.Thisstepoccurslater,inalab,andfocusesonidentifyingandlocatingpotentialspecificevidenceelements,possiblywithinunconventionallocations.Itisimportanttoconstructdetaileddocumentationforanalysis,documentingthemetadataanddatavaluesthatmayberelevanttotheissuesathandintheinvestigation.

7.AnalysisDeterminesignificance,reconstructfragmentsofdata,anddrawconclusionsbasedontheelementsofevidencefound.Thedataitselfcannottellastory,andinthissteptheinvestigatorweavestheelementsintoapicture,hopefullytheonlyonethatcanbesupported.Althoughtheintuitionistoproveguilt,theskilledandseasonedinvestigatorfocusesonpaintingthepicturethatthedatadescribes,regardlessofoutcome,andmakingitcomprehensiveandcompletesothatitwillstanduptochallenge.Multiplepeoplewithdifferentskillsetsmaybeneededtocompletethepicture.

8.PresentationSummarizeandprovideanexplanationoftheconclusions.Theresultsshouldbewritteninlayperson’stermsusingabstractedterminology.Ifyoucannotexplaintheinformation

toanontechnicallayperson,thenyoudonotunderstanditwellenoughtocompletethisaspect.Allabstractedterminologyshouldreferencethespecificdetailsofthecase.

9.ReturningevidenceEnsurephysicalanddigitalpropertyisreturnedtoitsproperowneranddeterminehowandwhatcriminalevidencemustberemoved.(Forexample,hardwaremaybereturned,butimagesofchildpornographywouldberemoved.)Thisisnotanexplicitstepofforensicinvestigation,andmostmodelsthataddresshowtoseizeevidencerarelyaddressthisaspect.Butattheendoftheday,thejobisnotdoneuntilallaspectsarefinished,andthisincludesthislevelofclean-upactivity.

Wheninformationorobjectsarepresentedtomanagementoradmittedtocourttosupportaclaim,thatinformationorthoseobjectscanbeconsideredasevidenceordocumentationsupportingyourinvestigativeefforts.Seniormanagementwillalwaysaskalotofquestions—second-andthird-orderquestionsthatyouneedtobeabletoanswerquickly.Likewise,inacourt,credibilityiscritical.Therefore,evidencemustbeproperlyacquired,identified,protectedagainsttampering,transported,andstored.

ExamTip:Adigitalcameraisgreatforrecordingasceneandinformation.Screenshotsofactivemonitorimagesmaybeobtainedaswell.Picturescandetailelementssuchasserialnumberplates,machines,drives,cableconnections,andmore.Photographsaretrulyworthathousandwords.

AcquiringEvidenceWhenanincidentoccurs,youwillneedtocollectdataandinformationtofacilitateyourinvestigation.Ifsomeoneiscommittingacrimeorintentionallyviolatingacompanypolicy,shewilllikelytrytohideher

tracks.Therefore,youshouldcollectasmuchinformationassoonasyoucan.Intoday’shighlynetworkedworld,evidencecanbefoundnotonlyontheworkstationorlaptopcomputer,butalsooncompany-ownedfileservers,securityappliances,andserverslocatedwiththeInternetserviceprovider(ISP).

TechTip

DataVolatilityFromthemostvolatiletothemostpersistent:

1.CPUstorage(registers/cache)2.Systemstorage(RAM)

3.Kerneltables4.Fixedmedia

5.Removablemedia6.Output/hardcopy

Afirstrespondermustdoasmuchaspossibletocontroldamageorlossofevidence.Obviously,astimepasses,evidencecanbetamperedwithordestroyed.Lookaroundonthedesk,ontheRolodex,underthekeyboard,indesktopstorageareas,andoncubiclebulletinboardsforanyinformationthatmightberelevant.Securefloppydisks,opticaldiscs,flashmemorycards,USBdrives,tapes,andotherremovablemedia.Requestcopiesoflogsassoonaspossible.MostISPsprotectlogsthatcouldbesubpoenaed.Takephotos(somelocalitiesrequireuseofPolaroidphotos,astheyaremoredifficulttomodifywithoutobvioustampering)orvideo.Includephotosofoperatingcomputerscreensandhardwarecomponentsfrommultipleangles.Besuretophotographinternalcomponentsbeforeremovingthemforanalysis.

MicrosoftproducedaforensictoolforlawenforcementcalledCOFEE(ComputerOnlineForensicsEvidenceExtractor)thatcanbeusedtocollectawiderangeofdatafromasuspectmachine.Restrictedbylicensetolawenforcement,itisoutofreachformostinvestigators.Anexaminationofhowitfunctionsprovidesusefulinformation,andmanyofitsfunctionscanbereadilycopiedbyinvestigators.COFEEisawrapperforawholehostofutilities—thinkSysinternalsandmore—allintegratedbyscript.Thisautomatedprocesscanbere-createdbyanycompetentforensicinvestigator.Automatedscriptsandtoolsreduceerrorsandincreaseeffectiveness.

Whenanincidentoccursandthecomputerbeingusedisgoingtobesecured,youmustconsidertwoquestions:Shoulditbeturnedoff,andshoulditbedisconnectedfromthenetwork?Forensicprofessionalsdebatethereasonsforturningacomputeronorturningitoff.Somestatethattheplugshouldbepulledinordertofreezethecurrentstateofthecomputer.However,thisresultsinthelossofanydataassociatedwithanattackinprogressfromthemachine.AnydatainRAMwillalsobelost.Further,itmaycorruptthecomputer’sfilesystemandcouldcallintoquestionthevalidityofyourfindings.

ExamTip:Filetimestampsmaybeofuseduringtheanalysisphase.Tocorrelatefiletimestampstoactualtime,itisimportanttoknowthetimeoffsetbetweenthesystemclockandrealtime.Recordingthetimeoffsetwhilethesystemisliveiscriticalifthesystemclockisdifferentthanactualtime.

Imagingordumpingthephysicalmemoryofacomputersystemcanhelpidentifyevidencethatisnotavailableonaharddrive.Thisisespeciallyappropriateforrootkits,forwhichevidenceontheharddriveishardtofind.Oncethememoryisimaged,youcanuseahexeditortoanalyzetheimageofflineonanothersystem.(Memory-dumpingtoolsandhexeditorsareavailableontheInternet.)Notethatdumpingmemoryismoreapplicableforinvestigativeworkwherecourtproceedingswillnotbe

pursued.Ifacaseislikelytoendupincourt,donotdumpmemorywithoutfirstseekinglegaladvicetoconfirmthatliveanalysisofthememoryisacceptable;otherwise,thedefendantwilleasilybeabletodisputetheclaimthatevidencewasnottamperedwith.Ontheotherhand,itispossibleforthecomputercriminaltoleave

behindasoftwarebombthatyoudon’tknowabout,andanycommandsyouexecute,includingshuttingdownorrestartingthesystem,coulddestroyormodifyfiles,information,orevidence.Thecriminalmayhaveanticipatedsuchaninvestigationandalteredsomeofthesystem’sbinaryfiles.WhileteachingattheUniversityofTexas,Austin,Dr.LarryLeibrock

ledaresearchprojecttoquantifyhowmanyfilesarechangedwhenturningoffandonaWindowsworkstation.Theresearchdocumentsthatapproximately0.6percentoftheoperatingsystemfilesarechangedeachtimeaWindowsXPsystemisshutdownandrestarted.Anadministratorlookingatamachineatthebehestofmanagementcancompletelyobfuscateanydatathatcouldberecovered,aprocesscalledspoliation.Thiscannotbeundoneandrendersthedataunusableinlegalproceedings,whethercourtorhumanresources.

ExamTip:ForCompTIASecurity+testingpurposes,rememberthis:thememoryshouldbedumped,thesystemshouldbepowereddowncleanly,andanimageshouldbemadeandusedasyouwork.

Further,ifthecomputerbeinganalyzedisaserver,itisunlikelymanagementwillsupporttakingitofflineandshuttingitdownforinvestigation.So,fromaninvestigativeperspective,eithercoursemaybecorrectorincorrect,dependingonthecircumstancessurroundingtheincident.Whatismostimportantisthatyouaredeliberateinyourwork,youdocumentyouractions,andyoucanexplainwhyyoutooktheactionsyouperformed.

Manyinvestigativemethodsareused.Figure23.1showsthecontinuumofinvestigativemethodsfromsimpletomorerigorous.

•Figure23.1Investigativemethodrigor

Figure23.2showstherelationshipbetweenthecomplexityofyourinvestigationandboththereliabilityofyourforensicdataandthedifficultyofinvestigation.

•Figure23.2Requiredrigoroftheinvestigativemethodversusbothdatareliabilityandthedifficultyofinvestigation

IdentifyingEvidenceEvidencemustbeproperlymarkedasitiscollectedsothatitcanbeidentifiedasaparticularpieceofevidencegatheredatthescene.Properlylabelandstoreevidence,andmakesurethelabelscan’tbeeasilyremoved.Keepanevidencecontrollogbookidentifyingeachpieceofevidence(incasethelabelisremoved);thepersonswhodiscoveredit;thecasenumber;thedate,time,andlocationofthediscovery;andthereasonforcollection.Keepalogofallstaffhoursandexpenses.Thisinformationshouldbespecificenoughforrecollectionlaterincourt.Itisimportanttologotheridentifyingmarks,suchasdevicemake,model,serialnumber,cableconfigurationortype,andsoon.Noteanytypeofdamagetothepieceofevidence.

Youshouldneverexamineasystemwiththeutilitiesprovidedbythatsystem.Youshouldalwaysuseutilitiesthathavebeenverifiedascorrectanduncorrupted.Evenbetter,useaforensicworkstation,acomputersystemspecificallydesignedtoperformcomputerforensicactivities.Donotopenanyfilesorstartanyapplications.Ifpossible,documentthecurrentmemoryandswapfiles,runningprocesses,andopenfiles.Disconnectthesystemfromthenetworkandimmediatelycontactseniormanagement.Unlessyouhaveappropriateforensictrainingandexperience,considercallinginaprofessional.

Beingmethodicalisextremelyimportantwhenidentifyingevidence.Donotcollectevidencebyyourself—haveasecondpersonwhocanserveasawitnesstoyouractions.Keeplogsofyouractionsduringbothseizureandduringanalysisandstorage.Asamplelog,providingtheminimumcontentsofanevidencecontrollogbookentry,isshownhere:

Third-partyinvestigatorsarecommonlyusedincivilmatters.Whendoingdigitalforensicsforacivillitigation–basedcase,itisimportanttoconsultwiththeretainingcounselconcerningthelevelofdetailandrecordsdesired.Incivillitigation,anythingwrittenwillberequestedtobedisclosedduringpretrialdiscovery.Thiscanprovidestrategydisclosurebeyondwhatisdesiredbycounsel.Thealternativeistokeepminimalrequiredrecordsasdeterminedbycounsel.

ProtectingEvidenceProtectevidencefromelectromagneticormechanicaldamage.Ensurethatevidenceisnottamperedwith,damaged,orcompromisedbytheproceduresusedduringtheinvestigation.Thishelpsavoidpotentialliabilityproblemslater.Protectevidencefromextremesinheatandcold,humidity,water,magneticfields,andvibration.Usestatic-freeevidence-protectionglovesasopposedtostandardlatexgloves.Sealtheevidenceinapropercontainerwithevidencetape,andmarkitwithyourinitials,date,andcasenumber.Forexample,ifamobilephonewithadvancedcapabilitiesisseized,itshouldbeproperlysecuredinahardcontainerdesignedtopreventaccidentallypressingthekeysduringtransitandstorage.Ifthephoneistoremainturnedonforanalysis,radiofrequencyisolationbagsthatattenuatethedevice’sradiosignalshouldbeused.Thiswillpreventremotewiping,locking,ordisablingofthedevice.

TransportingEvidenceProperlylogallevidenceinandoutofcontrolledstorage.Useproperpackingtechniques,suchasplacingcomponentsinstatic-freebags,usingfoampackingmaterial,andusingcardboardboxes.Beespeciallycautiousduringtransportofevidencetoensurecustodyofevidenceismaintainedandtheevidenceisn’tdamagedortamperedwith.

TechTip

ProtectingEvidenceAnyandallcollecteddigitalevidenceneedstobeprotectedfromawiderangeofpotentiallosses—environmental,theft,actualloss,alteration,physicalorelectricaldamage,oreventheperceptionofthepossibilityoflossoccurring.Inanylegalproceeding,whethercriminalorcivil,theotherpartywillalwaysexaminethestorageconditionsand,iflessthanperfect,placetheburdenonthepersonstoringittoprovethatitisstillintact.Thisisjustonereasonwhyrecordinghashvaluesuponcollectionissoimportant.

StoringEvidenceStoretheevidenceinanevidenceroomthathaslowtraffic,restrictedaccess,cameramonitoring,andentry-loggingcapabilities.Storecomponentsinstatic-freebags,foampackingmaterial,andcardboardboxes,andinsidemetaltamper-resistantcabinetsorsafeswheneverpossible.Manyoftoday’selectronicsaresensitivetoenvironmentalfactors.Itisimportantforstorageareastohaveenvironmentalcontrolstoprotectdevicesfromtemperatureandhumiditychanges.Itisalsoprudenttohaveenvironmental-monitoringdevicestoensurethattemperatureandhumidityremainwithinsaferangesforelectronicdevices.

ConductingtheInvestigationWhenanalyzingcomputerstoragecomponents,youmustuseextreme

caution.Acopyofthesystemshouldbeanalyzed—nevertheoriginalsystem,asthatwillhavetoserveasevidence.Asystemspeciallydesignedforforensicexamination,knownasaforensicworkstation,canbeused.Forensicworkstationstypicallycontainharddrivebays,writeblockers,analysissoftware,andotherdevicestosafelyimageandprotectcomputerforensicdata.Analysisshouldbedoneinacontrolledenvironmentwithphysicalsecurityandcontrolledaccess.

ExamTip:Neveranalyzetheseizedsystemdirectly.Alwaysmakemultipleimagesofthedeviceandanalyzeacopy.

TechTip

ToolsoftheTradeDiskwipeutilitiesToolstocompletelydeletefilesandoverwritecontentsFileviewersTextandimageviewers

ForensicprogramsToolstoanalyzediskspace,filecontent,systemconfiguration,andsoon

ForensicworkstationsSpecializedworkstationscontaininghardware,software,andcomponentinterfacecapabilitiestoperformcomputerforensicactivities

HarddrivetoolsPartition-viewingutilities,bootableCDsUnerasetoolsToolstoreversefiledeletions

Rememberthatwitnesscredibilityisextremelyimportant.Itiseasytoimaginehowquicklycredibilitycanbedamagedifthewitnessisasked,“Didyoulockthefilesystem?”andcan’tansweraffirmatively.Or,whenasked,“Whenyouimagedthisdiskdrive,didyouuseanewsystem?”thewitnesscan’tanswerthatthedestinationdiskwasneworhadbeencompletelyformattedusingalow-levelformatbeforedatawascopiedto

it.Oneofthekeyelementstopreservingthechainofcustody,protecting

evidence,andhavingcopiesofdataforanalysisistheconceptofdigitalforensicduplicationofdata.Adigitalforensiccopyisacarefullycontrolledcopythathaseverybitthesameastheoriginal.Notjustfiles,butalldatastructuresassociatedwiththedevice,includingunusedspace,arecopiedinadigitalforensicimagecopy,everybit,bitbybit.Makingthistypeofcopyisnotsomethingdonewithnormalfileutilities;specialtyprogramsarerequired.

Whenconductingadigitalforensicinvestigation,considerlocallaws.Manystatesrequirethatindependentinvestigatorsbelicensedprivateinvestigators.Ifyouareworkingasananalystonin-housesystems,thelawsmayhavedifferinglevelsofapplicability.Beforeconsulting,itisbesttoinvestigatetheneedofalicense.

Itisalsoimportantnottointerfacewiththedigitalmediausingthehostsystem,asallfilesystemsbothreadandwritetothestoragemediaaspartoftheirnormaloperation,alteringthemedia.Thistypeofalterationchangesinformation,potentiallydamagingthetraceevidenceneededintheinvestigation.Forthisreason,awriteblockeriscommonlyusedtoconnectthemediatotheinvestigator’scomputer.Figure23.3showsakitthatcontainsbothwriteblockersandaforensicduplicator.

•Figure23.3(a)Writeblockerdevicesand(b)forensicduplicatordevice

Itiscommonforforensicduplicatordevicestohaveadditionalfeaturestoassistaninvestigator,suchasmakingmultiplecopiesatonceandcalculatinghashvaluesforthedeviceandtheduplicate.Capturingthehashvaluesforallitemsisanessentialfirststepinhandlinganydigitalevidence.

TechTip

Forensics-BasedDriveImagingWhenaforensicinvestigationonaseriesofcomputersisneededtodeterminefactsinacomputerinvestigation,avarietyofmethodscanbeusedtodiscoverandrecovertheevidence.Forexample,ifadevelopergroupisbeinginvestigated,theinvestigatorcouldlookateachmachineandfindthespecificevidencethatisbeingsought.Theproblemwiththisapproachisthatintheprocessofdoingtheinvestigation,theotherdevelopersintheareabecomeawareandhaveachancetodestroycriticalevidence.Forthisreason,andtominimizedisruptiontoateam,manytimestheinvestigationbeginswithalarge-scaleforensicduplicationeffort.Thestepsareremarkablysimpleandwellpracticedbymanyinvestigativefirms:

1.Documentthescopeofthemachinesbeinginvestigated,notingthenumberofdrivesandsizes.

2.Sendinateamafterhourstodotheduplication.3.Openeachmachine,disconnecttheharddrives,andattachexternalcables.

4.Duplicateeachdriveusingaforensicduplicationprocedurethatmakesacompleteimageoftheharddriveonaseparatemediasource.

5.Reassemblethemachines,leavingnoevidencethattheduplicationwasperformed.

Theforensicimagesarethenexaminedonebyoneatalatertime,awayfrominquisitiveandpryingeyes.

AnalysisAftersuccessfullyimagingthedrivestobeanalyzedandcalculatingandstoringthemessagedigests,theinvestigatorcanbegintheanalysis.Thedetailsoftheinvestigationwilldependontheparticularsoftheincidentbeinginvestigated.However,ingeneral,thefollowingstepswillbeinvolved:

Thenumberoffilesstoredontoday’sharddrivescanbeverylarge,literallyhundredsofthousandsoffiles.Obviouslythisisfartoomanyfortheinvestigatortodirectlyanalyze.However,bymatchingthemessagedigestsforfilesinstalledbythemostpopularsoftwareproductstothemessagedigestsoffilesonthedrivebeinganalyzed,theinvestigatorcanavoidanalyzingapproximately90percentofthefilesbecausehecanassumetheyareunmodified.TheNationalSoftwareReferenceLibrary(NSRL)collectssoftwarefromvarioussourcesandincorporatesfileprofilesintoaReferenceDataSetavailablefordownloadasaservice.Seewww.nsrl.nist.gov.

1.ChecktheRecycleBinfordeletedfiles.2.Checkthewebbrowserhistoryfilesandaddressbarhistories.3.Checkthewebbrowsercookiefiles.Differentwebbrowsersstore

cookiesindifferentplaces.

4.ChecktheTemporaryInternetFilesfolders.

5.Searchfilesforsuspectcharacterstrings.Toconservevaluabletime,bewiseinthechoiceofwordsyousearchfor,choosing“confidential,”“sensitive,”“sex,”orotherexplicitwordsandphrasesrelatedtoyourinvestigation.

6.Searchtheslackandfreespaceforsuspectcharacterstringsasdescribedpreviously.

TheCAINEComputerForensicsLinuxLiveDistroandSANSInvestigativeForensicToolkit(SIFT)arejusttwoexamplesofthemanytoolsyoucanusetoperformcomputerforensicactivities.

TechTip

Cleanup:PossibleRemediationActionsAfteranAttackThesearethingsyou’llneedtodotorestoreyoursystemafteryou’verespondedtoanincidentandcompletedyourinitialinvestigation:

Placethesystembehindafirewall.ReloadtheOS.

Runscanners.Installsecuritysoftware.

Removeunneededservicesandapplications.Applypatches.

Restorethesystemfrombackup.

ChainofCustodyEvidence,oncecollected,mustbeproperlycontrolledtopreventtampering.Thechainofcustodyaccountsforallpersonswhohandledorhadaccesstotheevidence.Thechainofcustodyshowswhoobtainedthe

evidence,whenandwhereitwasobtained,whereitwasstored,andwhohadcontrolorpossessionoftheevidencefortheentiretimesincetheevidencewasobtained.Thefollowingshowscriticalstepsinachainofcustody:

1.Recordeachitemcollectedasevidence.2.Recordwhocollectedtheevidence,alongwiththedateandtimeit

wascollectedorrecorded.

3.Writeadescriptionoftheevidenceinthedocumentation.4.Puttheevidenceincontainersandtagthecontainerswiththecase

number,thenameofthepersonwhocollectedit,andthedateandtimeitwascollectedorputinthecontainer.

5.Recordallmessagedigest(hash)valuesinthedocumentation.6.Securelytransporttheevidencetoaprotectedstoragefacility.7.Obtainasignaturefromthepersonwhoacceptstheevidenceatthis

storagefacility.

8.Providecontrolstopreventaccesstoandcompromiseoftheevidencewhileitisbeingstored.

9.Securelytransporttheevidencetocourtforproceedings.

MessageDigestandHashIffiles,logs,andotherinformationaregoingtobecapturedandusedforevidence,youneedtoensurethatthedataisn’tmodified.Inmostcases,atoolthatimplementsahashingalgorithmtocreatemessagedigestsisused.

Themathematicsbehindhashingalgorithmshasbeenresearchedextensively,andalthoughitis

possiblethattwodifferentdatastreamscouldproducethesamemessagedigest,itisveryimprobable.MostforensictoolsstillreportMD5hashes,althoughtheindustryisshiftingtoSHA-2andSHA-3seriesandthetoolsarecatchingup.HashingiscoveredindetailinChapter5.

CrossCheckHashAlgorithmsandForensicsHashalgorithmsofferdigitalforensicstheabilityto“bagandtag”evidence.Althoughitdoesnotprotecttheevidencefromtampering,itprovidesclearproofofwhetherornotdatahasbeenchanged.Thisisaveryimportantissuetoresolve,givenhoweasyitistochangedigitaldataandthefactthattypicallynotraceisleftofthechange.AcompletereviewofhashingalgorithmsisfoundinChapter5.Theimportantquestionregardinghashesandforensicsisthis:Howandwheredoyourecordhashvaluestoprotecttheirintegrityaspartoftheinvestigativeprocess?

Ahashingalgorithmperformsafunctionsimilartothefamiliarparitybits,checksum,orcyclicalredundancycheck(CRC).Itappliesmathematicaloperationstoadatastream(orfile)tocalculatesomenumberthatisuniquebasedontheinformationcontainedinthedatastream(orfile).Ifasubsequenthashcreatedonthesamedatastreamresultsinadifferenthashvalue,itusuallymeansthatthedatastreamwaschanged.Thehashtoolisappliedtoeachfileorlog,andthemessagedigestvalue

isnotedintheinvestigationdocumentation.Itisagoodpracticetowritethelogstoawrite-oncemediasuchasCD-ROM.Whenthecaseactuallygoestotrial,theinvestigatormayneedtorunthetoolonthefilesorlogsagaintoshowthattheyhavenotbeenalteredinanywaysincebeingobtained.

HostForensicsHostforensicsreferstotheanalysisofaspecificsystem.Hostforensicsincludesawiderangeofelements,includingtheanalysisoffilesystemsandartifactsoftheoperatingsystem.Theseelementsoftenarespecifictoindividualsystemsandoperatingsystems,suchasLinuxorWindows.

FileSystemsWhenauserdeletesafile,thefileisnotactuallydeleted.Instead,apointerinafileallocationtableisdeleted.Thispointerwasusedbytheoperatingsystemtotrackdownthefilewhenitwasreferenced,andtheactof“deleting”thefilemerelyremovesthepointerandmarksthecluster(s)holdingthefileasavailablefortheoperatingsystemtouse.Theactualdataoriginallystoredonthediskremainsonthedisk(untilthatspaceisusedagain);itjustisn’trecognizedasacoherentfilebytheoperatingsystem.

PartitionsPhysicalmemorystoragedevicescanbedividedintoaseriesofcontainerscalledpartitions.Apartitionisalogicalstorageunitthatissubsequentlyusedbyanoperationsystem.Systemscanhavemultiplepartitionsforawidevarietyofreasons,rangingfromhostingmultipleoperatingsystemstoperformance-maximizingeffortstoprotectionefforts.Thebroadissueofpartitionoperationandmanagementisoutsidethescopeofthischapter,butthisisacriticaltopictounderstandandexaminewhenlookingatasystemforensically.

FreeSpaceSinceadeletedfileisnotactuallycompletelyerasedoroverwritten,itsitsontheharddiskuntiltheoperatingsystemneedstousethatspaceforanotherfileorapplication.Sometimesthesecondfilethatissavedinthesameareadoesnotoccupyasmanyclustersasthefirstfile,soafragmentoftheoriginalfileisleftover.Theclusterthatholdsthefragmentoftheoriginalfileisreferredtoas

freespacebecausetheoperatingsystemhasmarkeditasusablewhenneeded.Assoonastheoperatingsystemstoressomethingelseinthiscluster,itisconsideredallocated.Theunallocatedclustersstillcontaintheoriginaldatauntiltheoperatingsystemoverwritesthem.Lookingatthefreespacemightrevealinformationleftoverfromfilestheuserthought

weredeletedfromthedrive.

SlackSpaceAnotherplacethatshouldbereviewedisslackspace,whichisdifferentfromfreespace.Whenafileissavedtoaharddriveorotherstoragemedium,theoperatingsystemallocatesspaceinblocksofapredefinedsize,calledclusters.Evenifyourfilecontainsonlytencharacters,theoperatingsystemwillallocateafullcluster—withspaceleftoverinthecluster.Thisisslackspace.Itispossibleforausertohidemaliciouscode,tools,orcluesinslack

space,aswellasinthefreespace.Youmayalsofindinformationinslackspacefromfilesthatpreviouslyoccupiedthatsamecluster.Therefore,aninvestigatorshouldreviewslackspaceusingutilitiesthatcandisplaytheinformationstoredintheseareas.

HiddenFilesTherearenumerouswaystohidedataonasystem.Onemethodistohidefilesbysettingthehiddenattribute,whichlimitsthelistingofthembystandardfileutilities.Devisedsothatsystemfilesthatshouldnotbedirectlymanipulatedarehiddenfromeasyview,thisconceptraisesabroaderquestionwithrespecttoforensics.Howcanauserhideinformationfromeasyaccessibility?Thereisawiderangeofmethodsofhidingfiles,andanyattempttolist

themwouldbelongandsubjecttocontinualchange.Themajoronestypicallyencounteredincludechangingafileextension,encryption,streams,andstorageonotherpartitions.Wehavealreadycoveredpartitions—itisobviousthataforensicinvestigationshouldfind,enumerate,andexploreallpartitions.Streamswillbecoveredinthenextsection.Encrypteddata,byitsverynature,ishiddenfromview.Withoutthekey,modernencryptionmethodsresistanybrute-forceattemptstodeterminethecontents.Itisimportanttofindencrypteddatastoresanddocumentthelocationsforlaterusebylegalcounsel.

Changingafile’sextensiondoesnotactuallyalterthecontentsorusabilityofafile.Itmerelybreakstheautomatedruntimeassociationmanagerthatdetermineswhatexecutableisassociatedwiththefiletypetoproperlyhandleit.Thechallengeofhowtohandlefiletypesgoesbacktotheearlydaysofcomputers,whenthemagicnumbermethodwascreated.Thetermmagicnumberdescribesaseriesofdigitsnearthebeginningofthefilethatprovidesinformationaboutthefileformat.Insomecasesthemagicnumbercanbereadbyhumans,asGIF87aorGIF89aindicatesbothGraphicsInterchangeFormatandthespecification.Otherfiletypesarelessobvious,suchasaTIFFfileonanIntelplatform,whichisIIfollowedby42asatwo-byteinteger(49492A00).Mostintegratedforensictoolsuiteshandlefileidentificationviamagic

numberandarethusabletofindhiddenvideos,pictures,andotheritems.Theotherthingthesetoolscandoiscompletesearchesacrosstheentirestoragestructureforstrings,andthiscanfindmany“hidden”items.

StreamsStreamsisashortnameforAlternateDataStreams,aspecificdatastructureassociatedwithNTFSinWindows.ThenormallocationfordatainanNTFS-basedsystemisinthedatastream,alocationidentifiedbyarecordintheMasterFileTable(MFT)called$DATA:,whichistechnicallyanunnameddatastream.Alternatedatastreamshavenamesandareidentifiedby$DATA:StreamName,whereStreamNameisthenameofthestreambeingused.Streamscanbeusedtohideinformation;althoughtheinformationisstillpresent,mostofthenormalfileutilitiesdonotdealwithstreams,soitwillnotbeseen.Forensictoolsuiteshavetoolsthatcansearchfor,reporton,andanalyzestreamdataonWindowssystems.

WindowsMetadataMicrosoftWindows–basedsystemshaveawiderangeofartifactswithforensicvalue.Beforeweexaminesomeoftheseartifacts,itisimportant

tounderstandwhytheyexist.Thevastmajorityofartifactsexistforthepurposeofimprovingtheuserexperience.Trackingwhatusersdoandhavedoneandmakingthatinformationavailabletotheoperatingsystemtoimprovefutureuseisoneoftheprimaryreasonsfortheinformation;itsforensicvalueissecondary.

RegistryAnalysisThefirstandforemostWindowsartifactisthesystemRegistry,whichactsadatabaserepositoryofawholehostofinformationandprovidesaone-stopshopforawiderangeofWindowsforensicartifacts—whatapplicationshavebeeninstalled,useractivity,activityassociatedwithexternaldevices,andmore.Althoughthespecificartifactsneededinaninvestigationdifferbasedonthescopeoftheinvestigation,itissafetoassumethatmetadatarecordedbytheWindowsoperatingsystemwillserveausefulpurposeintheinvestigation,especiallysincetheRegistryisstoredbyuserandthereforetheactivityrecordedintheRegistryisattributabletoauser.ThelistofartifactsstoredbytheRegistryisextremelylong,butsomeof

themajoronesincludeeventlogsofawiderangeofsystemandsecurityinformation.Thereisalsoawiderangeoffileactivityartifactsthatcanbeanalyzed,includinganalysisofshellbags,whichprovidesevidenceoffolderopening.LNKfilesandmostrecentlyused(MRU)elementscanpointtofilesystemactivity.Awiderangeofdate/timestampsonfiles,evendeletedfiles,canbepresentforexamination.TherearespecifictoolsetsdesignedtoforensicallyexploretheRegistryandretrievethedesiredartifactsfromthisvoluminousstore.

TechTip

WindowsUSBAnalysisWindowsrecordsawidearrayofinformationoneachUSBdeviceusedinthesystem,including:

Vendor/make/versionandpossiblyuniqueserialnumber

VolumenameandserialnumberLastdriveletterassigned

MountPoints2,aregistryentrythatstoresthelastdrivemappingperuserUsernamethatusedtheUSBdevice

TimeoffirstUSBdeviceconnectionTimeoflastUSBdeviceconnection

TimeoflastUSBdeviceremoval

Asmentionedbeforeandwillbementionedagain,Windowsforensicanalysisisnodifferentfromanyotherforensicanalysiswithrespecttoforensicprocedures.Skillandproficiencyinforensicproceduresisthemostimportantissuewhenanalyzingasystem,becausedamagemaymakeuseoftheinformationimpossible.

LinuxMetadataLinuxsystemshavetheirownsetsofartifacts.Fromaforensicsperspective,LinuxsystemsdifferfromWindowssystemsinthreemainways:

NoregistryProgramdataisstoredinscatteredlocations.DifferentfilesystemAmultitudeofdifferentfilesystemsareused,eachwithdifferentattributes.

PlaintextaboundsFilesanddatatendtobeinplaintext,whichimpactssearching.

Thelackofaregistrytoholdsystemandprograminformationdoesnotmeanthattheinformationisnotthere;itjustmeansthatitisdistributed.Thesameistrueoffilesystems.Ratherthanofferingonlytwofilesystemstructures(NTFSandFAT),Linuxcomeswithawholehostofdifferentforms.Eachofthesehasquirks,suchasnofilecreationdatesinmanyof

them,andthezeroingofmetadatawhenfilesaredeletedresultsinforensicchallenges.WhenitcomestoperformingforensicsonaLinuxsystem,thevalueof

agoodsysadmincannotbeunderstated.ManyoftheartifactsofactivityonaLinuxsystemarescatteredtovariouslocallocations,andagoodsysadmincanassistinlocatingandrecoveringtheessentialelementsforanalysis.Thisisnotalicenseforasysadmintobeginperformingforensicactivities!Thesamerulesandproceduralrequirementslistedearlierstillapply,andinmostcasesthisnecessitatestheuseofforensicallytrainedprofessionals.

DeviceForensicsDeviceforensicsistheapplicationofdigitalforensicprinciplestodevices—mobilephones,tablets,theendlesslistofdevicesthatcomprisethe“InternetofThings,”andmore.Thefactthatitisadevicedoesnotchangetheprinciplespertainingtothecollectionandhandlingofevidence.Alloftheforensicprinciplesstillapplyandarejustasimportant.Whatdoeschangearethetoolsandprocessesemployedtoretrieveandanalyzethedata.Thisisbecausethefilesystems,datastructures,operatingsystems,andartifactsaredifferentthanthoseintheworldofserversandPCs.

TechTip

SSDForensicsTheadventofsolidstatedrivesbringssubstantialimprovementsinperformance.Italsobringsnewissueswithrespecttoforensics.Becauseofthewaythesystemisdesigned,alotof“standard”artifactsthatwouldbefoundinamagneticmemorysystemarenotpresentinsolidstatedrives.Asthesedrivesarecommonindevices,forensicanalystshavetotakeallofthesetechnicalissuesintoconsiderationwhenattemptingtoreconstructwhathappened.

NetworkForensics

Networkforensicsisthecapture,recording,andanalysisofnetworkeventsinordertodiscoverthesourceofnetworkproblemsorsecurityincidents.Examiningnetworksinaforensicfashionintroducesseveralchallenges.Firstisscale.Thescaleofanetworkisrelatedtothenumberofnodesandthespeedoftraffic.Secondistheissueofvolume.Packetcaptureisnottechnicallydifficult,butitcannecessitatelargequantitiesofstorage.Andalthoughstorageisrelativelycheap,largenumbersofpacketscanbedifficulttosortthroughandanalyze.Becauseoftheseissues,—networkforensicsbecomesanissueofspecificity;ifyouknowwhattargetandwhatprotocolsyouarelookingfor,youcanselectivelycaptureandanalyzethetrafficforthosesegmentsandhavedatathatisuseful.Butthereinliestheotherchallenge.Networkdataistemporal.Itexistswhilethepacketisintransitandthenitisgone,forever.MetadatasuchasNetFlowdatacanprovidesomeinformation,butitdoesnotcontainanycontentofthedatabeingtransmitted.Asageneral-purposetool,networkforensicsisnearlyimpossible

becauseofthescaleissues.Butinspecificsituations,suchasinfrontofhigh-valuetargetsthathavelimiteddatamovement,itcanprovetobevaluable.Itcanalsobevaluableintroubleshootingongoingincidentsandproblemsinthenetwork.Thesamerulesapplytonetworkforensicsasapplytoallotherforensic

collectionefforts.Preservingtheintegrityofthedataisparamount,andmaintainingcontroloverthedataisalwaysachallenge.Forensicrules(admissibility,chainofcustody,etc.)donotchangebecausethesourceofdatahaschanged.

E-DiscoveryElectronicdiscovery,ore-discovery,isthetermusedforthedocumentanddataproductionrequirementsaspartoflegaldiscoveryincivillitigation.Whenacivillawsuitisfiled,undercourtapproval,afirmcanbecompelledtoturnoverspecificdatafromsystemspursuanttothelegalissueathand.Electronicinformationisconsideredtobethesameaspaper

documentsinsomerespectsandcompletelydifferentinothers.Theevidentiaryvaluecanbeidentical.Thefragilitycanbesubstantial—electronicrecordscanbechangedwithoutleavingatrace.Electronicdocumentscanalsohavemetadataassociatedwiththedocuments,suchaswhoeditedthedocument,previousversioninformation,andmore.Oneofthepressingchallengesintoday’senterpriserecordstoreisthe

maintenanceofthevolumesofelectronicinformation.Keepingtrackoftheinformationstoresbasedonawiderangeofsearchtermsisessentialtocomplywithe-discoveryrequests.Itiscommonforsystemstouseforensicprocessesandtoolstoperforme-discoverysearches.

ReferenceModelEDRM,acoalitionofconsumersandprovidersfocusedonimprovinge-discoveryandinformationgovernance,hascreatedareferencemodelfore-discovery.TheElectronicDiscoveryReferenceModel,showninFigure23.4,providesaframeworkfororganizationstopreparefore-discovery.ThemajorstepsoftheframeworkarethoroughlydescribedontheEMDRwebsite(http://edrm.net).AdditionalresourcesavailablefromEDRMincludeXMLschemas,glossaries,metric,andmore.

•Figure23.4ElectronicDiscoveryReferenceModel(courtesyofEDRM,EDRM.net)

BigDataItmayseemthatbigdataisalltherageinbusinesstoday,butinrealityitissimplyadescriptionofthetimes.Wehavecreatedlargedatastoresinmostenterprises,abyproductofcheapstorageandtheubiquityoftheInternet.Bigdataisanissueine-discoveryaswell.Thecataloging,storage,andmaintenanceofcorporaterecordsoftenbecomesabigdataissue.Thisfacilitatestheuseofbigdatamethodsinmanycases.Thisisanareaofrapiddevelopment,bothforforensicsande-discovery,asdatavolumescontinuetogrowexponentially.

CloudThecloudhasbecomearesourceforenterpriseITsystems,andassuchitisintimatelyinvolvedinbothe-discoveryandforensics.Havingdatathatmayormaynotbedirectlyaccessedbythetoolsofe-discoveryandforensicscancomplicatetheneededprocesses.Anadditionalcomplicationisthelegalissuesassociatedwiththecontractsbetweentheorganizationandthecloudprovider.Asbothforensicsande-discoveryaresecondaryprocessesfromabusinessperspective,theymayormaynotbeaddressedinastandardcloudagreement.Becausetheseprocessescanbecomeimportant—andiftheydo,itmaybetoolatetocontractuallyaddressthem—itbehoovesanorganizationtopreparebyaddressingthemincloudagreementswiththirdparties.

Chapter23Review

LabManualExercisesThefollowinglabexercisesfromthecompanionlabmanual,PrinciplesofComputerSecurityLabManual,FourthEdition,providepractical

applicationofmaterialcoveredinthischapter:

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaboutincidentresponseandforensics.

Explorethebasicsofdigitalforensics

Digitalforensicsisthecollectionofprocessesandproceduresusedtopreparedigitalinformationforuseinlegaloradministrativeproceedings.

Becauseoftheimportanceofveracityandthefragilityofdigitaldatatointegrityviolationsthatcannotbedetected,itisimperativethatprocessesbecompleteandcomprehensive.

Identifytherulesandtypesofevidence

Evidencemustmeetthethreestandardsofbeingsufficient,competent,andrelevantifitistobeusedinlegalproceedings.

Therearefourdifferenttypesofevidence:direct,real,documentary,anddemonstrative.

Therearethreerulesregardingevidence:thebestevidencerule,theexclusionaryrule,andthehearsayrule.

Collectevidence

Evidencemustbeproperlycollected,protected,andcontrolledtobeofvalueduringcourtordisciplinaryactivities.

Whenacquiringevidence,onemustbedeliberatetoensureevidenceisnotdamagedandoperationsarenotnegativelyimpacted.

Preserveevidence

Evidencemustbeproperlymarkedsothatitcanbereadilyidentifiedasthatparticularpieceofevidencegatheredatthescene.

Evidencemustbeprotectedsothatitisnottamperedwith,damaged,orcompromised.

Evidenceshouldbetransportedcautiouslytoensurecustodyoftheevidenceismaintainedandtheevidenceitselfisnottamperedwithordamaged.

Evidenceshouldbestoredinproperlycontrolledareasandconditions.

Whenconductinganinvestigationoncomputercomponents,onemustbedeliberateandcautioustoensureevidenceisnotdamaged.

Maintainaviablechainofcustody

Achainofcustodythataccountsforallpersonswhohandledorhaveaccesstotheevidencemustbemaintainedtopreventevidencetamperingordamage.

Investigateacomputercrimeorpolicyviolation

Informationcanberecordedandpossiblyhiddeninvariouswaysonacomputer.Sometimesinformationwillbehiddenineitherthefreespaceortheslackspaceofthecomputer’sdiskdrive.

Freespaceisthespace(clusters)onastoragemediumthatisavailablefortheoperatingsystemtouse.

Slackspaceistheunusedspaceonadiskdrivecreatedwhenafileissmallerthantheallocatedunitofstorage,suchasacluster.

Theuseofamessagedigestorhashingalgorithmisessentialtoensurethatinformationstoredonacomputer’sdiskdriveshasnotbeenchanged.

Iftheinformationinthedatastreamorfileischanged,adifferentmessagedigestwillresult,indicatingthefilehasbeentamperedwith.

Forensicanalysisofdatastoredonaharddrivecanbeginoncethedrivehasbeenimagedandmessagedigestsofimportantfileshavebeencalculatedandstored.

AnalysistypicallyinvolvesinvestigatingtheRecycleBin,webbrowserandaddressbarhistoryfiles,cookiefiles,temporaryInternetfilefolders,suspectfiles,andfreespaceandslackspace.

Experienceandknowledgeareyourmostvaluabletoolsavailablewhenperformingcomputerforensicactivities.

ExamineSystemartifacts

Differentsystemscanhavedifferentartifactsbasedontheoperatingsystemandequipmentemployed.

WindowsandLinuxsystemshavemanysimilarartifacts,althoughtheyarelocatedindifferentareasandpreservedindifferentways.

DevelopForensicpoliciesandprocedures

Theoverarchingprincipleforalldigitalforensicinvestigationsis

properprocedures.Anydeviationfromproperprocedurescanpermanentlyalterevidenceandrenderinformationunusableinfollow-onprocedures,whethercriminal,civil,oradministrative.Ensuringproperproceduresbytrainedprofessionalsisessentialfromthefirstaspectofaninvestigation.

Examinethepoliciesandproceduresassociatedwithe-discovery

E-discovery,isthetermusedforthedocumentanddataproductionrequirementsaspartoflegaldiscoveryincivillitigation

TheElectronicDiscoveryReferenceModel,providesaframeworkfororganizationstopreparefore-discovery.

KeyTermsbestevidencerule(677)competentevidence(677)demonstrativeevidence(676)deviceforensics(688)directevidence(676)documentaryevidence(676)evidence(675)exclusionaryrule(677)forensics(675)freespace(686)hearsayrule(677)magicnumber(687)networkforensics(689)partition(686)realevidence(676)relevantevidence(677)slackspace(686)

stream(687)sufficientevidence(677)writeblocker(683)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.EvidencecollectedinviolationoftheFourthAmendmentoftheU.S.Constitution,theElectronicCommunicationsPrivacyAct(ECPA),orotheraspectsoftheU.S.Codemaynotbeadmissibletoacourtunderthetermsofthe_______________.

2.Evidencethatislegallyqualifiedandreliableis_______________.3.Documents,verbalstatements,andmaterialobjectsadmissibleina

courtoflawarecalled_______________.

4.Therulewherebycourtspreferoriginalevidenceratherthanacopytoensurethatnoalterationoftheevidence(whetherintentionalorunintentional)hasoccurredistermedthe_______________.

5.Evidencethatisconvincingormeasuresupwithoutquestionis_______________.

6._______________isthepreservation,identification,documentation,andinterpretationofcomputerdatatobeusedinlegalproceedings.

7._______________isevidencethatismaterialtothecaseorhasabearingonthematterathand.

8._______________istheunusedspaceonadiskdrivewhenafileissmallerthantheallocatedunitofstorage.

9._______________isoraltestimonyorotherevidencethatprovesaspecificfact(suchasaneyewitness’sstatement,fingerprint,photo,

andsoon).Theknowledgeofthefactsisobtainedthroughthefivesensesofthewitness.Therearenoinferencesorpresumptions.

10._______________istheremainingsectorsofapreviouslyallocatedfilethatareavailablefortheoperatingsystemtouse.

Multiple-ChoiceQuiz1.Whichofthefollowingcorrectlydefinesevidenceasbeing

competent?

A.Theevidenceismaterialtothecaseorhasabearingonthematterathand.

B.Theevidenceispresentedintheformofbusinessrecords,printouts,orotheritems.

C.Theevidenceisconvincingormeasuresupwithoutquestion.

D.Theevidenceislegallyqualifiedandreliable.

2.Whichofthefollowingcorrectlydefinesevidenceasbeingrelevant?

A.Theevidenceismaterialtothecaseorhasabearingonthematterathand.

B.Theevidenceispresentedintheformofbusinessrecords,printouts,orotheritems.

C.Theevidenceisconvincingormeasuresupwithoutquestion.

D.Theevidenceislegallyqualifiedandreliable.

3.Whichofthefollowingcorrectlydefinesdocumentaryevidence?A.Theevidenceispresentedintheformofbusinessrecords,

printouts,manuals,andotheritems.

B.Theknowledgeofthefactsisobtainedthroughthefivesenses

ofthewitness.

C.Theevidenceisusedtoaidthejuryandmaybeintheformofamodel,experiment,chart,orotheritemandbeofferedtoproveaneventoccurred.

D.Physicalevidencethatlinksthesuspecttothesceneofacrime.

4.Whichofthefollowingcorrectlydefinesrealevidence?A.Theevidenceisconvincingormeasuresupwithoutquestion.

B.Theevidenceismaterialtothecaseorhasabearingonthematterathand.

C.Theevidenceisusedtoaidthejuryandmaybeintheformofamodel,experiment,chart,orotheritemandbeofferedtoproveaneventoccurred.

D.Tangibleobjectsthatproveordisproveafact.

5.Whichofthefollowingistheleastrigorousinvestigativemethod?A.Usingadedicatedforensicworkstation

B.Verifyingsoftwareonasuspectsystemandusingthatsoftwarefortheinvestigation

C.Examiningthesuspectsystemusingitssoftwarewithoutverification

D.BootingthesuspectsystemwithaverifiedfloppyorCD,kernel,andtools

6.Whichofthefollowingcorrectlydefinesslackspace?A.Thespaceonadiskdrivethatisoccupiedbythebootsector

B.Thespacelocatedatthebeginningofapartition

C.Theremainingsectorsofapreviouslyallocatedfilethatare

availablefortheoperatingsystemtouse

D.Theunusedspaceonadiskdrivewhenafileissmallerthantheallocatedunitofstorage

7.Whichofthefollowingcorrectlydescribestheminimumcontentsofanevidencecontrollogbook?

A.Description,Investigator,Case#,Date,Time,Location,Reason

B.Description,Investigator,Case#,Date,Location,Reason

C.Description,Case#,Date,Time,Location,Reason

D.Description,Coroner,Case#,Date,Time,Location,Reason

8.Whichofthefollowingcorrectlydescribesthechainofcustodyforevidence?

A.Theevidenceisconvincingormeasuresupwithoutquestion.

B.Accountsforallpersonswhohandledorhadaccesstoaspecificitemofevidence.

C.Description,Investigator,Case#,Date,Time,Location,Reason.

D.Theevidenceislegallyqualifiedandreliable.

9.Whichofthefollowingcorrectlydefinestheexclusionaryrule?A.AnyevidencecollectedinviolationoftheFourthAmendment

isnotadmissibleasevidence.

B.Theevidenceconsistsoftangibleobjectsthatproveordisproveafact.

C.Theknowledgeofthefactsisobtainedthroughthefivesensesofthewitness.

D.Theevidenceisusedtoaidthejuryandmaybeintheformofa

model,experiment,chart,orthelike,offeredtoproveaneventoccurred.

10.Whichofthefollowingcorrectlydefinesfreespace?A.Theunusedspaceonadiskdrivewhenafileissmallerthanthe

allocatedunitofstorage(suchasasector)

B.Thespaceonadiskdrivethatisoccupiedbythebootsector

C.Thespacelocatedatthebeginningofapartition

D.Theremainingsectorsofapreviouslyallocatedfilethatareavailablefortheoperatingsystemtouse

EssayQuiz1.Asupervisorhasbroughttoyourofficeaconfiscatedcomputerthat

wasallegedlyusedtoviewinappropriatematerial.Hehasaskedyoutolookforevidencetosupportthisallegation.Becauseyouworkforasmallcompany,youdonothaveanextracomputeryoucandedicatetoyouranalysis.Howwouldyoubootthesystemandbeginforensicanalysis?Provideareasonforyourmethod.

2.Explainwhyyoushouldalwayssearchthefreespaceandslackspaceifyoususpectapersonhasdeliberatelydeletedfilesorinformationonaworkstationthatyouareanalyzing.

3.Youhavebeenaskedbymanagementtosecurethelaptopcomputerofanindividualwhowasjustdismissedfromthecompanyunderunfavorablecircumstances.Pretendthatyourowncomputeristhelaptopthathasbeensecured.Makethefirstentryinyourlogbookanddescribehowyouwouldstartthisincidentoffcorrectlybyproperlyprotectingandsecuringtheevidence.

LabProjects

•LabProject23.1UseanMD5orSHA-1algorithmtoobtainthehashvalueforafileofyourchoice.Recordthehashvalue.Changethefilewithawordprocessorortexteditor.Obtainthehashvalueforthemodifiedfile.Comparetheresult.

•LabProject23.2Tounderstandwhatinformationisstoredonyourcomputer,examinethecontentsoftheTemporaryInternetFilesfoldersonyourowncomputer.Reviewthefilenamesandexaminethecontentsofafewofthefiles.Describehowthisinformationcouldbeusedasevidenceofacrime.

chapter24 LegalIssuesandEthics

Ifyouhavetenthousandregulationsyoudestroyallrespectforthelaw.

—WINSTONCHURCHILL

C

Inthischapter,youwilllearnhowto

Explainthelawsandrulesconcerningimportingandexportingencryptionsoftware

Identifythelawsthatgoverncomputeraccessandtrespass

Identifythelawsthatgovernencryptionanddigitalrightsmanagement

Describethelawsthatgoverndigitalsignatures

Exploreethicalissuesassociatedwithinformationsecurity

omputersecurityisnodifferentfromanyothersubjectinoursociety;astechnologicalchangesresultinconflicts,lawsareenactedtoenabledesiredbehaviorsandprohibitundesiredbehaviors.Theone

substantialdifferencebetweenthisaspectofoursocietyandothersisthatthespeedofadvancementintheinformationsystemsworldasdrivenbybusiness,computernetworkconnectivity,andtheInternetismuchgreaterthaninthelegalsystemofcompromiseandlawmaking.Insomecases,lawshavebeenoverlyrestrictive,limitingbusinessoptions,suchasintheareaofimportingandexportingencryptiontechnology.Inothercases,legislationhasbeenslowincoming,andthisfacthasstymiedbusinessinitiatives,suchasindigitalsignatures.Andinsomeareas,legislationhasbeenbothtoofastandtooslow,asinthecaseofprivacylaws.Onethingiscertain:youwillneversatisfyeveryonewithalaw,butitdoesdelineatetherulesofthegame.

Thecyber-lawenvironmenthasnotbeenfullydefinedbythecourts.Lawshavebeenenacted,butuntiltheyhavebeenfullytestedandexploredbycasesincourt,theexactlimitsaresomewhatunknown.Thismakessomeaspectsofinterpretationmorechallenging,butthevastmajorityofthelegalenvironmentisknownwellenoughthateffectivepoliciescanbeenactedtonavigatethisenvironmentproperly.Policiesandproceduresaretoolsyouusetoensureunderstandingandcompliancewithlawsandregulationsaffectingcyberspace.

CybercrimeOneofthemanywaystoexaminecybercrimeistostudyhowthecomputerisinvolvedinthecriminalact.Threetypesofcomputercrimescommonlyoccur:computer-assistedcrime,computer-targetedcrime,andcomputer-incidentalcrime.Thedifferentiatingfactorisinhowthecomputerisspecificallyinvolvedfromthecriminal’spointofview.Justascrimeisnotanewphenomenon,neitheristheuseofcomputers,andcybercrimehasahistoryofseveraldecades.

ExamTip:Therearethreeformsofcomputerinvolvementincriminalactivity:

Thecomputerasatoolofthecrime

ThecomputerasavictimofacrimeThecomputerthatisincidentaltoacrime

Whatisnewishowcomputersareinvolvedincriminalactivities.Thedaysofsimpleteenagehackingactivitiesfromabedroomhavebeenreplacedbyorganizedcrime–controlledbotnets(groupsofcomputerscommandeeredbyamalicioushacker)andactsdesignedtoattackspecifictargets.Thelegalsystemhasbeenslowtoreact,andlawenforcementhasbeenhamperedbytheirownchallengesinrespondingtothenewthreatsposedbyhigh-techcrime.Whatcomestomindwhenmostpeoplethinkaboutcybercrimeisa

computerthatistargetedandattackedbyanintruder.Thecriminalattemptstobenefitfromsomeformofunauthorizedactivityassociatedwithacomputer.Inthe1980sand’90s,cybercrimewasmainlyvirusandwormattacks,eachexactingsomeformofdamage,yetthegainforthecriminalwasusuallynegligible.Enterthe21stcentury,withnewformsofmalware,rootkits,andtargetedattacks;criminalscannowtargetindividualusersandtheirbankaccounts.Inthecurrentenvironmentitis

easytopredictwherethisformofattackwilloccur—ifmoneyisinvolved,acriminalwillattempttoobtainacut.Acommonmethodofcriminalactivityiscomputer-basedfraud.AdvertisingontheInternetisbigbusiness,andhencethe“new”crimeofclickfraudisnowaconcern.Clickfraudinvolvesapieceofmalwarethatdefraudstheadvertisingrevenuecounterenginethroughfraudulentuserclicks.TheleaderintheInternetauctionspace,eBay,anditssubsidiary,

PayPal,arefrequenttargetsoffraud.Whetherthefraudoccursbyfraudulentlisting,fraudulentbidding,oroutrightstealingofmerchandise,theresultsarethesame:acrimeiscommitted.Asusersmovetowardonlinebankingandstocktrading,somovesthecriminalelement.Malwaredesignedtoinstallakeystrokeloggerandthenwatchforbank/brokerageloginsiscommonontheInternet.Oncetheattackerfindsthetargets,hecanbeginlootingaccounts.Hisriskofgettingcaughtandprosecutedisexceedinglylow.WalkintoabankintheUnitedStatesandrobit,andtheoddsarebetterthan95percentthatyouwillbedoingtimeinfederalprisonaftertheFBIhuntsyoudownandslapsthecuffsonyourwrists.Dothesamecrimeviaacomputer,andtheoddsareevenbetterfortheopposite:lessthan1percentoftheseattackersarecaughtandprosecuted.Thelowriskofbeingcaughtisoneofthereasonsthatcriminalsare

turningtocomputercrime.Justascomputershavebecomeeasyforordinarypeopletouse,thetrendcontinuesforthecriminalelement.Today’scybercriminalsusecomputersastoolstostealintellectualpropertyorothervaluabledataandthensubsequentlymarketthesematerialsthroughundergroundonlineforums.Usingthecomputertophysicallyisolatethecriminalfromthedirecteventofthecrimehasmadetheinvestigationandprosecutionofthesecrimesmuchmorechallengingforauthorities.Thelastwaycomputersareinvolvedwithcriminalactivitiesisthrough

incidentalinvolvement.Backin1931,theU.S.governmentusedaccountingrecordsandtaxlawstoconvictAlCaponeoftaxevasion.Today,similarrecordsarekeptoncomputers.Computersarealsousedtotrafficchildpornographyandengageinotherillicitactivities—these

computersactmoreasstoragedevicesthanasactualtoolstoenablethecrime.Becausechildpornographyexistedbeforecomputersmadeitsdistributioneasier,thecomputerisactuallyincidentaltothecrimeitself.Withthethreeformsofcomputerinvolvementincriminalactivities,

multipliedbythemyriadofwaysacriminalcanuseacomputertostealordefraud,addedtotheindirectconnectionmediatedbythecomputerandtheInternet,computercrimeofthe21stcenturyisacomplexproblemindeed.Technicalissuesareassociatedwithalltheprotocolsandarchitectures.Amajorlegalissueistheeducationoftheentirelegalsystemastotheseriousnatureofcomputercrimes.AllthesefactorsarefurthercomplicatedbytheuseoftheInternettoseparatethecriminalandhisvictimgeographically.Imaginethisdefense:“Yourhonor,asshownbymyclient’selectronicmonitoringbracelet,hewasinhisapartmentinCaliforniawhenthiscrimeoccurred.ThevictimclaimsthatthemoneywasremovedfromhislocalbankinNewYorkCity.Now,lasttimeIchecked,NewYorkCitywasalongwayfromLosAngeles,sohowcouldmyclienthaverobbedthebank?”

TechTip

FBIPrioritiesInthepost-9/11environment,federallawenforcementprioritiesshiftedtowardterrorism.Duringthereassessmentofnationallawenforcementpriorities,cyber-relatedcrimesincreasedinimportance,movingtonumberthreeontheFBIprioritylist.Asof2014,theprioritiesfortheFBIare(www.fbi.gov/quickfacts.htm)asfollows:

1.ProtecttheUnitedStatesfromterroristattack.

2.ProtecttheUnitedStatesagainstforeignintelligenceoperationsandespionage.3.ProtecttheUnitedStatesagainstcyber-basedattacksandhigh-technologycrimes.

4.Combatpubliccorruptionatalllevels.5.Protectcivilrights.

6.Combattransnational/nationalcriminalorganizationsandenterprises.7.Combatmajorwhite-collarcrime.

8.Combatsignificantviolentcrime.

9.Supportfederal,state,local,andinternationalpartners.10.UpgradetechnologytosuccessfullyperformtheFBI’smission.

CommonInternetCrimeSchemesTofindcrime,justfollowthemoney.IntheUnitedStates,theFBIandtheNationalWhiteCollarCrimeCenter(NW3C)havejoinedforcesindevelopingtheInternetCrimeComplaintCenter(IC3),anonlineclearinghousethatcommunicatesissuesassociatedwithcybercrime.OneoftheitemsprovidedtotheonlinecommunityisalistofcommonInternetcrimeschemesandexplanationsofeach(www.ic3.gov/crimeschemes.aspx).Aseparatelistoffersadviceonhowtopreventthesecrimesthroughindividualactions(www.ic3.gov/preventiontips.aspx).

SourcesofLawsIntheUnitedStates,threeprimarysourcesoflawsandregulationsaffectourlivesandgovernouractions.Astatutorylawispassedbyalegislativebranchofgovernment,beittheU.S.Congressoralocalcitycouncil.Anothersourceoflawsandregulationsisadministrativebodiesgivenpowerbyotherlegislation.Thepowerofgovernment-sponsoredagencies,suchastheEnvironmentalProtectionAgency(EPA),theFederalAviationAdministration(FAA),theFederalCommunicationCommission(FCC),andothers,liesinthispowerfulabilitytoenforcebehaviorsthroughadministrativerulemaking,oradministrativelaw.ThelastsourceoflawintheUnitedStatesiscommonlaw,orcaselaw,whichisbasedonpreviouseventsorprecedent.Thissourceoflawcomesfromthejudicialbranchofgovernment:judgesdecideontheapplicabilityoflawsandregulations.

ExamTip:Threetypesoflawsarecommonlyassociatedwithcybercrime:statutorylaw,administrativelaw,andcommonlaw(alsocalledcaselaw).

Allthreesourceshaveaninvolvementincomputersecurity.Specificstatutorylaws,suchastheComputerFraudandAbuseAct(CFAA),governbehavior.TheCFAAisdesignedtodealwithcasesofinterstatecomputerfraudandcasesofaccessingnationalsecurityinformation.Thelawhasbeenamendedseveraltimestokeeppacewithtechnology.TheprimarychargefromCFAAistypicallyoneofaccessingwithoutauthority,orexceedingauthorityon,asysteminvolvedwithinterstatecommerceornationalsecurity.Administratively,theFCCandFederalTradeCommission(FTC)havemadetheirpresencefeltintheInternetarenawithrespecttoissuessuchasintellectualpropertytheftandfraud.Commonlawcasesarenowworkingtheirwaysthroughthejudicialsystem,cementingtheissuesofcomputersandcrimesintothesystemofprecedentsandconstitutionalbasisoflaws.

ComputerTrespassWiththeadventofglobalnetworkconnectionsandtheriseoftheInternetasamethodofconnectingcomputersbetweenhomes,businesses,andgovernmentsacrosstheglobe,anewtypeofcriminaltrespasscannowbecommitted.Computertrespassistheunauthorizedentryintoacomputersystemviaanymeans,includingremotenetworkconnections.Thesecrimeshaveintroducedanewareaoflawthathasbothnationalandinternationalconsequences.Forcrimesthatarecommittedwithinacountry’sborders,nationallawsapply.Forcross-bordercrimes,internationallawsandinternationaltreatiesarethenorm.Computer-basedtrespasscanoccurevenifcountriesdonotshareaphysicalborder.Computertrespassistreatedasacrimeinmanycountries.Nationallaws

againstcomputetrespassexistinmanycountries,includingCanada,the

UnitedStates,andthememberstatesoftheEuropeanUnion(EU).Theselawsvarybycountry,buttheyallhavesimilarprovisionsdefiningtheunauthorizedentryintoanduseofcomputerresourcesforcriminalactivities.WhethercalledcomputermischiefasinCanadaorcomputertrespassasintheUnitedStates,unauthorizedentryanduseofcomputerresourcesistreatedasacrimewithsignificantpunishments.Withtheglobalizationofthecomputernetworkinfrastructure,orInternet,issuesthatcrossnationalboundarieshavearisenandwillcontinuetogrowinprominence.Someoftheseissuesaredealtwiththroughtheapplicationofnationallawsuponrequestofanothergovernment.Inthefuture,aninternationaltreatymaypavethewayforclosercooperation.

Computertrespassisaconvenientcatchalllawthatcanbeusedtoprosecutecybercriminalswhenevidenceofothercriminalbehavior,suchasonlinefraud,identitytheft,andsoforth,istooweaktoachieveaconviction.

ConventiononCybercrimeTheConventiononCybercrimeisthefirstinternationaltreatyoncrimescommittedviatheInternetandothercomputernetworks.TheconventionistheproductoffouryearsofworkbytheCouncilofEurope(CoE),butalsobytheUnitedStates,Canada,Japan,andothernon-CoEcountries.TheconventionhasbeenratifiedandcameintoforceinJuly2004,andbySeptember2006,15membernationshadalsoratifiedit.TheUnitedStatesratifieditinthesummerof2006,withitenteringintoforceintheUnitedStatesinJanuary2007.OneofthemainobjectivesoftheConvention,setoutinthepreamble,is

“topursue,asamatterofpriority,acommoncriminalpolicyaimedattheprotectionofsocietyagainstcybercrime,interalia,byadoptingappropriatelegislationandfosteringinternationalcooperation.”Thishasbecomeanimportantissuewiththeglobalizationofnetworkcommunication.Theabilitytocreateavirusanywhereintheworldand

escapeprosecutionbecauseofthelackoflocallawshasbecomeaglobalconcern.Theconventiondealsparticularlywithinfringementsofcopyright,

computer-relatedfraud,childpornography,andviolationsofnetworksecurity.Italsocontainsaseriesofpowersandprocedurescovering,forinstance,searchesofcomputernetworksanddatainterception.Ithasbeensupplementedbyanadditionalprotocolmakinganypublicationofracistandxenophobicpropagandaviacomputernetworksacriminaloffense.Thissupplementaladditionisintheprocessofseparateratification.Oneofthechallengesofenactingelementssuchasthisconventionis

thevaryinglegalandconstitutionalstructuresfromcountrytocountry.Simplestatementssuchasabanonchildpornography,althoughclearlydesirable,canrunintocomplicatingissues,suchasconstitutionalprotectionsoffreespeechintheUnitedStates.Becauseofsuchissues,thiswell-intendedjointagreementwillhavevariationsacrossthepoliticalboundariesoftheworld.

SignificantU.S.LawsTheUnitedStateshasbeenaleaderinthedevelopmentanduseofcomputertechnology.Assuch,ithasalongerhistoryassociatedwithcomputers,andwithcybercrime.Becauselegalsystemstendtobereactiveandmoveslowly,thisleadershippositionhastranslatedintoaleadershippositionfromalegalperspectiveaswell.Theoneadvantageofthislegalleadershippositionistheconceptthatonceanitemisidentifiedandhandledbythelegalsysteminonejurisdiction,subsequentadoptioninotherjurisdictionsistypicallyquicker.

ElectronicCommunicationsPrivacyAct(ECPA)TheElectronicCommunicationsPrivacyAct(ECPA)of1986waspassedbyCongressandsignedbyPresidentReagantoaddressamyriadoflegalprivacyissuesthatresultedfromtheincreasinguseofcomputersandothertechnologyspecifictotelecommunications.Sectionsofthislaw

addresse-mail,cellularcommunications,workplaceprivacy,andahostofotherissuesrelatedtocommunicatingelectronically.SectionIwasdesignedtomodifyfederalwiretapstatutestoincludeelectroniccommunications.SectionII,knownastheStoredCommunicationsAct(SCA),wasdesignedtoestablishcriminalsanctionsforunauthorizedaccesstostoredelectronicrecordsandcommunications.SectionIIIcoverspenregistersandtapandtraceissues.Tapandtraceinformationisrelatedtowhoiscommunicatingwithwhomandwhen.Penregisterdataistheconversationinformation.AmajorprovisionofECPAwastheprohibitionagainstanemployer’s

monitoringanemployee’scomputerusage,includinge-mail,unlessconsentisobtained(forexample,clickingYesonawarningbannerisconsideredconsent).Otherlegalprovisionsprotectelectroniccommunicationsfromwiretapandoutsideeavesdropping,asusersareassumedtohaveareasonableexpectationofprivacyandaffordedprotectionundertheFourthAmendmenttotheConstitution.

CrossCheckCybercrimeandPrivacyCybercrimeandprivacyareconceptsthatarefrequentlyinterconnected.Identitytheftisoneofthefastest-risingcrimes.HowdoesusingyourpersonalcomputertoaccesstheInternetincreaseyourriskintoday’sworld?Canyoulistadozenspecificrisksyouarepersonallyexposedto?Privacyissues,beingasignificanttopicintheirownright,arecoveredinChapter25.

Acommonpracticewithrespecttocomputeraccesstodayistheuseofawarningbanner.Thesebannersaretypicallydisplayedwheneveranetworkconnectionoccursandservefourmainpurposes.First,fromalegalstandpoint,theyestablishthelevelofexpectedprivacy(usuallynoneonabusinesssystem).Second,theyservenoticetoendusersoftheintenttoconductreal-timemonitoringfromabusinessstandpoint.Real-timemonitoringcanbeconductedforsecurityreasons,businessreasons,ortechnicalnetworkperformancereasons.Third,theyobtaintheuser’s

consenttomonitoring.Thekeyisthatthebannertellsusersthattheirconnectiontothenetworksignalstheirconsenttomonitoring.Consentcanalsobeobtainedtolookatfilesandrecords.Inthecaseofgovernmentsystems,consentisneededtopreventdirectapplicationoftheFourthAmendment.Andthelastreasonisthatthewarningbannercanestablishthesystemornetworkadministrator’scommonauthoritytoconsenttoalawenforcementsearch.

ComputerFraudandAbuseAct(1986)TheComputerFraudandAbuseAct(CFAA)of1986,amendedin1994,1996,in2001bytheUSAPatriotAct,andin2008bytheIdentityTheftEnforcementandRestitutionAct,servesasthecurrentfoundationforcriminalizingunauthorizedaccesstocomputersystems.CFAAmakesitacrimetoknowinglyaccessacomputerthatiseitherconsideredagovernmentcomputerorusedininterstatecommerce,ortouseacomputerinacrimethatisinterstateinnature,whichintoday’sInternet-connectedagecanbealmostanymachine.Theactsetsfinancialthresholdsfordefiningacriminalact,whichwereloweredbythePatriotAct,butinlightoftoday’sinvestigationcosts,theseareeasilymet.Theactalsomakesitacrimetoknowinglytransmitaprogram,code,orcommandthatresultsindamage.Traffickinginpasswordsorsimilaraccessinformationisalsocriminalized.Thisisawide-sweepingact,butthechallengeofprovingacasestillexists.

ControllingtheAssaultofNon-SolicitedPornographyAndMarketingActof2003(CAN-SPAM)TheCAN-SPAMActwasanattemptbytheU.S.governmenttoregulatecommerciale-mailbyestablishingnationalguidelinesandgivingtheFTCenforcementpowers.Theobjectiveofthelegislationwastocurbunsolicitedcommerciale-mail,orspam.Theacthasapplicabilitytomobilephonesaswell.Heraldedasactiontocurbtheriseofspam,sinceitsenactment,theacthasaverypoorrecord.

TechTip

HeaderManipulationFalsifyingheaderinformationisaseriousviolationoftheCAN-SPAMAct.ThiscanbeconsideredanindicatorofcriminalormaliciousintentandcanbringtheattentionofotherlawenforcementagenciesbesidestheFTC.

CAN-SPAMallowsunsolicitedcommerciale-mailaslongasitadherestothreerulesofcompliance:

UnsubscribeItmustincludeanobviousopt-outprovisiontoallowuserstounsubscribe,withtheserequestsbeinghonoredwithintendays.

ContentThecontentmustbeclearandnotdeceptive.Adultcontentmustbeclearlylabeled,andsubjectlinesmustbeclearandaccurate.

SendingbehaviorThesendermustnotuseharvestede-mailaddresses,falsifyheaders,oruseopenrelays.

CAN-SPAMmakesspecificexemptionsfore-mailpertainingtoreligiousmessages,politicalmessages,andnationalsecuritymessages.Thelawalsoblockspeoplewhoreceivespamfromsuingspammersandrestrictsstatesfromenactingandenforcingstrongerantispamstatutes.ThelawdoespermitISPstosuespammers,andthishasbeenusedbysomemajorISPstopursuecasesagainstlarge-scalespamoperations.MajorfirmssuchasAOLhaveconsideredthelawusefulintheirbattleagainstspam.Regardedlargelyasineffective,statisticshaveshownthatveryfewprosecutionshavebeenpursuedbytheFTC.Theactpermitsbothcriminalchargesagainstindividualsandcivilchargesagainstentitiesinvolvedinsuspectedspammingoperations.

USAPatriotAct

TheUSAPatriotActof2001,passedinresponsetotheSeptember11terroristattacksontheWorldTradeCenterinNewYorkCityandthePentagonbuildinginArlington,Virginia,substantiallychangedthelevelsofchecksandbalancesinlawsrelatedtoprivacyintheUnitedStates.ThislawextendsthetapandtraceprovisionsofexistingwiretapstatutestotheInternetandmandatescertaintechnologicalmodificationsatISPstofacilitateelectronicwiretapsontheInternetandforISPstocooperatewiththegovernmenttoaidmonitoring.TheactalsopermitstheJusticeDepartmenttoproceedwithitsrolloutoftheCarnivoreprogram,aneavesdroppingprogramfortheInternet.MuchcontroversyexistsoverCarnivore,butuntilit’schanged,thePatriotActmandatesthatISPscooperateandfacilitatemonitoring.Inrecentactions,thenameCarnivorehasbeenretired,buttherightofthegovernmenttoeavesdropandmonitorcommunicationscontinuestobeahottopicandonewhereactionscontinue.ThePatriotActalsopermitsfederallawenforcementpersonneltoinvestigatecomputertrespass(intrusions)andenactscivilpenaltiesfortrespassers.

TechTip

ComputerMisuseTwomajorlaws,ECPAandCFAA(asamended),providewide-sweepingtoolsforlawenforcementtoconvictpeoplewhohackintocomputersorusethemtostealinformation.Bothlawshavebeenstrengthenedandprovidesignificantfederalpenalties.Theselawsarecommonlyusedtoconvictcriminalsofcomputermisuse,evenwhenotherchargesmayhaveapplied.

Gramm-Leach-BlileyAct(GLBA)InNovember1999,PresidentClintonsignedtheGramm-Leach-BlileyAct(GLBA),amajorpieceoflegislationaffectingthefinancialindustrythatincludessignificantprivacyprovisionsforindividuals.ThekeyprivacytenetsenactedinGLBAincludetheestablishmentofanopt-outmethodforindividualstomaintainsomecontrolovertheuseofthe

informationprovidedinabusinesstransactionwithamemberofthefinancialcommunity.GLBAisenactedthroughaseriesofrulesgovernedbystatelaw,federallaw,securitieslaw,andfederalrules.Theserulescoverawiderrangeoffinancialinstitutions,frombanksandthrifts,toinsurancecompanies,tosecuritiesdealers.SomeinternalinformationsharingisrequiredundertheFairCreditReportingAct(FCRA)betweenaffiliatedcompanies,butGLBAendedsharingtoexternalthird-partyfirms.

Sarbanes-OxleyAct(SOX)Inthewakeofseveralhigh-profilecorporateaccounting/financialscandalsintheUnitedStates,thefederalgovernmentin2002passedsweepinglegislation,theSarbanes-OxleyAct(SOX),overhaulingthefinancialaccountingstandardsforpubliclytradedfirmsintheUnitedStates.Thesechangeswerecomprehensive,touchingmostaspectsofbusinessinonewayoranother.Withrespecttoinformationsecurity,oneofthemostprominentchangeswastheprovisionofSection404controls,whichspecifythatallprocessesassociatedwiththefinancialreportingofafirmmustbecontrolledandauditedonaregularbasis.Sincethemajorityoffirmsusecomputerizedsystems,thisplacesinternalauditorsintotheITshops,verifyingthatthesystemshaveadequatecontrolstoensuretheintegrityandaccuracyoffinancialreporting.Thesecontrolshaveresultedincontroversyoverthecostofmaintainingthemversustheriskofnotusingthem.Section404requiresfirmstoestablishacontrol-basedframework

designedtodetectorpreventfraudthatwouldresultinmisstatementoffinancials.Insimpleterms,thesecontrolsshoulddetectinsideractivitythatwoulddefraudthefirm.Thishassignificantimpactsontheinternalsecuritycontrols,becauseasystemadministratorwithroot-levelaccesscouldperformmanyifnotalltasksassociatedwithfraudandwouldhavetheabilitytoalterlogsandcoverhistracks.Likewise,certainlevelsofpowerusersoffinancialaccountingprogramswouldalsohavesignificantcapabilitytoalterrecords.

PrivacyLawsThereisawiderangeofprivacylawsthatarerelevanttocomputers.Therearelawsforhealthcare(HIPAA)andeducationrecords(FERPA),aswellasothertypesofrecordsincludingvideorentalrecords.TheselawsaredescribedindetailinChapter25.

PaymentCardIndustryDataSecurityStandard(PCIDSS)Thepaymentcardindustry,includingthepowerhousesofMasterCardandVisa,throughitsPCISecurityStandardsCouncildesignedaprivate-sectorinitiativetoprotectpaymentcardinformationbetweenbanksandmerchants.ThePaymentCardIndustryDataSecurityStandard(PCIDSS)isasetofcontractualrulesgoverninghowcreditcarddataistobeprotected(seetheTechTipsidebar“PCIDSSObjectivesandRequirements”).Thecurrentversionis3.1,whichwasreleasedinApril2015.Thisisavoluntary,private-sectorinitiativethatisproscriptiveinitssecurityguidance.Merchantsandvendorscanchoosenottoadoptthesemeasures,butthestandardhasasteeppricefornoncompliance;thetransactionfeefornoncompliantvendorscanbesignificantlyhigher,finesupto$500,000canbelevied,andinextremecasestheabilitytoprocesscreditcardscanberevoked.

TechTip

PCIDSSObjectivesandRequirementsPCIDSSv3includessixcontrolobjectivescontainingatotalof12requirements:

1.BuildandMaintainaSecureNetworkRequirement1Installandmaintainafirewallconfigurationtoprotectcardholderdata

Requirement2Donotusevendor-supplieddefaultsforsystempasswordsandothersecurityparameters

2.ProtectCardholderDataRequirement3ProtectstoredcardholderdataRequirement4Encrypttransmissionofcardholderdataacrossopen,publicnetworks

3.MaintainaVulnerabilityManagementProgramRequirement5ProtectallsystemsagainstmalwareandregularlyupdateantivirussoftwareorprogramsRequirement6Developandmaintainsecuresystemsandapplications

4.ImplementStrongAccessControlMeasuresRequirement7Restrictaccesstocardholderdatabybusinessneed-to-knowRequirement8Identifyandauthenticateaccesstosystemcomponents

Requirement9Restrictphysicalaccesstocardholderdata

5.RegularlyMonitorandTestNetworksRequirement10Trackandmonitorallaccesstonetworkresourcesandcardholderdata

Requirement11Regularlytestsecuritysystemsandprocesses

6.MaintainanInformationSecurityPolicyRequirement12Maintainapolicythataddressesinformationsecurityforallpersonnel

PCIDSShastwodefinedtypesofinformation,cardholderdataandsensitiveauthenticationdata.TheprotectionrequirementsestablishedfortheseelementsaredetailedinTable24.1.

Table24.1 PCIDSSDataRetentionGuidelines

Import/ExportEncryptionRestrictionsEncryptiontechnologyhasbeencontrolledbygovernmentsforavarietyofreasons.Thelevelofcontrolvariesfromoutrightbanningtolittleornoregulation.Thereasonsbehindthecontrolvaryaswell,andcontroloverimportandexportisavitalmethodofmaintainingalevelofcontroloverencryptiontechnologyingeneral.Themajorityofthelawsandrestrictionsarecenteredontheuseofcryptography,whichwasuntilrecentlyusedmainlyformilitarypurposes.TheadventofcommercialtransactionsandnetworkcommunicationsoverpublicnetworkssuchastheInternethasexpandedtheuseofcryptographicmethodstoincludesecuringofnetworkcommunications.Asisthecaseinmostrapidlychangingtechnologies,thepracticemovesfasterthanlaw.Manycountriesstillhavelawsthatareoutmodedintermsofe-commerceandtheInternet.Overtime,theselaws

willbechangedtoservethesenewusesinawayconsistentwitheachcountry’sneeds.

U.S.LawExportcontrolsoncommercialencryptionproductsareadministeredbytheBureauofIndustryandSecurity(BIS)intheU.S.DepartmentofCommerce.TheresponsibilityforexportcontrolandjurisdictionwastransferredfromtheStateDepartmenttotheCommerceDepartmentin1996andupdatedonJune6,2002.RulesgoverningexportsofencryptionarefoundintheExportAdministrationRegulations(EAR),15C.F.R.Parts730–774.Sections740.13,740.17,and742.15aretheprincipalreferencesfortheexportofencryptionitems.

TechTip

WassenaarArrangementTheUnitedStatesupdateditsencryptionexportregulationstoprovidetreatmentconsistentwithregulationsadoptedbytheEuropeanUnion,easingexportandre-exportrestrictionsamongtheEUmemberstatesandArgentina,Australia,Canada,Croatia,Japan,NewZealand,Norway,RepublicofKorea,Russia,SouthAfrica,Switzerland,Turkey,Ukraine,andtheUnitedStates.ThemembernationsoftheWassenaarArrangementagreedtoremovekey-lengthrestrictionsonencryptionhardwareandsoftwarethatissubjecttocertainreasonablelevelsofencryptionstrength.Thisactioneffectivelyremoved“mass-market”encryptionproductsfromthelistofdual-useitemscontrolledbytheWassenaarArrangement.

Violationofencryptionexportregulationsisaseriousmatterandisnotanissuetotakelightly.Untilrecently,encryptionprotectionwasaccordedthesamelevelofattentionastheexportofweaponsforwar.WiththeriseoftheInternet,widespreadpersonalcomputing,andtheneedforsecureconnectionsfore-commerce,thispositionhasrelaxedsomewhat.TheU.S.encryptionexportcontrolpolicycontinuestorestonthree

principles:reviewofencryptionproductspriortosale,streamlinedpost-exportreporting,andlicensereviewofcertainexportsofstrongencryption

toforeigngovernmentendusers.ThecurrentsetofU.S.rulesrequiresnotificationtotheBISforexportinallcases,buttherestrictionsaresignificantlylessenedformass-marketproducts,asdefinedbyallofthefollowing:

Theyaregenerallyavailabletothepublicbybeingsold,withoutrestriction,fromstockatretailsellingpointsbyanyofthesemeans:

Over-the-countertransactions

Mail-ordertransactions

Electronictransactions

Telephonecalltransactions

Thecryptographicfunctionalitycannoteasilybechangedbytheuser.

Theyaredesignedforinstallationbytheuserwithoutfurthersubstantialsupportbythesupplier.

Whennecessary,detailsoftheitemsareaccessibleandwillbeprovided,uponrequest,totheappropriateauthorityintheexporter’scountryinordertoascertaincompliancewithexportregulations.

Mass-marketcommoditiesandsoftwareemployingakeylengthgreaterthan64bitsforthesymmetricalgorithmmustbereviewedinaccordancewithBISregulations.RestrictionsonexportsbyU.S.personstoterrorist-supportingstates,asdeterminedbytheU.S.DepartmentofState(currentlyIran,Sudan,andSyria),theirnationals,andothersanctionedentitiesarenotchangedbythisrule.

Asyoucansee,thisisaverytechnicalarea,withsignificantrulesandsignificantpenaltiesforinfractions.Thebestruleisthatwheneveryouarefacedwithasituationinvolvingtheexportofencryption-containingsoftware,firstconsultanexpertandgettheappropriatepermissionorastatementthatpermissionisnotrequired.Thisisonecasewhereitisbetter

tobesafethansorry.

Non-U.S.LawsExportcontrolrulesforencryptiontechnologiesfallundertheWassenaarArrangement,aninternationalarrangementonexportcontrolsforconventionalarmsanddual-usegoodsandtechnologies(seetheTechTipsidebar,“WassenaarArrangement”).TheWassenaarArrangementwasestablishedtocontributetoregionalandinternationalsecurityandstabilitybypromotingtransparencyandgreaterresponsibilityintransfersofconventionalarmsanddual-usegoodsandtechnologies,thuspreventingdestabilizingaccumulations.Participatingstates,ofwhichtheUnitedStatesisoneof41,willseek,throughtheirownnationalpoliciesandlaws,toensurethattransfersoftheseitemsdonotcontributetothedevelopmentorenhancementofmilitarycapabilitiesthatunderminethesegoals,andarenotdivertedtosupportsuchcapabilities.

TechTip

CryptographicUseRestrictionsInadditiontotheexportcontrolsoncryptography,significantlawsprohibittheuseandpossessionofcryptographictechnology.InChina,alicensefromthestateisrequiredforcryptographicuse.Insomeothercountries,includingRussia,Pakistan,Venezuela,andSingapore,tightrestrictionsapplytocryptographicuses.Francerelinquishedtightstatecontroloverthepossessionofthetechnologyin1999.OneofthedrivingpointsbehindFrance’sactionisthefactthatmoreandmoreoftheInternettechnologieshavebuilt-incryptography.

ManynationshavemorerestrictivepoliciesthanthoseagreeduponaspartoftheWassenaarArrangement.Australia,NewZealand,UnitedStates,France,andRussiagofurtherthanisrequiredunderWassenaarandrestrictgeneral-purposecryptographicsoftwareasdual-usegoodsthroughnationallaws.TheWassenaarArrangementhashadasignificantimpact

oncryptographyexportcontrols,andthereseemslittledoubtthatsomeofthenationsrepresentedwillseektousethenextroundtomovetowardamorerepressivecryptographyexportcontrolregimebasedontheirownnationallaws.Thereareongoingcampaignstoattempttoinfluenceothermembersoftheagreementtowardlessrestrictiverulesor,insomecases,norules.Theselobbyingeffortsarebasedone-commerceandprivacyarguments.Digitalrightsmanagement,secureUSBsolutions,digitalsignatures,and

SecureSocketsLayer(SSL)–securedconnectionsareexamplesofcommonbehind-the-scenesuseofcryptographictechnologies.In2007,theUnitedKingdompassedanewlawmandatingthatwhenrequestedbyUKauthorities,eitherpoliceormilitary,encryptionkeysmustbeprovidedtopermitdecryptionofinformationassociatedwithterrororcriminalinvestigation.Failuretodelivereitherthekeysordecrypteddatacanresultinanautomaticprisonsentenceoftwotofiveyears.Althoughthisseemsreasonable,ithasbeenarguedthatsuchactionswilldrivecertainfinancialentitiesoffshore,astheruleappliesonlytodatahousedintheUnitedKingdom.Asfordeterrence,thetwo-yearsentencemaybelighterthanaconvictionfortraffickinginchildpornography;hencethelawseemsnottobeasusefulasitseemsatfirstglance.

DigitalSignatureLawsWhetheraringandwaxseal,astamp,orascrawlindicatinganame,signatureshavebeenusedtoaffixasignofone’sapprovalforcenturies.Ascommunicationshavemovedintothedigitalrealm,signaturesneedtoevolvewiththenewmedium,andhencedigitalsignatureswereinvented.Usingelementsofcryptographytoestablishintegrityandnonrepudiation,digitalsignatureschemescanactuallyoffermorefunctionalitythantheirpredecessorsinthepaper-basedworld.

U.S.DigitalSignatureLawsOnOctober1,2000,theElectronicSignaturesinGlobalandNational

CommerceAct(commonlycalledtheE-Signlaw)wentintoeffectintheUnitedStates.Thislawimplementsasimpleprinciple:asignature,contract,orotherrecordmaynotbedeniedlegaleffect,validity,orenforceabilitysolelybecauseitisinelectronicform.AnothersourceoflawondigitalsignaturesistheUniformElectronicTransactionsAct(UETA),whichwasdevelopedbytheNationalConferenceofCommissionersonUniformStateLaws(NCCUSL)andhasbeenadoptedinallbutfourstates—Georgia,Illinois,NewYork,andWashington—whichhaveadoptedanon-uniformversionofUETA.ThepreciserelationshipbetweenthefederalE-SignlawandUETAhasyettoberesolvedandwillmostlikelybeworkedoutthroughlitigationinthecourtsovercomplextechnicalissues.Manystateshaveadopteddigitalsignaturelaws,thefirstbeingUtahin

1995.TheUtahlaw,whichhasbeenusedasamodelbyseveralotherstates,confirmsthelegalstatusofdigitalsignaturesasvalidsignatures,providesforuseofstate-licensedcertificationauthorities,endorsestheuseofpublickeyencryptiontechnology,andauthorizesonlinedatabasescalledrepositories,wherepublickeyswouldbeavailable.TheUtahactspecifiesanegligencestandardregardingprivateencryptionkeysandplacesnolimitonliability.Thus,ifacriminalusesaconsumer’sprivatekeytocommitfraud,theconsumerisfinanciallyresponsibleforthatfraud,unlesstheconsumercanprovethatheorsheusedreasonablecareinsafeguardingtheprivatekey.Consumersassumeadutyofcarewhentheyadopttheuseofdigitalsignaturesfortheirtransactions,notunlikethecarerequiredforPINsondebitcards.

TryThis!

DigitalSignatureAgreementsDigitalsignaturesarebecomingmorecommonineverydayuse.Whenapersonsignsupwithabankforelectronicbankingservices,orwithabrokerageaccountforonlinetrading,thatpersontypicallyagreestoelectronicsignatures.Usingyourbankorbrokerageaccount—orifyoudon’thaveone,therearefreeonlinefinancialservicefirmsyoucansignupfor—review

theonlineagreementforelectronicsignatureprovisions.

Fromapracticalstandpoint,theexistenceoftheE-SignlawandUETAhasenablede-commercetransactionstoproceed,andtheresolutionofthetechnicaldetailsviacourtactionswillprobablyhavelittleeffectonconsumersbeyondtheneedtoexercisereasonablecareovertheirsignaturekeys.Forthemostpart,softwarewillhandletheseissuesforthetypicaluser.

UNDigitalSignatureLawsTheUnitedNationshasamandatetofurtherharmonizeinternationaltrade.Withthisinmind,theUNGeneralAssemblyadoptedin1996theUnitedNationsCommissiononInternationalTradeLaw(UNCITRAL)ModelLawonElectronicCommerce.Toimplementspecifictechnicalaspectsofthismodellaw,moreworkonelectronicsignatureswasneeded.TheGeneralAssemblythenadoptedin2001theUNCITRALModelLawonElectronicSignatures.Thesemodellawshavebecomethebasisformanynationalandinternationaleffortsinthisarea.

CanadianDigitalSignatureLawsCanadawasanearlyleaderintheuseofdigitalsignatures.Singapore,Canada,andtheU.S.stateofPennsylvaniawerethefirstgovernmentstohavedigitallysignedaninterstatecontract.Thiscontract,digitallysignedin1998,concernedtheestablishmentofaGlobalLearningConsortiumbetweenthethreegovernments(source:Krypto-DigestVol.1,No.749,June11,1998).Canadawentontoadoptanationalmodelbillforelectronicsignaturestopromotee-commerce.Thisbill,theUniformElectronicCommerceAct(UECA),allowstheuseofelectronicsignaturesincommunicationswiththegovernment.Thelawcontainsgeneralprovisionsfortheequivalencebetweentraditionalandelectronicsignatures(source:BNAECLR,May27,1998,p.700)andismodeledaftertheUNCITRALModelLawonE-Commerce(source:BNAECLR,

September13,2000,p.918).TheUECAissimilartoBillC-54,PersonalInformationProtectionandElectronicDocumentsAct(PIPEDA),inauthorizinggovernmentstouseelectronictechnologytodeliverservicesandcommunicatewithcitizens.IndividualCanadianprovinceshavepassedsimilarlegislationdefining

digitalsignatureprovisionsfore-commerceandgovernmentuse.TheselawsaremodeledaftertheUNCITRALModelLawonE-Commercetoenablewidespreaduseofe-commercetransactions.Theselawshavealsomodifiedthemethodsofinteractionsbetweenthecitizensandthegovernment,enablingelectroniccommunicationinadditiontopreviousforms.

EuropeanLawsTheEuropeanCommissionadoptedaCommunicationonDigitalSignaturesandEncryption:“EnsuringSecurityandTrustinElectronicCommunication—TowardsaEuropeanFrameworkforDigitalSignaturesandEncryption.”ThiscommunicationstatesthatacommonframeworkattheEUlevelisurgentlyneededtostimulate“thefreecirculationofdigitalsignaturerelatedproductsandserviceswithintheInternalmarket”and“thedevelopmentofneweconomicactivitieslinkedtoelectroniccommerce”aswellas“tofacilitatetheuseofdigitalsignaturesacrossnationalborders.”Communitylegislationshouldaddresscommonlegalrequirementsforcertificateauthorities,legalrecognitionofdigitalsignatures,andinternationalcooperation.Thiscommunicationwasdebated,andacommonpositionwaspresentedtothemembernationsforincorporationintonationallaws.OnMay4,2000,theEuropeanParliamentandCouncilapprovedthe

commonpositionadoptedbythecouncil.InJune2000,thefinalversion,theElectronicCommerceDirective(2000/31/EC),wasadopted.Thedirectivehasbeenimplementedbymemberstates.Toimplementthearticlescontainedinthedirective,memberstateshadtoremovebarriers,suchaslegalformrequirements,toelectroniccontracting,leadingtouniformdigitalsignaturelawsacrosstheEU.

DigitalRightsManagementTheabilitytomakeflawlesscopiesofdigitalmediahasledtoanother“new”legalissue.Foryears,themusicandvideoindustryhasreliedontechnologytoprotectitsrightswithrespecttointellectualproperty.Ithasbeenillegalfordecadestocopyinformation,suchasmusicandvideos,protectedbycopyright.Evenwiththelaw,peoplehaveforyearsmadecopiesofmusicandvideostoshare,violatingthelaw.Untiltheadventofdigitalcopies(seeTechTipsidebar“DigitalCopiesandCopyright”),thisdidnotrepresentasignificanteconomicimpactintheeyesoftheindustry,asthecopieswereoflesserqualityandpeoplewouldpayfororiginalqualityinsufficientnumberstokeeptheeconomicsoftheindustryhealthy.Assuch,legalactionagainstpiracywastypicallylimitedtolarge-scaleduplicationandsaleefforts,commonlyperformedoverseasandsubsequentlyshippedtotheUnitedStatesascounterfeititems.

TechTip

DigitalCopiesandCopyrightTheabilityofanyonewithaPCtomakeaperfectcopyofdigitalmedialedtoindustryfearsthatindividualpiracyactionscouldcausemajoreconomicissuesintherecordingindustry.Toprotecttherightsoftherecordingartistsandtheeconomichealthoftheindustryasawhole,themusicandvideorecordingindustrylobbiedtheU.S.Congressforprotection,whichwasgrantedundertheDigitalMillenniumCopyrightAct(DMCA)onOctober20,1998.

TheprimarystatuteenactedintheUnitedStatestobringcopyrightlegalconcernsuptodatewiththedigitalworldistheDigitalMillenniumCopyrightAct(DMCA).TheDMCAstatesitspurposeasfollows:“Toamendtitle17,UnitedStatesCode,toimplementtheWorldIntellectualPropertyOrganizationCopyrightTreatyandPerformancesandPhonogramsTreaty,andforotherpurposes.”Themajorityofthislawwaswellcrafted,butonesectionhasdrawnconsiderablecommentand

criticism.Asectionofthelawmakesitillegaltodevelop,produce,andtradeanydeviceormechanismdesignedtocircumventtechnologicalcontrolsusedincopyprotection.

TechTip

DMCAResearchExemptionRequirementsTheDMCAhasspecificexemptionsforresearch,providedfourelementsaresatisfied:

Thepersonlawfullyobtainedtheencryptedcopy,phonorecord,performance,ordisplayofthepublishedwork.

Suchactisnecessarytoconductsuchencryptionresearch.

Thepersonmadeagoodfaithefforttoobtainauthorizationbeforethecircumvention.Suchactdoesnotconstituteinfringementunderthistitleoraviolationofapplicablelawotherthanthissection,includingsection1030oftitle18andthoseprovisionsoftitle18amendedbytheComputerFraudandAbuseActof1986.

Although,onthesurface,thisseemsareasonablerequirement,themethodsusedinmostcasesarecryptographicinnature,andthisprovisionhadtheabilitytoeliminateand/orseverelylimitresearchintoencryptionandthestrengthsandweaknessesofspecificmethods.ADMCAprovision,Section1201(g),wasincludedtoprovideforspecificreliefandallowexemptionsforlegitimateresearch(seetheTechTipsidebar“DMCAResearchExemptionRequirements”).Withthissection,thelawgarneredindustrysupportfromseveralorganizations,suchastheSoftware&InformationIndustryAssociation(SIIA),RecordingIndustryAssociationofAmerica(RIAA),andMotionPictureAssociationofAmerica(MPAA).Basedontheseinputs,theU.S.CopyrightOfficeissuedareportsupportingtheDMCAinarequiredreporttotheU.S.Congress.ThisseemedtosettletheissuesuntiltheRIAAthreatenedtosueanacademicresearchteamheadedbyProfessorEdwardFeltenfromPrincetonUniversity.Theissuebehindthesuitwasthepotentialpublicationofresultsdemonstratingthatseveralcopyprotectionmethods

wereflawedintheirapplication.Thisresearchcameinresponsetoanindustry-sponsoredchallengetobreakthemethods.Afterbreakingthemethodsdevelopedandpublishedbytheindustry,Feltenandhisteampreparedtopublishtheirfindings.TheRIAAobjectedandthreatenedasuitunderprovisionsoftheDMCA.AfterseveralyearsoflitigationandsupportofFeltenbytheElectronicFrontierFoundation(EFF),thecasewaseventuallyresolvedintheacademicteam’sfavor,althoughnocaselawtopreventfurtherindustry-ledthreatswasdeveloped.OneofthecontroversialissuesassociatedwithDMCAistheissueof

takedownnotices.CarrierssuchasYouTubearegrantedprotectionfromcontentviolation,providedtheyremovethecontentwhenrequestedwithatakedownorder.Thepublishingindustryusesscannersandautomatedsystemstoissuetakedownnotices,andthesesometimesgoawry(seethesidebarontheMarsRovermishap).Theissueoffairuseisonethatisnotdelineatedbybright-lineregulations,makingthesystemonethatsideswiththetakedownrequestorunlessthecontentpostertakesthemtocourt.

MarsRoverCrashedbyDMCANASAmaintainsaYouTubechannelwhereitpostsvideosofspaceevents,suchasthelandingoftheroverCuriosityonthesurfaceofMars.ThecontentwasdevelopedbyNASAwithU.S.taxpayermoney,yetitwasservedatakedownnoticebyScrippsNewsService.Theissuewasremedied,buttaxpayerslostearlycoverageandhadtopaythelegalbillstofightfortheirowncontent.ThishappensonaregularbasistotheNASAchannel,andalthoughthelawhasprovisionsforprosecutingfalsetakedowns,theyarerarelyused.

ExemptionsarescatteredthroughouttheDMCA,althoughmanywerecreatedduringvariousdeliberationsontheactanddonotmakesensewhentheactisviewedinwhole.Theeffectoftheseexemptionsuponpeopleinthesoftwareandtechnologyindustryisnotclear,anduntilrestrainedbycaselaw,theDMCAgiveslargefirmswithdeeplegalpocketsapotentweapontouseagainstpartieswhodiscloseflawsinencryptiontechnologiesusedinvariousproducts.Actionshavealreadybeeninitiatedagainstindividualsandorganizationswhohavereportedsecurityholesinproducts.Thiswillbeanactiveareaoflegalcontention,astherealissuesbehinddigitalrightsmanagementhaveyettobetruly

resolved.

EthicsEthicshasbeenasubjectofstudybyphilosophersforcenturies.Itmightbesurprisingtonotethatethicsassociatedwithcomputersystemshasahistorydatingbacktothebeginningofthecomputingage.Thefirstexaminationofcybercrimeoccurredinthelate1960s,whentheprofessionalconductofcomputerprofessionalswasexaminedwithrespecttotheiractivitiesintheworkplace.Ifweconsiderethicalbehaviortobeconsistentwiththatofexistingsocialnorms,itcanbefairlyeasytoseewhatisconsideredrightandwrong.Butwiththeglobalizationofcommerce,andtheglobalizationofcommunicationsviatheInternet,questionsareraisedonwhatistheappropriatesocialnorm.Culturalissuescanhavewide-rangingeffectsonthis,andalthoughtheideaofanappropriatecodeofconductfortheworldisappealing,itisasyetanunachievedobjective.Theissueofglobalizationhassignificantlocaleffects.Ifauserwishes

toexpressfreespeechviatheInternet,isthisprotectedbehaviororcriminalbehavior?Differentlocaleshavedifferentsetsoflawstodealwithitemssuchasfreespeech,withsomerecognizingtheright,andothersprohibitingit.Withtheglobalizationofbusiness,whataretheappropriatecontrolsforintellectualpropertywhensomeregionssupportthisright,whileothersdonotevenrecognizeintellectualpropertyassomethingofvalue,butrathersomethingownedbythecollectiveofsociety?Thechallengeintoday’sbusinessenvironmentistoestablishandcommunicateacodeofethicssothateveryoneassociatedwithanenterprisecanunderstandthestandardsofexpectedperformance.Agreatsourceofbackgroundinformationonallthingsassociatedwith

computersecurity,theSANSInstitutepublishedasetofITethicalguidelines(“ITCodeofEthics”)inApril2004:seewww.sans.org/security-resources/ethics.php.

TechTip

ITCodeofEthics

SANSInstituteITCodeofEthics,1Version1.0,April24,2004:Iwillstrivetoknowmyselfandbehonestaboutmycapability.

IwillstrivefortechnicalexcellenceintheITprofessionbymaintainingandenhancingmyownknowledgeandskills.IacknowledgethattherearemanyfreeresourcesavailableontheInternetandaffordablebooksandthatthelackofmyemployer’strainingbudgetisnotanexcusenorlimitsmyabilitytostaycurrentinIT.

WhenpossibleIwilldemonstratemyperformancecapabilitywithmyskillsviaprojects,leadership,and/oraccreditededucationalprogramsandwillencourageotherstodosoaswell.

Iwillnothesitatetoseekassistanceorguidancewhenfacedwithataskbeyondmyabilitiesorexperience.Iwillembraceotherprofessionals’adviceandlearnfromtheirexperiencesandmistakes.Iwilltreatthisasanopportunitytolearnnewtechniquesandapproaches.Whenthesituationarisesthatmyassistanceiscalledupon,Iwillrespondwillinglytosharemyknowledgewithothers.

Iwillstrivetoconveyanyknowledge(specialistorotherwise)thatIhavegainedtootherssoeveryonegainsthebenefitofeachother’sknowledge.

IwillteachthewillingandempowerotherswithIndustryBestPractices(IBP).Iwilloffermyknowledgetoshowothershowtobecomesecurityprofessionalsintheirownright.Iwillstrivetobeperceivedasandbeanhonestandtrustworthyemployee.

Iwillnotadvanceprivateinterestsattheexpenseofendusers,colleagues,ormyemployer.

Iwillnotabusemypower.Iwillusemytechnicalknowledge,userrights,andpermissionsonlytofulfillmyresponsibilitiestomyemployer.

Iwillavoidandbealerttoanycircumstancesoractionsthatmightleadtoconflictsofinterestortheperceptionofconflictsofinterest.Ifsuchcircumstanceoccurs,Iwillnotifymyemployerorbusinesspartners.

Iwillnotstealproperty,timeorresources.

Iwillrejectbriberyorkickbacksandwillreportsuchillegalactivity.Iwillreportontheillegalactivitiesofmyselfandotherswithoutrespecttothepunishmentsinvolved.Iwillnottoleratethosewholie,steal,orcheatasameansofsuccessinIT.

IwillconductmybusinessinamannerthatassurestheITprofessionisconsideredoneofintegrityandprofessionalism.

Iwillnotinjureothers,theirproperty,reputation,oremploymentbyfalseormaliciousaction.

Iwillnotuseavailabilityandaccesstoinformationforpersonalgainsthroughcorporateespionage.

Idistinguishbetweenadvocacyandengineering.Iwillnotpresentanalysisandopinionasfact.

IwilladheretoIndustryBestPractices(IBP)forsystemdesign,rollout,hardeningandtesting.

Iamobligatedtoreportallsystemvulnerabilitiesthatmightresultinsignificantdamage.

Irespectintellectualpropertyandwillbecarefultogivecreditforother’swork.Iwillneverstealormisusecopyrighted,patentedmaterial,tradesecretsoranyotherintangibleasset.

IwillaccuratelydocumentmysetupproceduresandanymodificationsIhavedonetoequipment.ThiswillensurethatotherswillbeinformedofproceduresandchangesI’vemade.

Irespectprivacyandconfidentiality.

Irespecttheprivacyofmyco-workers’information.Iwillnotperuseorexaminetheirinformationincludingdata,files,records,ornetworktrafficexceptasdefinedbytheappointedroles,theorganization’sacceptableusepolicy,asapprovedbyHumanResources,andwithoutthepermissionoftheenduser.

Iwillobtainpermissionbeforeprobingsystemsonanetworkforvulnerabilities.Irespecttherighttoconfidentialitywithmyemployers,clients,andusersexceptasdictatedbyapplicablelaw.Irespecthumandignity.

Itreasureandwilldefendequality,justiceandrespectforothers.Iwillnotparticipateinanyformofdiscrimination,whetherduetorace,color,nationalorigin,ancestry,sex,sexualorientation,gender/sexualidentityorexpression,maritalstatus,creed,religion,age,disability,veteran’sstatus,orpoliticalideology.

1©2000–2015TheSAN™Institute.Reprintedwithpermission.

Chapter24Review

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingregardingthebasicsoflegalandethicalconsiderationsassociatedwithinformationsecurity.

Explainthelawsandrulesconcerningimportingandexportingencryptionsoftware

Importandexportofhigh-strengthcryptographicsoftwareiscontrolledinmanycountries,includingtheUnitedStates.

Possessionofencryptionprogramsorencrypteddatacanbeacrimeinmanycountries.

TheWassenaarArrangementisaninternationalagreementbetweencountriesconcerningtheimport/exportofcryptographicsoftwareandhasenabledmass-marketedproductstogenerallyflowacrossborders.

Identifythelawsthatgoverncomputeraccessandtrespass

Gainingunauthorizedaccess,bywhatevermeans,includingusingsomeoneelse’scredentials,iscomputertrespass.

Exceedinggrantedauthorityisalsocomputertrespass.

Manynationshaveversionsofcomputertrespassormisusestatutes,althoughtheterminologyvariesgreatlyamongcountries.

Identifythelawsthatgovernencryptionanddigitalrightsmanagement

Encryptiontechnologyisusedtoprotectdigitalrightsmanagementandpreventunauthorizeduse.

CircumventingtechnologicalcontrolsusedtoprotectintellectualpropertyisaviolationoftheDMCA.

Insomecountries,carryingencrypteddatacanresultinauthoritiesdemandingthekeysorthreateningprosecutionforfailuretodisclosethekeys.

Describethelawsthatgoverndigitalsignatures

Digitalsignatureshavethesamelegalstatusaswrittensignatures.

DigitalsignaturesusePINsorother“secrets”thatrequireend-usersafeguardingtobeprotectedfromfraud.

Exploreethicalissuesassociatedwithinformationsecurity

Ethicsisthesocial–moralenvironmentinwhichapersonmakesdecisions.

Ethicscanvarybysocio-culturalfactorsandgroups.

KeyTermsadministrativelaw(698)caselaw(698)clickfraud(697)commonlaw(698)ComputerFraudandAbuseAct(CFAA)(701)computertrespass(699)DigitalMillenniumCopyrightAct(DMCA)(709)ElectronicCommunicationsPrivacyAct(ECPA)(700)Gramm-Leach-BlileyAct(GLBA)(702)PaymentCardIndustryDataSecurityStandard(PCIDSS)(703)Sarbanes-OxleyAct(SOX)(703)Section404(703)statutorylaw(698)StoredCommunicationsAct(SCA)(700)

WassenaarArrangement(705)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.ITcontrolsweremandatedinpubliccompaniesby_______________,partoftheSarbanes-OxleyAct.

2.Thecontractualsetofrulesgoverningcreditcardsecurityisthe_______________.

3.Acatchalllawtoprosecutehackersisthestatuteon_______________.

4.The_______________istheprimaryU.S.federallawoncomputerintrusionandmisuse.

5.Thepowerofgovernment-sponsoredagenciesliesin_______________.

6.A(n)_______________ispassedbyalegislativebranchofgovernment.

7._______________comesfromthejudicialbranchofgovernment.

Multiple-ChoiceQuiz1.YourSocialSecuritynumberandotherassociatedfactskeptbyyour

bankareprotectedbywhatlawagainstdisclosure?

A.TheSocialSecurityActof1934

B.TheUSAPatriotActof2001

C.TheGramm-Leach-BlileyAct

D.HIPAA

2.BreakingintoanothercomputersystemintheUnitedStates,evenifyoudonotcauseanydamage,isregulatedbywhatlaw?

A.Statelaw,asthedamageisminimal

B.FederallawundertheIdentityTheftandAssumptionDeterrenceAct

C.FederallawundertheElectronicCommunicationsPrivacyAct(ECPA)of1986

D.FederallawundertheUSAPatriotActof2001

3.Exportofencryptionprogramsisregulatedbywhichentity?A.U.S.StateDepartment

B.U.S.CommerceDepartment

C.U.S.DepartmentofDefense

D.NationalSecurityAgency

4.FortheFBItoinstallandoperateCarnivoreonanISP’snetwork,whatisrequired?

A.Acourtorderspecifyingspecificitemsbeingsearchedfor

B.AnofficialrequestfromtheFBI

C.AnimpactstatementtoassessrecoverablecoststotheISP

D.AwrittenrequestfromanISPtoinvestigateacomputertrespassincident

5.Trueorfalse:Asysadminwhoisreadingemployeee-mailtolookforevidenceofsomeonestealingcompanypasswordsisprotectedbythecompany-ownedequipmentexemptiononeavesdropping.

A.False,thereisno“company-ownedexemption.”

B.True,providedheorshehashisorhermanager’sapproval.

C.True,providedheorshehasseniormanagementpermissioninwriting.

D.True,ifitisinhisorherjobdescription.

6.Trueorfalse:WritingvirusesandreleasingthemacrosstheInternetisaviolationoflaw.

A.Alwaystrue.Allcountrieshavereciprocalagreementsunderinternationallaw.

B.Partiallytrue.Dependsonthelawsinthecountryoforigin.

C.False.Computersecuritylawsdonotcrossinternationalboundaries.

D.Partiallytrue.Dependsonthespecificcountriesinvolved,bothofthevirusauthorandtherecipient.

7.Publicationofflawsinencryptionusedforcopyprotectionisapotentialviolationof:

A.HIPAA

B.U.S.CommerceDepartmentregulations

C.DMCA

D.NationalSecurityAgencyregulations

8.Circumventingtechnologicalcontrolstopreventreverse-engineeringisaviolationof:

A.HIPAA

B.DMCA

C.ECPA

D.Alloftheabove

9.Logginginasyourbosstofixyourtimerecordsis:A.OK,ifyouareaccuratelyreportingyourtime

B.OneoftheobscureelementsofDMCA

C.AviolationoftheSeparationofDutiesLaw

D.Aformofcomputertrespass

10.YouarearrestedasaresultofyourhackingactivitiesandinvestigatorsfindyouhavebeenbreakingpasswordfilesandsharingthemacrosstheInternet.Whichlawhaveyouviolated?

A.CFAA

B.ECPA

C.DMCA

D.HIPAA

EssayQuiz1.YouarebeinghiredasthedirectorofITforasmallfirmthatdoes

retailtradebusiness,andyouwillbethesourceofknowledgeforallthingsIT,includingsecurityandlegalregulations.Outlinethelegalelementsyouwouldwanttohavepolicycovering,andincludehowyouwoulddisseminatethisinformation.

2.Youhavejustbeenhiredasasystemadministratorforasmallcollege.Thecollege’sserversareusedfordatabasestorageandawebsitethatservesthecollegecommunity.Describethelawsthatwillpotentiallyimpactyourjobwithrespecttocomputersecurity.Whatactionswillyoutaketoensurecompliancewithlawsandregulations?

chapter25 Privacy

Theywhowouldgiveupanessentiallibertyfortemporarysecurity,deserveneitherlibertyorsecurity.

T

—BENJAMINFRANKLIN

Inthischapter,youwilllearnhowto

Defineprivacy

Identifyprivacylawsrelativetocomputersecurityinvariousindustries

Describeissuesassociatedwithtechnologyandprivacy

Explaintheconceptofpersonallyidentifiableinformation(PII)

Craftaprivacypolicyforonlinerecords

Recognizeweb-relatedprivacyissues

headventofinterconnectedcomputersystemshasenabledbusinessesandgovernmentstoshareandintegrateinformation.Thishasledtoaresurgenceintheimportanceofprivacylawsworldwide.Governments

inEuropeandtheUnitedStateshavetakendifferentapproachesinattemptstocontrolprivacyvialegislation.Asanewgenerationgrowsupinadigitalworld,itsviewofinformationsharingservices,suchassocialnetworkingsites,hascreatedashiftinhowpeopleviewprivacy.Manysocialandphilosophicaldifferenceshaveledtothedifferingviewsonprivacy,butastheworldbecomesinterconnected,understandingandresolvingthemwillbeimportant.Privacycanbedefinedasthepowertocontrolwhatothersknowabout

youandwhattheycandowiththatinformation.Inthecomputerage,personalinformationformsthebasisformanydecisions,fromcreditcardtransactionstopurchasegoodstotheabilitytobuyanairplaneticketandfly.Althoughitistheoreticallypossibletoliveanalmostanonymousexistencetoday,thepricefordoingsoishigh—fromhigherpricesatthegrocerystore(nofrequentshopperdiscount),tohighercreditcosts,tochallengeswithairtravel,openingbankaccounts,andseekingemployment.Informationisanimportantitemintoday’ssociety.Frominstantcredit,todigitalaccesstoawiderangeofinformationviatheInternet,toelectronic

serviceportalssuchase-commercesites,e-governmentsites,andsoon,ourdailyliveshavebecomeintertwinedwithprivacyissues.Informationhasbecomeavaluableentity,foritisanenablerofmanyfunctions.Afewhundredyearsago,ifsomeonewantedtoprocureownershipofanitem,hewouldtypicallytradesomethingoftangiblevalue(forexample,coins)withthecurrentowneroftheitem,andanexchangewouldtakeplace.Thetwoparties,buyerandseller,wouldhavetomeetinspaceandtimeandconductatransaction.Or,insomecases,theywouldemployathird-partyagenttoactasaproxyanddothetransactionforthem.Today,onewouldgoonline,searchforthebestdeal(information-centric),conductbusinessviae-commerce(usecomputerprogramsasagents),payfortheitemviabankcardtransaction(informationexchangeconcerningfundsavailabilityandtransfer),and,insomecases,receivedeliverydigitally(inthecaseofsoftware,books,videos,andsoforth).Thecreationofaninformation-centriceconomyisasdramaticarevolutionastheadoptionofmoneytoactasaneconomicutility,simplifyingbartering.Thisrevolutionandrelianceoninformationimbuesinformationwithvalue,creatingtheneedtoprotectit.

Privacyistherighttocontrolinformationaboutyouandwhatotherscandowiththatinformation.

PersonallyIdentifiableInformation(PII)Wheninformationisaboutaperson,failuretoprotectitcanhavespecificconsequences.Businesssecretsareprotectedthroughtradesecretlaws,governmentinformationisprotectedthroughlawsconcerningnationalsecurity,andprivacylawsprotectinformationassociatedwithpeople.Asetofelementsthatcanleadtothespecificidentityofapersonisreferredtoaspersonallyidentifiableinformation(PII).Bydefinition,PIIcanbeusedtoidentifyaspecificindividual,evenifanentiresetisnotdisclosed.

AslittleinformationastheZIPcode,gender,anddateofbirthcanresolvetoasingleperson.

PIIisanessentialelementofmanyonlinetransactions,butitcanalsobemisusedifdisclosedtounauthorizedparties.Forthisreason,itshouldbeprotectedatalltimes,byallpartiesthatpossessit.

TechTip

CollectingPIIPIIisbynaturesensitivetoendusers.Lossorcompromiseofend-userPIIcanresultinfinancialandotherimpactsbornebytheenduser.Forthisreason,collectionofPIIshouldbeminimizedtowhatisactuallyneeded.ThreegreatquestionstoaskwhendeterminingwhethertocollectPIIarethese:

DoIneedeachspecificdataelement?Whatismybusinesspurposeforeachspecificelement?

Willmycustomers/endusersagreewithmyrationaleforcollectingeachspecificelement?

TRUSTe(www.truste.com),anindependenttrustauthority,definespersonallyidentifiableinformationasanyinformation…(i)thatidentifiesorcanbeusedtoidentify,contact,orlocatethepersontowhomsuchinformationpertains,or(ii)fromwhichidentificationorcontactinformationofanindividualpersoncanbederived.PersonallyIdentifiableInformationincludes,butisnotlimitedto:name,address,phonenumber,faxnumber,e-mailaddress,financialprofiles,medicalprofile,socialsecuritynumber,andcreditcardinformation.TheconceptofPIIisusedtoidentifywhichdataelementsrequirea

specificlevelofprotection.Whenrecordsareusedindividually(notinaggregateform),thenPIIistheconceptofconnectingasetofdata

elementstoaspecificpurpose.Ifthiscanbeaccomplished,thentheinformationisPIIandneedsspecificprotections.TheU.S.FederalTradeCommission(FTC)hasrepeatedlyruledthatifafirmcollectsPII,itisresponsibleforitthroughtheentirelifecycle,frominitialcollectionthroughuse,retirement,anddestruction.OnlyafterthePIIisdestroyedinallformsandlocationsisthecompany’sliabilityforitscompromiseabated.

SensitivePIISomePIIissosensitivetodisclosureandresultingmisusethatitrequiresspecialhandlingtoensureprotection.Dataelementssuchascreditcarddata,bankaccountnumbers,andgovernmentidentifiers(socialsecuritynumber,driver’slicensenumber,andsoon)requireextralevelsofprotectiontopreventharmfrommisuse.Shouldtheseelementsbelostorcompromised,direct,personalfinancialdamagemayoccurtothepersonidentifiedbythedata.TheseelementsneedspecialattentionwhenplanningdatastoresandexecutingbusinessprocessesassociatedwithPIIdata,includingcollection,storage,anddestruction.

TryThis!SearchforYourOwnPIIModernInternetsearchengineshavetheabilitytocatalogtremendousquantitiesofinformationandmakewide-areasearchesforspecificelementseasy.UsingyourownelementsofPII,trysearchingtheInternetandseewhatisreturnedonyourname,address,phonenumber,socialsecuritynumber,dateofbirth,andsoforth.Forsecurityreasons,besuretobeanonymouswhendoingthis—thatis,logoutofGoogleapplicationsbeforeusingGoogleSearch,Microsoft/LiveapplicationsbeforeusingBing,orYahooapplicationsbeforeusingYahooSearch.Thisstepmayseemminor,butwithsearchrecordsbeingstored,thelastthingyouwanttodoisproviderecordsthatcancross-correlatedataaboutyourself.Ifyoufinddataonyourself,analyzethesourceandwhetherornotthedatashouldbepubliclyaccessible.

Iftheaccidentaldisclosureofuserdatacouldcausetheuserharm,suchasdiscrimination(political,racial,healthrelated,orlifestyle),thenthebest

courseofactionistotreattheinformationassensitivePII.

Notice,Choice,andConsentAsprivacyisdefinedasthepowertocontrolwhatothersknowaboutyouandwhattheycandowiththisinformation,andPIIrepresentsthecoreitemsthatshouldbecontrolled,communicationwiththeenduserconcerningprivacyisparamount.Privacypoliciesarepresentedlaterinthechapter,butwithrespecttoPII,threewordscangoverngoodcitizenrywhencollectingPII.NoticereferstoinformingthecustomerthatPIIwillbecollectedandusedand/orstored.Choicereferstotheopportunityfortheendusertoconsenttothedatacollectionortooptout.Consentreferstothepositiveaffirmationbyacustomerthatshereadthenotice,understandsherchoices,andagreestoreleaseherPIIforthepurposesexplainedtoher.

U.S.PrivacyLawsIdentityprivacyandtheestablishmentofidentitytheftcrimesisgovernedbytheIdentityTheftandAssumptionDeterrenceAct,whichmakesitaviolationoffederallawtoknowinglyuseanother’sidentity.ThecollectionofinformationnecessarytodothisisalsogovernedbytheGramm-Leach-BlileyAct(GLBA),whichmakesitillegalforsomeonetogatheridentityinformationonanotherpersonunderfalsepretenses.Intheeducationarea,privacylawshaveexistedforyears(see“FamilyEducationRecordsandPrivacyAct(FERPA),”laterinthechapter).

TechTip

MajorElementsofthePrivacyActThePrivacyActhasnumerousrequiredelementsanddefinitions.Amongotherthings,themajorelementsrequirefederalagenciesto

PublishintheFederalRegisteranoticeofeachsystemofrecordsthatitmaintains,includinginformationaboutthetypeofrecordsmaintained,thepurposesforwhichtheyareused,andthecategoriesofindividualsonwhomtheyaremaintained.

Maintainonlysuchinformationaboutanindividualasrequiredbylaw,orisneededtoperformastatutoryduty.

Maintaininformationinatimely,accurate,relevant,secure,andcompleteform.

InformindividualsaboutaccesstoPIIuponinquiry.Notifyindividualsfromwhomitrequestsinformationwhatauthorizesittorequesttheinformation;whetherdisclosureismandatoryorvoluntary;thepurposeforwhichtheinformationmaybeused;andpenaltiesfornotprovidingtherequestedinformation.

Establishappropriatephysical,technical,andadministrativesafeguardsfortheinformationthatiscollectedandused.

Additionalelementscanbefoundbyexaminingprovisionsoftheactitself,althoughitisdraftedinlegislativeformandrequiresextensivecross-referencingandinterpretation.

AtaskforcefromtheDepartmentofHealth,Education,andWelfare(HEW),developedtheCodeofFairInformationPractices,consistingoffiveclauses:openness,disclosure,secondaryuse,correction,andsecurity.Thesemainsubjectscontinuetodayasthecoreofmanyprivacypractices.TwomajorprivacyinitiativesfollowedfromtheU.S.government,thePrivacyActof1974andtheFreedomofInformationActof1996.

PrivacyActof1974ThePrivacyActof1974wasanomnibusactdesignedtoaffecttheentirefederalinformationlandscape.Thisacthasmanyprovisionsthatapplyacrosstheentirefederalgovernment,withonlyminorexceptionsfornationalsecurity(classifiedinformation),lawenforcement,andinvestigativeprovisions.Thisacthasbeenamendednumeroustimes,andyoucanfindcurrent,detailedinformationattheElectronicPrivacyInformationCenter(EPIC)website,http://epic.org/privacy/laws/privacy_act.html.

FreedomofInformationAct(FOIA)

TheFreedomofInformationAct(FOIA)of1996isoneofthemostwidelyusedprivacyactsintheUnitedStates,somuchsothatitsacronym,FOIA(pronounced“foya”),hasreachedcommonuse.FOIAwasdesignedtoenablepublicaccesstoU.S.governmentrecords,and“public”includesthepress,whichpurportedlyactsonthepublic’sbehalfandwidelyusesFOIAtoobtaininformation.FOIAcarriesapresumptionofdisclosure;theburdenisonthegovernment,nottherequestingparty,tosubstantiatewhyinformationcannotbereleased.Uponreceivingawrittenrequest,agenciesoftheU.S.governmentarerequiredtodisclosethoserecords,unlesstheycanbelawfullywithheldfromdisclosureunderoneofninespecificexemptionsinFOIA.Therightofaccessisultimatelyenforceablethroughthefederalcourtsystem.Theninespecificexemptions,listedinSection552ofU.S.CodeTitle5,fallwithinthefollowinggeneralcategories:1.Nationalsecurityandforeignpolicyinformation2.Internalpersonnelrulesandpracticesofanagency3.Informationspecificallyexemptedbystatute4.Confidentialbusinessinformation5.Inter-orintra-agencycommunicationthatissubjecttodeliberative

process,litigation,andotherprivileges

6.Informationthat,ifdisclosed,wouldconstituteaclearlyunwarrantedinvasionofpersonalprivacy

7.Lawenforcementrecordsthatimplicateoneofasetofenumeratedconcerns

8.Agencyinformationfromfinancialinstitutions9.Geologicalandgeophysicalinformationconcerningwells

FOIAisfrequentlyusedandgeneratesatremendousamountofworkformanyfederalagencies,

resultingindelaystorequests.Thisinitselfisatestamenttoitseffectiveness.

RecordavailabilityunderFOIAislessofanissuethanisthebacklogofrequests.Todefraysomeofthecostsassociatedwithrecordrequests,andto

preventnumeroustrivialrequests,agenciesareallowedtochargeforresearchtimeandduplicationcosts.Thesecostsvarybyagency,butaretypicallynominal,intherangeof$8.00to$45.00perhourforsearch/reviewfeesand$.10to$.35perpageforduplication.Agenciesarenotallowedtodemandarequestertomakeanadvancepaymentunlesstheagencyestimatesthatthefeeislikelytoexceed$250ortherequesterpreviouslyfailedtopayproperfees.Formanyuses,thefirst100pagesarefree,andundersomecircumstancesthefeescanbewaived.

FamilyEducationRecordsandPrivacyAct(FERPA)StudentrecordshavesignificantprotectionsundertheFamilyEducationRecordsandPrivacyActof1974,whichincludessignificantrestrictionsoninformationsharing.FERPAoperatesonanopt-inbasis,asthestudentmustapprovethedisclosureofinformationpriortotheactualdisclosure.FERPAwasdesignedtoprovidelimitedcontroltostudentsovertheireducationrecords.Thelawallowsstudentstohaveaccesstotheireducationrecords,anopportunitytoseektohavetherecordsamended,andsomecontroloverthedisclosureofinformationfromtherecordstothirdparties.Forexample,iftheparentofastudentwhois18orolderinquiresaboutthestudent’sschedule,grades,orotheracademicissues,thestudenthastogivepermissionbeforetheschoolcancommunicatewiththeparent,eveniftheparentispayingfortheeducation.FERPAisdesignedtoprotectprivacyofstudentinformation.AttheK–

12schoollevel,studentsaretypicallytooyoungtohavelegalstandingassociatedwithexercisingtheirrights,soFERPArecognizestheparentsaspartoftheprotectedparty.FERPAprovidesparentswiththerightto

inspectandreviewtheirchildren’seducationrecords,therighttoseektoamendinformationintherecordstheybelievetobeinaccurate,misleading,oraninvasionofprivacy,andtherighttoconsenttothedisclosureofPIIfromtheirchildren’seducationrecords.Whenastudentturns18yearsoldorentersapostsecondaryinstitutionatanyage,theserightsunderFERPAtransferfromthestudent’sparentstothestudent.

U.S.ComputerFraudandAbuseAct(CFAA)TheU.S.ComputerFraudandAbuseAct(asamendedin1994,1996,2001,and2008)andprivacylawssuchastheEUDataProtectionDirectivehaveseveralspecificobjectives,butoneofthemainonesistopreventunauthorizedpartiesaccesstoinformationtheyshouldnothaveaccessto.Fraudulentaccess,orevenexceedingone’sauthorizedaccess,isdefinedasacrimeandcanbepunished.AlthoughtheCFAAisintendedforbroaderpurposes,itcanbeusedtoprotectprivacyrelatedtocomputerrecordsthroughitsenforcementofviolationsofauthorizedaccess.

CrossCheckCFAAandDataProtectionDirectivesandPrivacyIssuesTheprimarypurposeofthesesweepingactsistoprovideasimpletoolforlawenforcementtoprosecutecriminalswhoattempttoaccesssystemstogainaccesstodataandinformation.Whenthisresultsinaprivacyviolation,theoriginalcomputertrespassviolationstillexistsandisprosecutable.Whatevidencewouldasysadminneedtoproducetodemonstrateaviolationassociatedwithcomputertrespass?AdditionalinformationontheselawsisinChapter24.

U.S.Children’sOnlinePrivacyProtectionAct(COPPA)ChildrenlackthementalcapacitytomakeresponsibledecisionsconcerningthereleaseofPII.TheU.S.Children’sOnlinePrivacyProtectionActof1998(COPPA)specificallyaddressesthisprivacyissue

withrespecttochildrenaccessingandpotentiallyreleasinginformationontheInternet.Anywebsitethatcollectsinformationfromchildren(ages13andunder),evensimplewebformstoallowfollow-upcommunicationsandsoforth,iscoveredbythislaw.Beforeinformationcanbecollectedandused,parentalpermissionneedstobeobtained.Thisactrequiresthatsitesobtainparentalpermission,postaprivacypolicydetailingspecificsconcerninginformationcollectedfromchildren,anddescribehowthechildren’sinformationwillbeused.

VideoPrivacyProtectionAct(VPPA)ConsideredbymanyprivacyadvocatestobethestrongestU.S.privacylaw,theVideoPrivacyProtectionActof1988providescivilremediesagainstunauthorizeddisclosureofpersonalinformationconcerningvideotaperentalsand,byextension,DVDsandgamesaswell.Thisisafederalstatute,craftedinresponsetomediasearchesofrentalrecordsassociatedwithJudgeBorkwhenhewasnominatedtotheU.S.SupremeCourt.Congress,upsetwiththeliberalreleaseofinformation,reactedwithlegislation,draftedbySenatorLeahy,whonotedduringthefloordebatethatnewprivacyprotectionsarenecessaryin“aneraofinteractivetelevisioncables,thegrowthofcomputercheckingandcheck-outcounters,ofsecuritysystemsandtelephones,alllodgedtogetherincomputers....”(S.Rep.No.100-599,100thCong.,2dSess.at6(1988)).Thisstatute,civilinnature,providesforcivilpenaltiesofupto$2500

peroccurrence,aswellasothercivilremedies.Thestatuteprovidestheprotectionsbydefault,thusrequiringavideorentalcompanytoobtaintherenter’sconsenttooptoutoftheprotectionsifthecompanywantstodisclosepersonalinformationaboutrentals.Exemptionsexistforissuesassociatedwiththenormalcourseofbusinessforthevideorentalcompanyaswellasforrespondingtowarrants,subpoenas,andotherlegalrequests.Thislawdoesnotsupersedestatelaws,ofwhichthereareseveral.Manystateshaveenactedlawsprovidingbothwiderandgreater

protectionsthanthefederalVPPAstatute.Forexample,Connecticutand

Marylandlawsbrandvideorentalrecordsasconfidential,andthereforenotsubjecttosale,whileCalifornia,Delaware,Iowa,Louisiana,NewYork,andRhodeIslandhaveadoptedstatestatutesprovidingprotectionofprivacywithrespecttovideorentalrecords.Michigan’svideoprivacylawisassweepingasitsbroadsuper-DMCAstatestatute.Thisstatelawspecificallyprotectsrecordsofbookpurchases,rentals,andborrowingaswellasvideorentals.

HealthInsurancePortability&AccountabilityAct(HIPAA)Medicalandhealthinformationalsohasprivacyimplications,whichiswhytheU.S.CongressenactedtheHealthInsurancePortabilityandAccountabilityAct(HIPAA)of1996.HIPAAcallsforsweepingchangesinthewayhealthandmedicaldataisstored,exchanged,andused.Fromaprivacyperspective,significantrestrictionsofdatatransferstoensureprivacyareincludedinHIPAA,includingsecuritystandardsandelectronicsignatureprovisions.HIPAAsecuritystandardsmandateauniformlevelofprotectionsregardingallhealthinformationthatpertainstoanindividualandishousedortransmittedelectronically.Thestandardsmandatesafeguardsforphysicalstorage,maintenance,transmission,andaccesstoindividuals’healthinformation.HIPAAmandatesthatorganizationsthatuseelectronicsignatureshavetomeetstandardsensuringinformationintegrity,signerauthentication,andnonrepudiation.Thesestandardsleavetoindustrythetaskofspecifyingthetechnicalsolutionsandmandatecomplianceonlytosignificantlevelsofprotectionasprovidedbytherulesbeingreleasedbyindustry.

TechTip

ProtectedHealthInformation(PHI)HIPAAregulationsdefineProtectedHealthInformation(PHI)as“anyinformation,whether

oralorrecordedinanyformormedium”that“[i]screatedorreceivedbyahealthcareprovider,healthplan,publichealthauthority,

employer,lifeinsurer,schooloruniversity,orhealthcareclearinghouse”;and“[r]elatestothepast,present,orfuturephysicalormentalhealthorconditionofan

individual;theprovisionofhealthcaretoanindividual;orthepast,present,orfuturepaymentfortheprovisionofhealthcaretoanindividual.”

HIPAA’slanguageisbuiltupontheconceptsofProtectedHealthInformation(PHI)andNoticeofPrivacyPractices(NPP).HIPAAdescribes“coveredentities”includingmedicalfacilities,billingfacilities,andinsurance(third-partypayer)facilities.PatientsaretohaveaccesstotheirPHIandanexpectationofappropriateprivacyandsecurityassociatedwithmedicalrecords.HIPAAmandatesaseriesofadministrative,technical,andphysicalsecuritysafeguardsforinformation,includingelementssuchasstafftrainingandawareness,andspecificlevelsofsafeguardsforPHIwheninuse,stored,orintransitbetweenfacilities.

TryThis!NoticeofPrivacyPracticesVisityourlocaldoctor’soffice,hospital,orclinicandaskfortheirNoticeofPrivacyPractices(NPP).Thisnoticetopatientsdetailswhatinformationwillbecollectedandtheusesandsafeguardsthatareapplied.Thesecanbefairlylengthyanddetaileddocuments,andinmanycasesareinabookletform.

In2009,aspartoftheAmericanRecoveryandReinvestmentActof2009,theHealthInformationTechnologyforEconomicandClinicalHealthAct(HITECHAct)waspassedintolaw.AlthoughtheprimarypurposeoftheHITECHActwastoprovidestimulusmoneyfortheadoptionofelectronicmedicalrecords(EMR)systemsatalllevelsofthehealthcaresystem,italsocontainednewsecurityandprivacyprovisionstoaddteethtothosealreadyinHIPAA.HIPAAprotectionswereconfinedtothedirectmedicalprofession,anddidnotcoverentitiessuchashealthinformationexchangesandother“businessassociates”engagedinthecollectionanduseofPHI.UnderHITECH,businessassociateswillbe

requiredtoimplementthesamesecuritysafeguardsandrestrictionsonusesanddisclosures,toprotectindividuallyidentifiablehealthinformation,ascoveredentitiesunderHIPAA.Italsosubjectsbusinessassociatestothesamepotentialcivilandcriminalliabilityforbreachesascoveredentities.HITECHalsospecifiesthatU.S.DepartmentofHealth&HumanServices(HHS)isnowrequiredtoconductperiodicauditsofcoveredentitiesandbusinessassociates.

TechTip

HIPAAPenaltiesHIPAAcivilpenaltiesforwillfulneglectareincreasedundertheHITECHAct.Thesepenaltiescanextendupto$250,000,andrepeat/uncorrectedviolationscanextendupto$1.5million.UnderHIPAAandtheHITECHActanindividualcannotbringacauseofactionagainstaprovider.Thelawsspecifythatastateattorneygeneralcanbringanactiononbehalfofstateresidents.

Gramm-Leach-BlileyAct(GLBA)Inthefinancialarena,GLBAintroducedtheU.S.consumertoprivacynotices,requiringfirmstodisclosewhattheycollect,howtheyprotecttheinformation,andwithwhomtheywillshareit.Annualnoticesarerequiredaswellastheoptionforconsumerstooptoutofthedatasharing.TheprimaryconceptbehindU.S.privacylawsinthefinancialarenaisthatconsumersbeallowedtooptout.ThiswasstrengthenedinGLBAtoincludespecificwordingandnotificationsaswellasrequiringfirmstoappointmentaprivacyofficer.MostU.S.consumershavewitnessedtheresultsofGLBA,everyyearreceivingprivacynoticesfromtheirbanksandcreditcardcompanies.ThesenoticesareoneofthevisibleeffectsofGLBAonchangingtheroleofprivacyassociatedwithfinancialinformation.

CaliforniaSenateBill1386(SB1386)CaliforniaSenateBill1386(SB1386)wasalandmarklawconcerninginformationdisclosures.ItmandatesthatCaliforniansbenotifiedwheneverPIIislostordisclosed.SincethepassageofSB1386,numerousotherstateshavemodeledlegislationonthisbill,andalthoughnationallegislationhasbeenblockedbypoliticalproceduralmoves,itwilleventuallybepassed.ThecurrentlistofU.S.statesandterritoriesthatrequiredisclosurenoticesisupto49,withonlyAlabama,NewMexico,andSouthDakotawithoutbills.Eachofthesedisclosurenoticelawsisdifferent,makingthecaseforaunifyingfederalstatutecompelling,butcurrentlyitislowontheprioritylistsofmostpoliticians.

U.S.BankingRulesandRegulationsBankinghasalwayshadanelementofPIIassociatedwithit,fromwhohasdepositstowhohasloans.Asthescaleofoperationsincreased,bothinnumbersofcustomersandproducts,theimportanceofinformationforprocessinggrew.Checksbecameautilityinstrumenttoconveyinformationassociatedwithfundstransferbetweenparties.Asacheckwasbasicallyapromisetopay,intheformofdirectionstoabank,occasionallythecheckwasnothonoredandamerchanthadtotrackdownthepartytodemandpayment.Thus,itbecameindustrypracticetowriteadditionalinformationonachecktoassistafirminlatertrackingdownthedraftingparty.Thisinformationincludeditemssuchasaddress,workphonenumber,acreditcardnumber,andsoon.Thisledtotheco-locationofinformationaboutanindividual,andthisinformationwasusedattimestoperformacrimeofidentitytheft.Tocombatthisandpreventthegatheringofthistypeofinformation,aseriesofbankingandfinancialregulationswereissuedbytheU.S.governmenttoprohibitthisformofinformationcollection.Otherregulationsaddresseditemssuchascreditcardnumbersbeingprintedonreceipts,mandatingonlythelastfivedigitsbeexposed.

PaymentCardIndustryDataSecurityStandard(PCIDSS)AsdescribedinChapter24,themajorcreditcardfirms,suchasMasterCard,Visa,AmericanExpress,andDiscover,designedaprivate-sectorinitiativetodealwithprivacyissuesassociatedwithcreditcardtransactioninformation.PCIDSSisastandardthatprovidesguidanceonwhatelementsofacreditcardtransactionneedprotectionandthelevelofexpectedprotection.PCIDSSisnotalaw,butratheracontractualregulation,enforcedthroughaseriesoffinesandfeesassociatedwithperformingbusinessinthisspace.PCIDSSwasareactiontotwophenomena,datadisclosuresandidentitytheft.

FairCreditReportingAct(FCRA)TheFairCreditReportingActof1999broughtsignificantprivacyprotectionstotheconsumercreditreportingagencies(CRAs).Thisactrequiresthattheagenciesprovideconsumersnoticeoftheirrightsandresponsibilities.Theagenciesarerequiredtoperformtimelyinvestigationsoninaccuraciesreportedbyconsumers.TheagenciesarealsorequiredtonotifytheotherCRAswhenconsumerscloseaccounts.Theactalsohastechnicalissuesassociatedwithdataintegrity,datadestruction,dataretention,andconsumerandthird-partyaccesstodata.ThedetailsofFCRAprovedtobeinsufficientwithrespecttoseveralaspectsofidentitytheft,andin2003,theFairandAccurateCreditTransactionsActwaspassed,modifyingandexpandingontheprivacyandsecurityprovisionsofFCRA.

TechTip

FACTAandCreditCardReceiptsOneoftheprovisionsofFACTAcompelsbusinessestoprotectcreditcardinformationon

receipts.BeforeFACTA,itwascommonforreceiptstohaveentirecreditcardnumbers,aswellasadditionalinformation.Today,receiptscandisplayonlythelastfivedigitsofthecardnumberandcannotincludethecardexpirationdate.Theseruleswentintoeffectin2005andmerchantshadoneyeartocomply.

FairandAccurateCreditTransactionsAct(FACTA)TheFairandAccurateCreditTransactionsActof2003waspassedtoenactstrongerprotectionsforconsumerinformationfromidentitytheft,errors,andomissions.FACTAamendedportionsofFCRAtoimprovetheaccuracyofcustomerrecordsinconsumerreportingagencies,toimprovetimelyresolutionofconsumercomplaintsconcerninginaccuracies,andtomakebusinessestakereasonablestepstoprotectinformationthatcanleadtoidentitytheft.

TechTip

FTCDisposalRuleTheFTC’sDisposalRuleappliestoconsumerreportingagenciesaswellastoanyindividualsandbusinessesthatuseconsumerreports,suchaslenders,insurers,employers,andlandlords.

FACTAalsohadother“disposalrules”associatedwithconsumerinformation.FACTAmandatesthatinformationthatisnolongerneededmustbeproperlydisposedof,eitherbyburning,pulverizing,orshredding.Anyelectronicinformationmustbeirreversiblydestroyedorerased.Shouldthird-partyfirmsbeusedfordisposal,therulesstillpertaintotheoriginalcontractingparty,sothirdpartiesshouldbeselectedwithcareandmonitoredforcompliance.

TechTip

RedFlagRulesTheFTChasadoptedasetofredflagrulesthatareinvokedtoassistentitiesindeterminingwhenextraprecautionsmustbetakenconcerningPIIrecords.Thefollowingaresomeexamplesofredflagsthatshouldpromptanorganizationtoinitiateadditional,specificdata-handlingstepstoprotectdata:

Changeofaddressrequest.Thisisacommontoolforidentitythieves,andassuch,firmsshouldprovideprotectionstepstoverifychangeofaddressrequests.

Suddenuseofanaccountthathasbeeninactiveforalongtime,orradicalchangesinuseofanyaccount.

Asuspiciousaddressorphonenumber.Manyfraudulentaddressesandnumbersareknown,andrepeatedapplicationsshouldbequicklynotedandstopped.

Requestforcreditonaconsumeraccountthathasacreditfreezeonacreditreportingrecord.

AdditionalinformationisavailablefromtheFTCatwww.ftc.gov/tips-advice/business-center/guidance/fighting-identity-theft-red-flags-rule-how-guide-business.Wheneveraredflagissueoccurs,thebusinessmusthavespecialproceduresinplaceto

ensurethattheeventisnotfraudulent.Callingthecustomerandverifyinginformationbeforetakingactionisoneexampleofthistypeofadditionalaction.

Non-FederalPrivacyConcernsintheUnitedStates

Despitethewideassortmentoffederalstatutesassociatedwithprivacy,asignificantgapremainsinprivacyprotectionintheUnitedStates.Governmentinformationaboutitscitizensisnotlimitedtojustthefederalgovernment.Stateandlocalgovernmentsalsohavesignificantinformationholdingsassociatedwithindividuals.Infact,itisnotuncommonforthequantityanddetailofinformationtoincreaseasproximitytoindividualsincreases.Localgovernmentshavesignificantquantitiesofgovernment-compiledpersonalinformation(suchaspropertyownership,courtrecords,voterregistration,fictitiousbusinessnames,vitalrecords,andsoforth).

Onlyabouthalfthestateshavesimilarprivacyactsconcerningstategovernmentagencies’handlingofpersonalinformation.InCalifornia,thisstatuteistheInformationPracticesAct.Eachstatethathassuchprotectionprovisionsdoessounderitsownsetofrulesandregulations,creatingapatchworkapproachtothistopic.Inonlyahandfulofstatesdoesthestate’s“privacyact”extendtolocalgovernment,where,asalreadynoted,existsthelion’sshareofinformation.ThislackofunifiedtreatmenthasplacedtheUnitedStatesbehindmanyothernationswithrespecttothisissueandhascreatedsafeharborissuesthatregularlyrequiretimeandefforttoaddressatthehighestlevelsofgovernment,withadifferingsetofofficialsinvolveddependinguponthesourceoftheinformation.Safeharborrulesareaseriesofagreementstoprivacyhandlingacrossinternationalboundaries.Forexample,ifprivacyconcernsarisefromtravelissues,theDepartmentofHomelandSecuritywouldrespond;forfinancialtransactionprivacyissues,itwouldbetheTreasuryDepartment;andforexportandimport,itwouldbetheCommerceDepartment.Thischannel-dependentresponsibilitycomplicatesnegotiationsoverissuesastheU.S.governmentagencyresponsibleforprivacyisalwayschangingasthesourceoftheprivacyissuechanges.

InternationalPrivacyLawsPrivacyisnotaU.S.-centricphenomenon,butitdoeshavestrongculturalbiases.Legalprotectionsforprivacytendtofollowthesocio-culturalnormsbygeography;hence,therearedifferentpoliciesinEuropeannationsthanintheUnitedStates.IntheUnitedStates,theprimarypathtoprivacyisviaopt-out,whereasinEuropeandothercountries,itisviaopt-in.Whatthismeansisthatthefundamentalnatureofcontrolshifts.IntheU.S.,aconsumermustnotifyafirmthattheywishtoblockthesharingofpersonalinformation;otherwisethefirmhaspermissionbydefault.IntheEU,sharingisblockedunlessthecustomerspecificallyoptsintoallowit.TheFarEasthassignificantlydifferentculturalnormswithrespecttoindividualismvs.collectivism,andthisisseenintheirprivacylawsas

well.Evenincountrieswithcommonborders,distinctdifferencesexist,suchastheUnitedStatesandCanada;CanadianlawsandcustomshavestrongrootstotheirUKhistory,andinmanycasesfollowEuropeanidealsasopposedtoU.S.ones.OneoftheprimarysourcesofintellectualandpoliticalthoughtonprivacyhasbeentheOrganizationforEconomicCo-operationandDevelopment(OECD).Thismultinationalentityhasfordecadesconductedmultilateraldiscussionsandpolicyformationonawiderangeoftopics,includingprivacy.

OECDFairInformationPracticesOECDFairInformationPracticesarethefoundationalelementformanyworldwideprivacypractices.Datingto1980,FairInformationPracticesareasetofprinciplesandpracticesthatsetouthowaninformation-basedsocietymayapproachinformationhandling,storage,management,andflowswithaviewtowardmaintainingfairness,privacy,andsecurity.MembersoftheOECDrecognizedthatinformationwasacriticalresourceinarapidlyevolvingglobaltechnologyenvironment,andthatproperhandlingofthisresourcewascriticalforlong-termsustainabilityofgrowth.

TechTip

OECD’sPrivacyCodeOECD’sprivacycodewasdevelopedtohelp“harmonisenationalprivacylegislationand,whileupholdingsuchhumanrights,[to]atthesametimepreventinterruptionsininternationalflowsofdata.[TheGuidelines]representaconsensusonbasicprincipleswhichcanbebuiltintoexistingnationallegislation,orserveasabasisforlegislationinthosecountrieswhichdonotyethaveit.”(Source:“OECDGuidelinesontheProtectionofPrivacyandTransborderFlowsofPersonalData,”www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm

EuropeanLaws

TheEUhasdevelopedacomprehensiveconceptofprivacy,whichisadministeredviaasetofstatutesknownasdataprotection.Theseprivacystatutescoverallpersonaldata,whethercollectedandusedbygovernmentorbyprivatefirms.Theselawsareadministeredbystateandnationaldataprotectionagenciesineachcountry.WiththeadventoftheEU,thiscommoncomprehensivenessstandsindistinctcontrasttothepatchworkoflawsintheUnitedStates.PrivacylawsinEuropearebuiltaroundtheconceptthatprivacyisa

fundamentalhumanrightthatdemandsprotectionthroughgovernmentadministration.WhentheEUwasformed,manylawswereharmonizedacrosstheoriginal15membernations,anddataprivacywasamongthosestandardized.OneimportantaspectofthisharmonizationistheDataProtectionDirective,adoptedbyEUmembers,whichhasaprovisionallowingtheEuropeanCommissiontoblocktransfersofpersonaldatatoanycountryoutsidetheEUthathasbeendeterminedtolackadequatedataprotectionpolicies.TheimpetusfortheEUdirectiveistoestablishtheregulatoryframeworktoenablethemovementofpersonaldatafromonecountrytoanother,whileatthesametimeensuringthatprivacyprotectionis“adequate”inthecountrytowhichthedataissent.ThiscanbeseenasadirectresultofearlyHEWtaskforce(see“U.S.PrivacyLaws,”earlierinthechapter)andOECDdirections.Iftherecipientcountryhasnotestablishedaminimumstandardofdataprotection,itisexpectedthatthetransferofdatawillbeprohibited.

TechTip

SafeHarborPrinciplesSafeHarborisbuiltuponsevenprinciples:

NoticeAfirmmustgivenoticeofwhatisbeingcollected,howitwillbeused,andwithwhomitwillbeshared.

ChoiceAfirmmustallowtheoptiontooptoutoftransferofPIItothirdparties.

OnwardTransferAlldisclosuresofPIImustbeconsistentwiththepreviousprinciples

ofNoticeandChoice.SecurityPIImustbesecuredatalltimes.DataIntegrityPIImustbemaintainedaccuratelyand,ifincorrect,thecustomerhastherighttocorrectit.

AccessIndividualsmusthaveappropriateandreasonableaccesstoPIIforthepurposesofverificationandcorrection.

EnforcementIssueswithprivacyandPIImusthaveappropriateenforcementprovisionstoremaineffective.

Seewww.export.gov/safeharbor/eg_main_018236.aspformoreinformation.

ThedifferencesinapproachbetweentheU.S.andtheEUwithrespecttodataprotectionledtheEUtoissueexpressionsofconcernabouttheadequacyofdataprotectionintheUnitedStates,amovethatcouldhavepavedthewaytotheblockingofdatatransfers.Afternegotiation,itwasdeterminedthatU.S.organizationsthatvoluntarilyjoinedanarrangementknownasSafeHarborwouldbeconsideredadequateintermsofdataprotection.SafeHarborisamechanismforself-regulationthatcanbeenforcedthroughtradepracticelawviatheFTC.AbusinessjoiningtheSafeHarborConsortiummustmakecommitmentstoabidebyspecificguidelinesconcerningprivacy.SafeHarbormembersalsoagreetobegovernedbycertainself-enforcedregulatorymechanisms,backedultimatelybyFTCaction.

TechTip

EncryptionandPrivacyEncryptionhaslongbeenheldbygovernmentstobeatechnologyassociatedwiththemilitary.Assuch,differentgovernmentshaveregulateditindifferentmanners.TheU.S.governmenthasgreatlyreducedcontrolsoverencryptioninthepastdecade.Othercountries,suchasGreatBritain,haveenactedstatutesthatcompeluserstoturnoverencryptionkeyswhenaskedbyauthorities.CountriessuchasFrance,Malaysia,andChinastilltightlycontrolandlicenseend-useruseofencryptiontechnologies.TheprimarydriverforPhilZimmermantocreatePrettyGoodPrivacy(PGP)wastheneedforprivacyincountrieswherethegovernmentwasconsideredathreattocivilliberties.

AnothermajordifferencebetweenU.S.andEuropeanregulationliesinwheretherightofcontrolisexercised.InEuropeandirectives,therightofcontroloverprivacyisbalancedinsuchawayastofavorconsumers.Ratherthanhavingtopaytooptout,aswithunlistedphonenumbersintheUnitedStates,consumershavesuchservicesforfree.Ratherthanhavingtooptoutatall,thedefaultprivacysettingisdeemedtobethehighestlevelofdataprivacy,andusershavetooptintoshareinformation.ThisdefaultsettingisacornerstoneoftheEuropeanUnion’sDirectiveonProtectionofPersonalDataandisenforcedthroughnationallawsinallmembernations.

CanadianLawsLikemanyEuropeancountries,Canadahasacentralizedformofprivacylegislationthatappliestoeveryorganizationthatcollects,uses,ordisclosespersonalinformation,includinginformationaboutemployees.TheseregulationsstemfromthePersonalInformationProtectionandElectronicDataAct(PIPEDA),whichrequiresthatpersonalinformationbecollectedandusedonlyforappropriatepurposes.Individualsmustbenotifiedastowhytheinformationisrequestedandhowitwillbeused.Theacthassafeguardsassociatedwithstorage,use,reuse,andretention.Toensureleadershipinthefieldofprivacyissues,Canadahasa

national-levelprivacycommissionerandeachprovincehasaprovince-levelprivacycommissioner.ThesecommissionersactasadvocatesonbehalfofindividualsandhaveusedlegalactionstoenforcetheprivacyprovisionsassociatedwithPIPEDAtoprotectpersonalinformation.

AsianLawsJapanhasaPersonalInformationProtectionLawthatrequiresprotectionofpersonalinformationusedbytheJapanesegovernment,thirdparties,andthepublicsector.TheJapaneselawhasprovisionswherethe

governmententitymustspecifythepurposeforwhichinformationisbeingcollected,specifythesafeguardsapplied,and,whenpermitted,discontinueuseoftheinformationuponrequest.HongKonghasanofficeofthePrivacyCommissionerforPersonal

Data(PCPD),astatutorybodyentrustedwiththetaskofprotectingpersonaldataprivacyofindividualsandtoensurecomplianceswiththePersonalData(Privacy)OrdinanceinHongKong.OnemaintaskoftheCommissionerispubliceducation,creatinggreaterawarenessofprivacyissuesandtheneedtocomplywiththePersonalDataOrdinance.Chinahashadalongreputationofpoorprivacypractices.Someofthis

comesfromtheculturalbiastowardcollectivism,andsomecomesfromthelong-standinggovernmenttraditionofsurveillance.RecentnewsoftheChinesegovernmenteavesdroppingonSkypeandotherInternet-relatedcommunicationshasheightenedthisconcern.China’sconstitutionhasprovisionsforprivacyprotectionsforthecitizens.Evenso,issueshavecomeintheareaofenforcementandpenalties,andprivacyitemsthathavebeenfarfromuniformintheirjudicialhistory.

Privacy-EnhancingTechnologiesOneprincipalconnectionbetweeninformationsecurityandprivacyisthatwithoutinformationsecurity,youcannothaveprivacy.Ifprivacyisdefinedastheabilitytocontrolinformationaboutoneself,thentheaspectsofconfidentiality,integrity,andavailabilityfrominformationsecuritybecomecriticalelementsofprivacy.Justastechnologyhasenabledmanyprivacy-impactingissues,technologyalsooffersthemeansinmanycasestoprotectprivacy.Anapplicationortoolthatassistsinsuchprotectioniscalledaprivacy-enhancingtechnology(PET).EncryptionisatthetopofthelistofPETsforprotectingprivacyand

anonymity.Asnotedearlier,oneofthedrivingfactorsbehindPhilZimmerman’sinventionofPGPwasthedesiretoenablepeoplelivinginrepressiveculturestocommunicatesafelyandfreely.Encryptioncankeepsecretssecret,andisaprimechoiceforprotectinginformationatanystage

initslifecycle.ThedevelopmentofTorroutingtopermitanonymouscommunicationscoupledwithhigh-assurance,low-costcryptographyhasmademanywebinteractionssecurableandsafefromeavesdropping.OtherPETsincludesmallapplicationprograms,calledcookiecutters,

thataredesignedtopreventthetransferofcookiesbetweenbrowsersandwebservers.Somecookiecuttersblockallcookies,whileotherscanbeconfiguredtoselectivelyblockcertaincookies.SomecookiecuttersalsoblockthesendingofHTTPheadersthatmayrevealpersonalinformationbutmaynotbenecessarytoaccessawebsite,andsomeblockbannerads,pop-upwindows,animatedgraphics,orotherunwantedwebelements.SomerelatedPETtoolsaredesignedspecificallytolookforinvisibleimagesthatsetcookies(calledwebbeaconsorwebbugs).OtherPETsareavailabletoPCusers,includingencryptionprogramsthatallowuserstoencryptandprotecttheirowndata,evenonUSBkeys.

PrivacyPoliciesOneofthedirectoutcomesofthelegalstatutesassociatedwithprivacyhasbeenthedevelopmentofaneedforcorporateprivacypoliciesassociatedwithdatacollection.Withamyriadofgovernmentagenciesinvolved,eachwithaspecificmandateto“assist”intheprotectioneffortassociatedwithPII,onecanask,whatisthebestpathforanindustrymember?IfyourorganizationneedsPIItoperformitstasks,obtainingandusingitisfineinmostcases,butyoumustensurethateveryoneintheorganizationcomplieswiththeacts,rules,andregulationsassociatedwiththesegovernmentagencies.Policiesandproceduresarethebestwaytoensureuniformcomplianceacrossanorganization.Thedevelopmentofaprivacypolicyisanessentialfoundationalelementofacompany’sprivacystance.

TechTip

PrivacyComplianceStepsToensurethatanorganizationcomplieswiththenumerousprivacyrequirementsandregulations,astructuredapproachtoprivacyplanningandpoliciesisrecommended:

1.Identifytheroleintheorganizationthatwillberesponsibleforcomplianceandoversight.

2.Documentallapplicablelawsandregulations,industrystandards,andcontractrequirements.

3.Identifyanyindustrybestpractices.

4.Performaprivacyimpactassessment(PIA)andariskassessment.5.Maptheidentifiedriskstocompliancerequirements.

6.Createaunifiedriskmitigationplan.

PrivacyImpactAssessmentAprivacyimpactassessment(PIA)isastructuredapproachtodeterminingthegapbetweendesiredprivacyperformanceandactualprivacyperformance.APIAisananalysisofhowPIIishandledthroughbusinessprocessesandanassessmentofriskstothePIIduringstorage,use,andcommunication.APIAprovidesameanstoassesstheeffectivenessofaprocessrelativetocompliancerequirementsandidentifyissuesthatneedtobeaddressed.APIAisstructuredwithaseriesofdefinedstepstoensureacomprehensivereviewofprivacyprovisions.Thefollowingstepscompriseahigh-levelmethodologyandapproach

forconductingaPIA:

1.EstablishPIAscope.Determinethedepartmentsinvolvedandtheappropriaterepresentatives.Determinewhichapplicationsandbusinessprocessesneedtobeassessed.Determineapplicablelawsandregulationsassociatedwiththebusinessandprivacyconcerns.

2.Identifykeystakeholders.IdentifyallbusinessunitsthatusePII.ExaminestafffunctionssuchasHR,Legal,IT,Purchasing,andQualityControl.

3.DocumentallcontactwithPII:PIIcollection,access,use,sharing,disposal

Processesandprocedures,policies,safeguards,data-flowdiagrams,andanyotherriskassessmentdata

Websitepolicies,contracts,HR,andadministrativeforotherPII

4.Reviewlegalandregulatoryrequirements,includinganyupstreamcontracts.Thesourcesaremany,butsomecommonlyoverlookedissuesareagreementswithsuppliersandcustomersoverinformationsharingrights.

5.Documentgapsandpotentialissuesbetweenrequirementsandpractices.Allgapsandissuesshouldbemappedagainstwheretheissuewasdiscoveredandthebasis(requirementorregulation)thatthegapmapsto.

6.Reviewfindingswithkeystakeholderstodetermineaccuracyandclarifyanyissues.Beforethefinalreportiswritten,anyissuesorpossiblemiscommunicationsshouldbeclarifiedwiththeappropriatestakeholderstoensureafairandaccuratereport.

7.Createfinalreportformanagement.

WebPrivacyIssuesTheInternetactsasalargeinformation-sharingdomain,andassuchcanbeaconduitforthetransferenceofinformationamongmanyparties.TheWeboffersmuchintheformofcommunicationbetweenmachines,people,andsystems,andthissameexchangeofinformationcanbeassociatedwithprivacybasedonthecontentoftheinformationandthereasonfortheexchange.

Cookies

Cookiesaresmallbitsoftextthatarestoredonauser’smachineandsenttospecificwebsiteswhentheuservisits.Cookiescanstoremanydifferentthings,fromtokensthatprovideareferencetoadatabaseserverbehindthewebservertoassistinmaintainingstatethroughanapplication,tothecontentsofashoppingcart.Cookiescanalsoholddatadirectly,inwhichcasetherearepossibleprivacyimplications.Whenacookieholdsatokennumberthatismeaninglesstooutsidersbutmeaningfultoaback-endserver,thenthelossofthecookierepresentsnolossatall.Whenthecookietextcontainsmeaningfulinformation,thenthelosscanresultinprivacyissues.Forinstance,whenacookiecontainsalongnumberthathasnomeaningexcepttothedatabaseserver,thenthenumberhasnoPII.Butifthecookiecontainstext,suchasaship-toaddressforanorder,thiscanrepresentPIIandcanresultinaprivacyviolation.Itiscommontoencodethedataincookies,butBase64encodingisnotencryptionandcanbedecodedbyanyone,thusprovidingnoconfidentiality.Cookiesprovideausefulserviceofallowingstatetobemaintainedina

statelessprocess,webserving(see“Cookies”inChapter17).ButbecauseofthepotentialforPIIleakage,manyusershaveswornoffcookies.Thisleadstoissuesonnumerouswebsites,forwhenproperlyimplemented,theyposenoprivacydangerandcangreatlyenhancewebsiteusefulness.Thebottomlineforcookiesisfairlyeasy—donecorrectly,theydonot

representasecurityorprivacyissue.Doneincorrectly,theycanbeadisaster.Asimplerulesolvesmostproblemswithcookies:neverstoredatadirectlyonacookie;instead,storeareferencetoanotherwebapplicationthatpermitsthecorrectactionstooccurbasedonthekeyvalue.

PrivacyinPracticeWithprivacybeingdefinedasthepowertocontrolwhatothersknowaboutyouandwhattheycandowiththatinformation,thereremainsthequestionofwhatyoucandotoexercisethatcontrol.Informationisneededtoobtainservices,andinmanycasestheinformationisreused,oftenforadditionalandsecondarypurposes.Usersagreetotheseusesthrough

acceptanceofafirm’sprivacypolicy.Sharedinformationstillrequirescontrol,andinthiscasethecontrol

functionhasshiftedtothepartythatobtainedtheinformation.Theymaystoreitforfutureuse,forrecordpurposes,orforotheruses.Iftheyfailtoadequatelyprotecttheinformationfromlossordisclosure,thentheownernolongerhasauthorizedtheusesitmaybeemployedin.Datadisclosuresandinformationtheftsbothresultinunauthorizeduseofinformation.Userscantakeactionstobothprotecttheirinformationandtomitigateriskfromunauthorizedsharinganduseoftheirinformation.

UserActionsUsershavetoshareinformationforavarietyoflegitimatepurposes.Informationhasvalue,bothtotheauthorizeduserandtothosewhowouldstealtheinformationanduseitforunauthorizedpurposes.Ifusersaregoingtocontroltheirinformation,theyhavetotakecertainprecautions.Thisiswheresecurityandprivacyintersectatanoperationallevel.Securityfunctionalityenablescontrolandthusenablesprivacyfunctionality.Oneaspectofmaintainingcontroloverinformationisintheproper

securityprecautionspresentedthroughoutthebook,sotheywillnotberepeatedhere.Asecondlevelofactionscanbeemployedbyuserstomaintainknowledgeovertheirinformationuses.Thevalueofinformationisinitsuse,andinmanycases,thisusecanbetracked.Thetwomaintypesofinformationthathaveimmediatevaluearefinancialandmedical.Financialinformation,suchascreditcardinformation,identityinformation,andbankinginformation,canbeusedbycriminalstostealfromothers.Manytimestheuseofidentityorfinancialinformationwillshowuponthesystemsofrecordassociatedwiththeinformation.Thisiswhyitisimportanttoactuallyreadbankstatementsandverifycharges.

Usersshouldperiodically,asinannually,requestcopiesoftheircreditbureaureportsandexaminethemforunauthorizedactivity.Likewise,usersshouldperiodicallyverifywiththeirhealthcareinsurers,lookingforunauthorizedactivitythereaswell.Thesechecksdonottakemuchtimeandprovideameanstopreventlong-termpenetrationofidentities.

Inthesamevein,oneshouldperiodicallyexaminetheircreditreport,lookingforunauthorizedcreditrequestsoraccounts.Periodicchecksofhealthcareinsuranceaccountsandreportsisessentialforthesamereason.Justbecauseyouhavepaidallyourcopays,youshouldn’tshredunopenedenvelopesfromtheinsurancecompany.Ifsomeoneelseisusingyourinformation,youmaybeauthorizingtheiruseofyourstoleninformationbynotalertingtheinsurancecompanytothemisuse.

DataBreachesWhenacompanylosesdatathatithasstoredonitsnetwork,thetermisadatabreach.Databreacheshavebecomeanalmostdailynewsitem,withpeopleactuallybecomingdesensitizedtotheiroccurrence.Databreachesactasmeansofnotificationthatsecurityeffortshavefailed.Verizonregularlypublishesadatabreachinvestigationreport,examiningtherootcausesbehindhundredsofbreachevents.Inthe2014report,Verizonfoundthatnineoutoftenbreachescanbedescribedbythefollowingninedistinctpatterns:

Point-of-sale(POS)intrusions

Webappattacks

Insiderandprivilegemisuse

Physicaltheftandloss

Miscellaneouserrors(misdelivery,misconfiguration,usererrors)

Crimeware

Paymentcardskimmers

Denialofservice

Cyberespionage

In2014,over63,000securityincidentswereanalyzed,with1367confirmeddatabreachesacross95countries.

2014andinto2015wasabannertimefordatabreaches.Themajorbreachesinclude:

OthermajorincidentsincludetheKoreanCreditBureaubreach,involving20millionrecordsinacountryof50millionpeople.PossiblythebiggestnewswasthethirdbreachofSony,thistimenotjustthePlayStationnetwork,butvirtuallyallcorporaterecordsassociatedwithSonyPicturesEntertainment,thefilmstudiosubsidiary.Embarrassinge-mails,PIIforemployees,scripts…thecontentreleasedwaswidespread,includingthatoncontractormachines.

Chapter25Review

ForMoreInformationRebeccaHerold,PrivacyProfessor

MonthlyPrivacyProfessorTipswww.privacyguidance.com/eTips.html

Blogwww.privacyguidance.com/blog/Videoswww.privacyguidance.com/eMy_Videos.html

DataBreaches

InformationisBeautiful(visualizations)www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

VerizonDataBreachInvestigationsReportwww.verizonenterprise.com/DBIR

ChapterSummaryAfterreadingthischapterandcompletingtheexercises,youshouldunderstandthefollowingaspectsofprivacy.

Defineprivacy

Privacyisthepowertocontrolwhatothersknowaboutyouandwhattheycandowiththatinformation.

Theconceptofprivacydoesnottranslatedirectlytoinformationaboutabusinessasitisnotaboutaperson.

Identifyprivacylawsrelativetocomputersecurityinvariousindustries

NumerousU.S.federalstatuteshaveprivacyprovisions,includingFERPA,VPPA,GLBA,HIPAA,andsoon.

Thenumberofstateandlocallawsthataddressprivacyissuesislimited.

Awidearrayofinternationallawsaddressprivacyissues,includingthoseoftheEU,Canada,andothernations.

Describeissuesassociatedwithtechnologyandprivacy

Adirectrelationshipexistsbetweeninformationsecurityandprivacy—onecannothaveprivacywithoutsecurity.

Privacy-enhancingtechnologies(PETs)areusedinthetechnologicalbattletopreserveanonymityandprivacy.

Explaintheconceptofpersonallyidentifiableinformation(PII)

SpecificconstituentelementsofPIIneedtobeprotected.

CorporateresponsibilitiesassociatedwithPIIincludetheneedtoprotectPIIappropriatelywheninstorage,use,ortransmission.

Craftaprivacypolicyforonlinerecords

Policiesdrivecorporateactions,andprivacypoliciesarerequiredbyseveralstatutesandareessentialtoensurecompliancewiththemyriadofmandatedactions.

Recognizeweb-relatedprivacyissues

CookiesrepresentausefultooltomaintainstatewhensurfingtheWeb,butifusedincorrectly,theycanrepresentasecurityandprivacyrisk.

KeyTermschoice(719)consent(719)cookiecutters(730)cookies(732)dataprotection(728)DisposalRule(725)FreedomofInformationAct(FOIA)(720)HealthInsurancePortabilityandAccountabilityAct(HIPAA)(723)identitytheft(725)notice(719)NoticeofPrivacyPractices(NPP)(723)opt-in(727)opt-out(727)PersonalInformationProtectionandElectronicDataAct(PIPEDA)

(729)personallyidentifiableinformation(PII)(717)privacy(716)PrivacyActof1974(720)privacy-enhancingtechnology(PET)(730)privacyimpactassessment(PIA)(731)privacypolicy(730)ProtectedHealthInformation(PHI)(723)redflag(726)redflagrules(726)SafeHarbor(729)

KeyTermsQuizUsetermsfromtheKeyTermslisttocompletethesentencesthatfollow.

Don’tusethesametermmorethanonce.Notalltermswillbeused.

1.IntheUnitedStates,thestandardmethodologyforconsumerswithrespecttoprivacyisto_______________,whereasintheEUitisto______________.

2._______________istherighttocontrolinformationaboutoneself.3.TheFTCmandatesfirms’useof_______________proceduresto

identifyinstanceswhereadditionalprivacymeasuresarewarranted.

4.DifferencesbetweenprivacyrulesandregulationsintheUnitedStatesandtheEUareresolvedthrough_______________conventions.

5.Datathatcanbeusedtoidentifyaspecificindividualisreferredtoas_______________.

6.Programsusedtocontroltheuseof___________whenwebbrowsingarereferredtoas_________.

7.ThemajorU.S.privacystatutesare____________and_______________.

8.MedicalinformationintheUnitedStatesisprotectedviathe_______________.

9.Manyprivacyregulationshavespecifiedthatfirmsprovideanannual_______________tocustomers.

10.Toevaluatetheprivacyrisksinafirm,a(n)_______________canbeperformed.

Multiple-ChoiceQuiz1.HIPAArequiresthefollowingcontrolsformedicalrecords:

A.Encryptionofalldata

B.Technicalsafeguards

C.Physicalcontrols

D.Administrative,technical,andphysicalcontrols

2.WhichofthefollowingisnotPII?A.Customername

B.CustomerIDnumber

C.Customersocialsecuritynumberortaxpayeridentificationnumber

D.Customerbirthdate

3.Aprivacyimpactassessment:A.Determinesthegapbetweenacompany’sprivacypracticesand

requiredactions

B.Determinesthedamagecausedbyabreachofprivacy

C.Determineswhatcompaniesholdinformationonaspecificperson

D.IsacorporateproceduretosafeguardPII

4.WhichofthefollowingshouldtriggeraresponseundertheRedFlagRule?

A.Allcreditrequestsforpeopleunder25orover75

B.Anynewcustomercreditrequest,exceptfornamechangesduetomarriage

C.Requestforcreditfromacustomerwhohasahistoryoflatepaymentsandpoorcredit

D.Requestforcreditfromacustomerwithacreditfreezeonhiscreditreportingrecord

5.WhichofthefollowingisanacceptablePIIdisposalprocedure?A.Shredding

B.Burning

C.Electronicdestructionpermilitarydatadestructionstandards

D.Alloftheabove

6.SafeHarborprinciplesinclude:A.Notice,Choice,PrivacyPolicy,DataRestrictions

B.Notice,Choice,Security,Privacy,Integrity

C.Notice,PhysicalSafeguards,Choice,Security,DataIntegrity

D.Notice,Choice,OnwardTransfer,Enforcement,Security,DataIntegrity

7.Europeanprivacylawsarebuiltupon:A.EUDataProtectionDirective

B.PersonalInformationProtectionandElectronicDataAct(PIPEDA)

C.SafeHarborprinciples

D.Commonlawpractices

8.IntheUnitedStates,companyresponsestodatadisclosuresofPIIareregulatedby:

A.Federallaw,thePrivacyAct

B.Aseriesofstatestatutes

C.Contractualagreementswithbanksandcreditcardprocessors

D.TheGramm-Leach-BlileyAct(GLBA)

9.Theprimaryfactor(s)behinddata-sharingcompliancebetweenU.S.andEuropeancompaniesis/are?

A.SafeHarborProvision

B.Europeandataprivacylaws

C.U.S.FTCenforcementactions

D.Alloftheabove

10.Privacyisdefinedas:A.One’sabilitytocontrolinformationabouthimselforherself

B.Beingabletokeepyourinformationsecret

C.Makingdata-sharingillegalwithoutconsumerconsent

D.SomethingthatisoutmodedintheInternetage

EssayQuiz1.Privacyandtechnologyoftenclash,especiallywhentechnology

allowsdatacollectionthatcanhavesecondaryuses.Inthecaseofautomotivetechnology,blackboxestocollectoperationaldataarebeinginstalledinnewcarsintheUnitedStates.Whataretheprivacyimplications,andwhatprotectionsexist?

2.PrivacypoliciesarefoundallovertheWeb.Pickthreewebsiteswithprivacypoliciesandcompareandcontrastthem.Whatdotheyincludeandwhatismissing?

LabProject

•LabProject25.1

Privacy-enhancingtechnologiescandomuchtoprotectauser’sinformationand/ormaintainanonymitywhenusingtheWeb.ResearchonionroutingandtheTorproject.Whatdothesethingsdo?Howdotheywork?

appendixA CompTIASecurity+ExamObjectives:

SY0-401

appendixB AbouttheDownload

Thise-bookcomescompletewithTotalTestercustomizablepracticeexamsoftware.

SystemRequirementsTheTotalTestersoftwarerequiresWindowsXPorhigherand30MB

ofharddiskspaceforfullinstallation,inadditiontoacurrentorpriormajorreleaseofChrome,Firefox,InternetExplorer,orSafari.Torun,thescreenresolutionmustbesetto1024×768orhigher.

DownloadingTotalTesterPremiumPracticeExamSoftware

TodownloadtheTotalTestersoftware,simplyclickthelinkbelowandfollowthedirectionsforfreeonlineregistration.

http://www.totalsem.com/0071836012dl

TotalTesterPremiumPracticeExamSoftwareTotalTesterprovidesyouwithasimulationoftheactualexam.You

canalsocreatecustomexamsfromselectedcertificationobjectivesor

chapters.Youcanfurthercustomizethenumberofquestionsandtimeallowed.

TheexamscanbetakenineitherPracticeModeorExamMode.PracticeModeprovidesanassistancewindowwithhints,referencestothebook,explanationsofthecorrectandincorrectanswers,andtheoptiontocheckyouranswerasyoutakethetest.ExamModeprovidesasimulationoftheactualexam.Thenumberofquestions,thetypesofquestions,andthetimeallowedareintendedtobeanaccuraterepresentationoftheexamenvironment.BothPracticeModeandExamModeprovideanoverallgradeandagradebrokendownbycertificationobjective.

NOTE:TotalTesterdoesnotprovidesimulationsoftheexam’sperformance-basedquestiontype.Forfurtherdiscussiononthisquestiontype,pleaseseethebook’sIntroduction.

Totakeatest,launchTotalTesterandselecttheexamsuitefromtheInstalledQuestionPackslist.YoucanthenselectPracticeMode,ExamMode,orCustomMode.Aftermakingyourselection,clickStartExamtobegin.

InstallingandRunningTotalTester

Onceyou’vedownloadedtheTotalTestersoftware,double-clicktheLaunch.exeicon.FromthemainscreenyoumayinstallTotalTesterbyclickingtheInstallTotalTesterPracticeExamslink.ThiswillbegintheinstallationprocessandplaceanicononyourdesktopandinyourStartmenu.TorunTotalTester,navigatetoStart|(All)Programs|TotalSeminars,ordouble-clicktheicononyourdesktop.

TouninstalltheTotalTestersoftware,gotoStart|Settings|ControlPanel|Add/RemovePrograms(XP)orProgramsAndFeatures(Vista/7/8),andthenselecttheTotalTesterprogram.SelectRemoveandWindowswillcompletelyuninstallthesoftware.

TechnicalSupportTechnicalSupportinformationisprovidedinthefollowingsectionsby

feature.

TotalSeminarsTechnicalSupport

ForquestionsregardingtheTotalTestersoftware,visitwww.totalsem.comore-mail[emailprotected].

McGraw-HillEducationContentSupport

Forquestionsregardingbookcontent,e-mail[emailprotected].ForcustomersoutsidetheUnitedStates,e-mail[emailprotected].

mailto:[emailprotected]

mailto:[emailprotected]

mailto:[emailprotected]

GLOSSARY

*-propertyPronounced“starproperty,”thisaspectoftheBell–LaPadulasecuritymodeliscommonlyreferredtoasthe“no-write-down”rulebecauseitdoesn’tallowausertowritetoafilewithalowersecurityclassification,thuspreservingconfidentiality.

3DESTripleDESencryption—threeroundsofDESencryptionusedtoimprovesecurity.

802.11SeeIEEE802.11.

802.1XSeeIEEE802.1X.

AAASeeauthentication,authorization,andaccounting.

acceptableusepolicy(AUP)Apolicythatcommunicatestouserswhatspecificusesofcomputerresourcesarepermitted.

accessAsubject’sabilitytoperformspecificoperationsonanobject,suchasafile.Typicalaccesslevelsincluderead,write,execute,anddelete.

accesscontrollist(ACL)Alistassociatedwithanobject(suchasafile)thatidentifieswhatlevelofaccesseachsubject(suchasauser)has—whattheycandototheobject(suchasread,write,orexecute).

accesscontrolsMechanismsormethodsusedtodeterminewhataccess

permissionssubjects(suchasusers)haveforspecificobjects(suchasfiles).

accesspointShorthandforwirelessaccesspoint,thedevicethatallowsdevicestoconnecttoawirelessnetwork.

accesstokensAtokendeviceusedforaccesscontrol,anexampleofsomethingyouhave.

ActiveDirectoryThedirectoryserviceportionoftheWindowsoperatingsystemthatstoresinformationaboutnetwork-basedentities(suchasapplications,files,printers,andpeople)andprovidesastructured,consistentwaytoname,describe,locate,access,andmanagetheseresources.

ActiveServerPages(ASP)Microsoft’sserver-sidescripttechnologyfordynamicallygeneratedwebpages.

ActiveXAMicrosofttechnologythatfacilitatesrichInternetapplications,andthereforeextendsandenhancesthefunctionalityofMicrosoftInternetExplorer.LikeJava,ActiveXenablesthedevelopmentofinteractivecontent.WhenanActiveX-awarebrowserencountersawebpagethatincludesanunsupportedfeature,itcanautomaticallyinstalltheappropriateapplicationsothefeaturecanbeused.

AddressResolutionProtocol(ARP)AprotocolintheTCP/IPsuitespecificationusedtomapanIPaddresstoaMediaAccessControl(MAC)address.

AdvancedEncryptionStandard(AES)ThecurrentU.S.governmentstandardforsymmetricencryption,widelyusedinallsectors.

AdvancedEncryptionStandard256-bit(AES256)AnimplementationofAESusinga256-bitkey.

advancedpersistentthreat(APT)Atypeofadvancedthreatwheretheactorsdesirelong-termpersistenceinasystemovershort-termgain.

adwareAdvertising-supportedsoftwarethatautomaticallyplays,displays,ordownloadsadvertisementsafterthesoftwareisinstalledorwhiletheapplicationisbeingused.

agilemodelAsoftwaredevelopmentmodebuiltaroundtheideaofmanysmalliterationsthatcontinuallyyielda“finished”productatthecompletionofeachiteration.

airgapTheforcedseparationofnetworks,resultinginanairgapbetweensystems.Communicationsacrossanairgaprequireamanualefforttomovedatafromonenetworktoanotherasnonetworkconnectionexistsbetweenthetwonetworks.

algorithmAstep-by-stepprocedure—typicallyanestablishedcomputationforsolvingaproblemwithinasetnumberofsteps.

annualizedlossexpectancy(ALE)Howmuchaneventisexpectedtocostthebusinessperyear,giventhedollarcostofthelossandhowoftenitislikelytooccur.ALE=singlelossexpectancy×annualizedrateofoccurrence.

annualizedrateofoccurrence(ARO)Thefrequencywithwhichaneventisexpectedtooccuronanannualizedbasis.

anomalySomethingthatdoesnotfitintoanexpectedpattern.

antispamTechnologyusedtocombatunsolicitedjunke-mail,orspam.

antivirus(AV)Technologyemployedtoscreenforandblocktheexecutionofvirusesandothermalware.

applicationAprogramorgroupofprogramsdesignedtoprovide

specificuserfunctions,suchasawordprocessororwebserver.

applicationhardeningThestepstakentohardenanapplication,mitigatingvulnerabilitiesandreducingtheexploitablesurface.

applicationprogramminginterface(API)Asetofinstructionsastohowtointerfacewithacomputerprogramsothatdeveloperscanaccessdefinedinterfacesinaprogram.

applicationserviceprovider(ASP)AcompanythatoffersentitiesaccessovertheInternettoapplicationsandservices.

applicationvulnerabilityscannerTechnologyusedtoscanapplicationsforpotentialvulnerabilitiesandweaknesses.

ARPSeeAddressResolutionProtocol.

ARPbackscatterTheuseofARPscanningagainstagatewaydevicetodetectthepresenceofadevicebehindthegatewayorrouter.

ARPpoisoningAnattackcharacterizedbychangingentriesinanARPtabletocausemisdirectedtraffic.

assetResourcesandinformationanorganizationneedstoconductitsbusiness.

asymmetricencryptionAlsocalledpublickeycryptography,thisisasystemforencryptingdatathatusestwomathematicallyderivedkeystoencryptanddecryptamessage—apublickey,availabletoeveryone,andaprivatekey,availableonlytotheownerofthekey.

attribute-basedaccesscontrol(ABAC)Anaccesscontrolmodelbuiltaroundasetofrulesbuiltuponspecificattributes.

auditabilityThepropertyofanitemthatmakesitavailablefor

verificationuponinspection.

audittrailAsetofrecordsorevents,generallyorganizedchronologically,thatrecordswhatactivityhasoccurredonasystem.Theserecords(oftencomputerfiles)areoftenusedinanattempttore-createwhattookplacewhenasecurityincidentoccurred,andtheycanalsobeusedtodetectpossibleintruders.

auditingActionsorprocessesusedtoverifytheassignedprivilegesandrightsofauser,oranycapabilitiesusedtocreateandmaintainarecordshowingwhoaccessedaparticularsystemandwhatactionstheyperformed.

authenticationTheprocessbywhichasubject’s(suchasauser’s)identityisverified.

authentication,authorization,andaccounting(AAA)Threecommonfunctionsperformeduponsystemlogin.Authenticationandauthorizationalmostalwaysoccur,withaccountingbeingsomewhatlesscommon.

AuthenticationHeader(AH)AportionoftheIPsecsecurityprotocolthatprovidesauthenticationservicesandreplay-detectionability.AHcanbeusedeitherbyitselforwithEncapsulatingSecurityPayload(ESP).RefertoRFC2402.

authenticationserver(AS)Aserverusedtoperformauthenticationtasks.

AuthenticodeMicrosoftcode-signingtechnologyusedtoprovideintegrityandattributiononsoftware.

authorityrevocationlist(ARL)Alistofauthoritiesthathavehadtheircertificatesrevoked.

authorizationThefunctionofdeterminingwhatispermittedforan

authorizeduser.

autoplayTechnologyemployedtolaunchappropriateapplicationsandplayordisplaycontentonremovablemediawhenthemediaismounted.

availabilityPartofthe“CIA”ofsecurity.Availabilityappliestohardware,software,anddata,specificallymeaningthateachoftheseshouldbepresentandaccessiblewhenthesubject(theuser)wantstoaccessorusethem.

backdoorAhiddenmethodusedtogainaccesstoacomputersystem,network,orapplication.Oftenusedbysoftwaredeveloperstoensureunrestrictedaccesstothesystemstheycreate.Synonymouswithtrapdoor.

backoutplanningThepartofaconfigurationchangeplanwherestepsaredevisedtoundoachange,evenwhennotcomplete,torestoreasystembacktothepreviousoperatingcondition.

backupReferstocopyingandstoringdatainasecondarylocation,separatefromtheoriginal,topreservethedataintheeventthattheoriginalislost,corrupted,ordestroyed.

baselineAsystemorsoftwareasitisbuiltandfunctioningataspecificpointintime.Servesasafoundationforcomparisonormeasurement,providingthenecessaryvisibilitytocontrolchange.

BasicInput/OutputSystem(BIOS)Afirmwareelementofacomputersystemthatprovidestheinterfacebetweenhardwareandsystemsoftwarewithrespecttodevicesandperipherals.BIOSisbeingreplacedbyExtensibleFirmwareInterface(EFI),amorecomplexandcapablesystem.

beaconframesAseriesofframesusedinWiFi(802.11)toestablishthepresenceofawirelessnetworkdevice.

Bell–LaPadulasecuritymodelAcomputersecuritymodelbuiltaround

thepropertyofconfidentialityandcharacterizedbyno-read-upandno-write-downrules.

bestevidenceruleAlegalprinciplethatsupportsatruecopyasequivalenttotheoriginal.

BGPSeeBorderGatewayProtocol.

BibasecuritymodelAninformationsecuritymodelbuiltaroundthepropertyofintegrityandcharacterizedbyno-write-upandno-read-downrules.

biometricsUsedtoverifyanindividual’sidentitytothesystemornetworkusingsomethinguniqueabouttheindividual,suchasafingerprint,fortheverificationprocess.Examplesincludefingerprints,retinalscans,handandfacialgeometry,andvoiceanalysis.

BIOSSeeBasicInput/OutputSystem.

birthdayattackAformofattackinwhichtheattackneedstomatchnotaspecificitembutjustoneofasetofitems.

blacklistingThetermusedtodescribetheexclusionofitemsbasedontheirbeingonalist(blacklist).

black-boxtestingAformoftestingwherethetesterhasnoknowledgeoftheinnerworkingsofamechanism.

blockcipherAcipherthatoperatesonblocksofdata.

BlowfishAfreeimplementationofasymmetricblockcipherdevelopedbyBruceSchneierasadrop-inreplacementforDESandIDEA.Ithasavariablebit-lengthschemefrom32to448bits,resultinginvaryinglevelsofsecurity.

bluebuggingTheuseofaBluetooth-enableddevicetoeavesdroponanotherperson’sconversationusingthatperson’sBluetoothphoneasatransmitter.ThebluebugapplicationsilentlycausesaBluetoothdevicetomakeaphonecalltoanotherdevice,causingthephonetoactasatransmitterandallowingthelistenertoeavesdroponthevictim’sconversationinrealtime.

bluejackingThesendingofunsolicitedmessagesoverBluetoothtoBluetooth-enableddevicessuchasmobilephones,tablets,orlaptopcomputers.

bluesnarfingTheunauthorizedaccessofinformationfromaBluetooth-enableddevicethroughaBluetoothconnection,oftenbetweenphones,desktops,laptops,andtablets.

BluetoothAnRFtechnologyusedforshort-rangenetworking,

BorderGatewayProtocol(BGP)TheinterdomainroutingprotocolimplementedinInternetProtocol(IP)networkstoenableroutingbetweenautonomoussystems.

botnetAtermforacollectionofsoftwarerobots,orbots,thatrunsautonomouslyandautomaticallyandcommonlyinvisiblyinthebackground.Thetermismostoftenassociatedwithmalicioussoftware,butitcanalsorefertothenetworkofcomputersusingdistributedcomputingsoftware.

Brewer-NashsecuritymodelAsecuritymodeldefinedbycontrollingreadandwriteaccessbasedonconflictofinterestrules.ThismodelisalsoknownastheChinese-Wallmodel,aftertheconceptofseparatinggroupsthroughtheuseofanimpenetrablewall.

bridgeAnetworkdevicethatseparatestrafficintoseparatecollisiondomainsatthedatalayeroftheOSImodel.

bringyourowndevice(BYOD)Atermusedtodescribeanenvironmentwhereusersbringtheirpersonallyowneddevicesintotheenterpriseandintegratethemintobusinesssystems.

bufferoverflowAspecifictypeofsoftwarecodingerrorthatenablesuserinputtooverflowtheallocatedstorageareaandcorruptarunningprogram.

BureauofIndustryandSecurity(BIS)IntheU.S.DepartmentofCommerce,thedepartmentresponsibleforexportadministrationregulationsthatcoverencryptiontechnologyintheUnitedStates.

bustopologyAnetworklayoutinwhichacommonline(thebus)connectsdevices.

businesscontinuityplan(BCP)Theplansabusinessdevelopstocontinuecriticaloperationsintheeventofamajordisruption.

businessimpactanalysis(BIA)Ananalysisoftheimpacttothebusinessofaspecificevent.

businesspartnershipagreement(BPA)Awrittenagreementdefiningthetermsandconditionsofabusinesspartnership.

BYODSeebringyourowndevice.

CAcertificateAdigitalcertificateidentifyingthekeysusedbyacertificateauthority.

cacheThetemporarystorageofinformationbeforeuse,typicallyusedtospeedupsystems.InanInternetcontext,referstothestorageofcommonlyaccessedwebpages,graphicfiles,andothercontentlocallyonauser’sPCorawebserver.Thecachehelpstominimizedownloadtimeandpreservebandwidthforfrequentlyaccessedwebsites,andithelpsreducetheloadonawebserver.

CapabilityMaturityModel(CMM)Astructuredmethodologyhelpingorganizationsimprovethematurityoftheirsoftwareprocessesbyprovidinganevolutionarypathfromadhocprocessestodisciplinedsoftwaremanagementprocesses.DevelopedatCarnegieMellonUniversity’sSoftwareEngineeringInstitute(SEI).

CapabilityMaturityModelIntegration(CMMI)Atrademarkedprocessimprovementmethodologyforsoftwareengineering.DevelopedatCarnegieMellonUniversity’sSoftwareEngineeringInstitute(SEI).

captiveportalAwebsiteusedtovalidatecredentialsbeforeallowingaccesstoanetworkconnection.

centralizedmanagementAtypeofprivilegemanagementthatbringstheauthorityandresponsibilityformanagingandmaintainingrightsandprivilegesintoasinglegroup,location,orarea.

CERTSeeComputerEmergencyResponseTeam.

certificateAcryptographicallysignedobjectthatcontainsanidentityandapublickeyassociatedwiththisidentity.Thecertificatecanbeusedtoestablishidentity,analogoustoanotarizedwrittendocument.

certificateauthority(CA)Anentityresponsibleforissuingandrevokingcertificates.CAsaretypicallynotassociatedwiththecompanyrequiringthecertificate,althoughtheyexistforinternalcompanyuseaswell(suchasMicrosoft).Thistermalsoappliestoserversoftwarethatprovidestheseservices.Thetermcertificateauthorityisusedinterchangeablywithcertificationauthority.

CertificateEnrollmentProtocol(CEP)OriginallydevelopedbyVeriSignforCiscoSystemstosupportcertificateissuance,distribution,andrevocationusingexistingtechnologies.

certificatepathAnenumerationofthechainoftrustfromonecertificate

toanothertracingbacktoatrustedroot.

certificaterepositoryAstoragelocationforcertificatesonasystemsothattheycanbereused.

certificaterevocationlist(CRL)Adigitallysignedobjectthatlistsallofthecurrentbutrevokedcertificatesissuedbyagivencertificationauthority.Thisallowsuserstoverifywhetheracertificateiscurrentlyvalidevenifithasnotexpired.ACRLisanalogoustoalistofstolenchargecardnumbersthatallowsstorestorejectbadcreditcards.

certificateserverAserver—partofaPKIsystem—thathandlesdigitalcertificates.

certificatesigningrequest(CSR)Astructuredmessagesenttoacertificateauthorityrequestingadigitalcertificate.

certificationpracticesstatement(CPS)AdocumentthatdescribesthepolicyforissuingdigitalcertificatesfromaCA.

chainofcustodyRulesfordocumenting,handling,andsafeguardingevidencetoensurenounanticipatedchangesaremadetotheevidence.

Challenge-HandshakeAuthenticationProtocol(CHAP)Usedtoprovideauthenticationacrosspoint-to-pointlinksusingthePoint-to-PointProtocol(PPP).

change(configuration)managementAstandardmethodologyforperformingandrecordingchangesduringsoftwaredevelopmentandoperation.

changecontrolboard(CCB)Abodythatoverseesthechangemanagementprocessandenablesmanagementtooverseeandcoordinateprojects.

CHAPSeeChallenge-HandshakeAuthenticationProtocol.

CIAofsecurityReferstoconfidentiality,integrity,andauthorization,thebasicfunctionsofanysecuritysystem.

cipherAcryptographicsystemthatacceptsplaintextinputandthenoutputsciphertextaccordingtoitsinternalalgorithmandkey.

ciphertextUsedtodenotetheoutputofanencryptionalgorithm.Ciphertextistheencrypteddata.

CIRTSeeComputerEmergencyResponseTeam.

Clark-WilsonsecuritymodelAsecuritymodelthatusestransactionsandadifferentiationofconstraineddataitems(CDI)andunconstraineddataitems(UDI).

closedcircuittelevision(CCTV)Aprivatetelevisionsystemusuallyhardwiredinsecurityapplicationstorecordvisualinformation.

cloudcomputingTheautomaticprovisioningofon-demandcomputationalresourcesacrossanetwork.

coaxialcableAnetworkcablethatconsistsofasolidcentercoreconductorandaphysicalspacertotheouterconductorwhichiswrappedaroundit.Commonlyusedinvideosystems.

codeinjectionAnattackwhereunauthorizedexecutablecodeisinjectedviaaninterfaceinanattempttogetittorunonasystem.

codesigningTheapplicationofdigitalsignaturetechnologytosoftwareforpurposesofintegrityandauthenticationcontrol.

coldsiteAninexpensiveformofbackupsitethatdoesnotincludeacurrentsetofdataatalltimes.Acoldsitetakeslongertogetyour

operationalsystembackup,butitisconsiderablylessexpensivethanawarmorhotsite.

collisionattackAnattackonahashfunctioninwhichaspecificinputisgeneratedtoproduceahashfunctionoutputthatmatchesanotherinput.

collisiondomainAnareaofsharedtrafficinanetworkwherepacketsfromdifferentconversationscancollide.

collisionsUsedintheanalysisofhashingcryptography,itisthepropertybywhichanalgorithmwillproducethesamehashfromtwodifferentsetsofdata.

CommonAccessCard(CAC)Asmartcardusedtoaccessfederalcomputersystems,andtoalsoactasanIDcard.

CommonGatewayInterface(CGI)Anolder,outdatedtechnologyusedforserver-sideexecutionofprogramsonwebsites.

CommonVulnerabilitiesandExposures(CVE)Astructuredlanguage(XML)schemausedtodescribeknownvulnerabilitiesinsoftware.

CommonWeaknessEnumeration(CWE)Astructuredlanguage(XML)schemausedtodescribeknownweaknesspatternsinsoftwarethatcanresultinvulnerabilities.

completemediationTheprinciplethatprotectionmechanismsshouldcovereveryaccesstoeveryobject.

ComputerEmergencyResponseTeam(CERT)AlsoknownasaComputerIncidentResponseTeam(CIRT),thisgroupisresponsibleforinvestigatingandrespondingtosecuritybreaches,viruses,andotherpotentiallycatastrophicincidents.

computersecurityIngeneralterms,themethods,techniques,andtools

usedtoensurethatacomputersystemissecure.

computersoftwareconfigurationitemSeeconfigurationitem.

concentratorAdeviceusedtomanagemultiplesimilarnetworkingoperations,suchasprovideaVPNendpointformultipleVPNs.

confidentialityPartoftheCIAofsecurity.Referstothesecurityprinciplethatstatesthatinformationshouldnotbedisclosedtounauthorizedindividuals.

configurationauditingTheprocessofverifyingthatconfigurationitemsarebuiltandmaintainedaccordingtorequirements,standards,orcontractualagreements.

configurationcontrolTheprocessofcontrollingchangestoitemsthathavebeenbaselined.

configurationidentificationTheprocessofidentifyingwhichassetsneedtobemanagedandcontrolled.

configurationitemDataorsoftware(orotherasset)thatisidentifiedandmanagedaspartofthesoftwarechangemanagementprocess.Alsoknownascomputersoftwareconfigurationitem.

configurationstatusaccountingProceduresfortrackingandmaintainingdatarelativetoeachconfigurationiteminthebaseline.

confusionAprinciplethat,whenemployed,makeseachcharacterofciphertextdependentonseveralpartsofthekey.

contentprotectionTheprotectionoftheheaderanddataportionofauserdatagram.

contextprotectionTheprotectionoftheheaderofauserdatagram.

contingencyplanning(CP)Theactofcreatingprocessesandproceduresthatareusedunderspecialconditions(contingencies).

ContinuityofOperationsPlanning(COOP)Thecreationofplansrelatedtocontinuingessentialbusinessoperations.

controlAmeasuretakentodetect,prevent,ormitigatetheriskassociatedwithathreat.

ControllerAreaNetworkAbusstandardforuseinvehiclestoconnectmicrocontrollers.

cookieInformationstoredonauser’scomputerbyawebservertomaintainthestateoftheconnectiontothewebserver.Usedprimarilysopreferencesorpreviouslyusedinformationcanberecalledonfuturerequeststotheserver.

COOPSeeContinuityofOperationsPlanning.

CounterModewithCipherBlockChainingMessageAuthenticationCodeProtocol(CCMP)AnenhanceddatacryptographicencapsulationmechanismbasedonthecountermodewithCBC-MACfromAESanddesignedforuseoverwirelessLANs.

countermeasureSeecontrol.

crackingAtermusedbysometorefertomalicioushacking,inwhichanindividualattemptstogainunauthorizedaccesstocomputersystemsornetworks.Seealsohacking.

criticalinfrastructureInfrastructurewhoselossorimpairmentwouldhavesevererepercussionsonsociety.

CRCSeecyclicredundancycheck.

CRLSeecertificaterevocationlist.

cross-certificationcertificateAcertificateusedtoestablishtrustbetweenseparatePKI’s.

crossovererrorrate(CER)Thepointatwhichthefalserejectionrateandfalseacceptancerateareequalinasystem.

cross-siterequestforgery(CSRForXSRF)Amethodofattackingasystembysendingmaliciousinputtothesystemandrelyingupontheparsersandexecutionelementstoperformtherequestedactions,thusinstantiatingtheattack.XSRFexploitsthetrustasitehasintheuser’sbrowser.

cross-sitescripting(XSS)Amethodofattackingasystembysendingscriptcommandstothesysteminputandrelyingupontheparsersandexecutionelementstoperformtherequestedscriptedactions,thusinstantiatingtheattack.XSSexploitsthetrustauserhasforthesite.

cryptanalysisTheprocessofattemptingtobreakacryptographicsystem.

cryptographicallyrandomArandomnumberthatisderivedfromanondeterministicsource,thusknowingonerandomnumberprovidesnoinsightintothenext.

cryptographyTheartofsecretwritingthatenablesanindividualtohidethecontentsofamessageorfilefromallbuttheintendedrecipient.

CyberObservableeXpression(CybOX)Astructured(XML)languagefordescribingcybersecurityeventsatagranularlevel.

cyclicredundancycheck(CRC)Anerrordetectiontechniquethatusesaseriesoftwo8-bitblockcheckcharacterstorepresentanentireblockofdata.Theseblockcheckcharactersareincorporatedintothetransmission

frameandthencheckedatthereceivingend.

DACSeediscretionaryaccesscontrol.

dataaggregationAmethodologyofcollectinginformationthroughtheaggregationofseparatepiecesandanalyzingtheeffectoftheircollection.

DataEncryptionStandard(DES)Aprivatekeyencryptionalgorithmadoptedbythegovernmentasastandardfortheprotectionofsensitivebutunclassifiedinformation.CommonlyusedinTripleDES(3DES),wherethreeroundsareappliedtoprovidegreatersecurity.

DataExecutionPrevention(DEP)AsecurityfeatureofanOSthatcanbedrivenbysoftware,hardware,orboth,designedtopreventtheexecutionofcodefromblocksofdatainmemory.

datalossprevention(DLP)Technology,processes,andproceduresdesignedtodetectwhenunauthorizedremovalofdatafromasystemoccurs.DLPistypicallyactive,preventingthelossofdata,eitherbyblockingthetransferordroppingtheconnection.

datagramApacketofdatathatcanbetransmittedoverapacket-switchedsysteminaconnectionlessmode.

decisiontreeAdatastructureinwhicheachelementinthestructureisattachedtooneormorestructuresdirectlybeneathit.

defaultdenyTheuseofanoverarchingrulethatifnotexplicitlypermitted,permissionwillbedenied.

deltabackupAtypeofbackupthatpreservesonlytheblocksthathavechangedsincethelastfullbackup.

demilitarizedzone(DMZ)Anetworksegmentthatexistsinasemi-protectedzonebetweentheInternetandtheinner,securetrustednetwork.

denial-of-service(DoS)attackAnattackinwhichactionsaretakentodepriveauthorizedindividualsfromaccessingasystem,itsresources,thedataitstoresorprocesses,orthenetworktowhichitisconnected.

DESSeeDataEncryptionStandard.

DHCPSeeDynamicHostConfigurationProtocol.

DiameterThebaseprotocolthatisintendedtoprovideanauthentication,authorization,andaccounting(AAA)frameworkforapplicationssuchasnetworkaccessorIPmobility.DiameterisadraftIETFproposal.

differentialbackupAtypeofbackupthatpreservesonlychangessincethelastfullbackup.

differentialcryptanalysisAformofcryptanalysisthatusesdifferentinputstostudyhowoutputschangeinastructuredmanner.

Diffie-HellmanAcryptographicmethodofestablishingasharedkeyoveraninsecuremediuminasecurefashion.

Diffie-HellmanEphemeral(DHE)Acryptographicmethodofestablishingasharedkeyoveraninsecuremediuminasecurefashionusingatemporarykeytoenableperfectforwardsecrecy(PFS).

diffusionAprinciplethatthestatisticalanalysisofplaintextandciphertextresultsinaformofdispersionrenderingonestructurallyindependentoftheother.Inplainterms,achangeinonecharacterofplaintextshouldresultinmultiplechangesintheciphertextinamannerthatchangesinciphertextdonotrevealinformationastothestructureoftheplaintext.

digitalcertificateSeecertificate.

digitalrightsmanagementThecontrolofuseractivitiesassociatedwith

adigitalobjectviatechnologicalmeans.

digitalsandboxTheisolationofaprogramanditssupportingelementsfromcommonoperatingsystemfunctions.

digitalsignatureAcryptography-basedartifactthatisakeycomponentofapublickeyinfrastructure(PKI)implementation.Adigitalsignaturecanbeusedtoproveidentitybecauseitiscreatedwiththeprivatekeyportionofapublic/privatekeypair.Arecipientcandecryptthesignatureand,bydoingso,receivetheassurancethatthedatamusthavecomefromthesenderandthatthedatahasnotchanged.

digitalsignaturealgorithm(DSA)AU.S.governmentstandardforimplementingdigitalsignatures.

direct-sequencespreadspectrum(DSSS)Amethodofdistributingacommunicationovermultiplefrequenciestoavoidinterferenceanddetection.

disasterrecoveryplan(DRP)Awrittenplandevelopedtoaddresshowanorganizationwillreacttoanaturalormanmadedisasterinordertoensurebusinesscontinuity.Relatedtotheconceptofabusinesscontinuityplan(BCP).

discretionaryaccesscontrol(DAC)Anaccesscontrolmechanisminwhichtheownerofanobject(suchasafile)candecidewhichothersubjects(suchasotherusers)mayhaveaccesstotheobject,andwhataccess(read,write,execute)theseobjectscanhave.

distributeddenial-of-service(DDoS)attackAspecialtypeofDoSattackinwhichtheattackerelicitsthegenerallyunwillingsupportofothersystemstolaunchamany-against-oneattack.

diversityofdefenseTheapproachofcreatingdissimilarsecuritylayerssothatanintruderwhoisabletobreachonelayerwillbefacedwithan

entirelydifferentsetofdefensesatthenextlayer.

DNSkitingTheuseofaDNSrecordduringthepaymentgraceperiodwithoutpaying.

DomainKeysIdentifiedMail(DKIM)Anauthenticationsystemfore-maildesignedtodetectspoofingofe-mailaddresses.

DomainNameSystem(DNS)TheservicethattranslatesInternetdomainnames(suchaswww.mcgrawhill.com)intoIPaddresses.

DMZSeedemilitarizedzone.

drive-bydownloadattackAnattackonaninnocentvictimmachinewherecontentisdownloadedwithouttheuser’sknowledge.

DRPSeedisasterrecoveryplan.

DSSSSeedirect-sequencespreadspectrum.

duecareThedegreeofcarethatareasonablepersonwouldexerciseundersimilarcircumstances.

duediligenceThereasonablestepsapersonorentitywouldtakeinordertosatisfylegalorcontractualrequirements—commonlyusedwhenbuyingorsellingsomethingofsignificantvalue.

dumpsterdivingThepracticeofsearchingthroughtrashtodiscoversensitivematerialthathasbeenthrownawaybutnotdestroyedorshredded.

DynamicHostConfigurationProtocol(DHCP)AnInternetEngineeringTaskForce(IETF)InternetProtocol(IP)specificationforautomaticallyallocatingIPaddressesandotherconfigurationinformationbasedonnetworkadapteraddresses.Itenablesaddresspoolingand

allocationandsimplifiesTCP/IPinstallationandadministration.

dynamiclinklibrary(DLL)AsharedlibraryfunctionusedintheMicrosoftWindowsenvironment.

EAPSeeExtensibleAuthenticationProtocol.

economyofmechanismTheprinciplethatdesignsshouldbesmallandsimple.

electromagneticinterference(EMI)Thedisruptionorinterferenceofelectronicsduetoanelectromagneticfield.

elitehackerAhackerwhohastheskilllevelnecessarytodiscoverandexploitnewvulnerabilities.

ellipticcurvecryptography(ECC)Amethodofpublic-keycryptographybasedonthealgebraicstructureofellipticcurvesoverfinitefields.

ellipticcurveDiffie-HellmanEphemeral(ECDHE)AcryptographicmethodusingECCtoestablishasharedkeyoveraninsecuremediuminasecurefashionusingatemporarykeytoenableperfectforwardsecrecy(PFS).

EncapsulatingSecurityPayload(ESP)AportionoftheIPsecimplementationthatprovidesfordataconfidentialitywithoptionalauthenticationandreplaydetectionservices.ESPcompletelyencapsulatesuserdatainthedatagramandcanbeusedeitherbyitselforinconjunctionwithAuthenticationHeadersforvaryingdegreesofIPsecservices.

enclaveAsectionofanetworkthatservesaspecificpurposeandisisolatedbyprotocolsfromotherpartsofanetwork.

encryptionThereversibleprocessofrenderingdataunreadablethrough

theuseofanalgorithmandakey.

EncryptingFileSystem(EFS)AsecurityfeatureofWindows,fromWindows2000onward,thatenablesthetransparentencryption/decryptionoffilesonthesystem.

entropyThemeasureofuncertaintyassociatedwithaseriesofvalues.Perfectentropyequatestocompleterandomness,suchthatgivenanystringofbits,thereisnocomputationtoimproveguessingthenextbitinthesequence.

ephemeralkeysCryptographickeysthatareusedonlyonceaftertheyaregenerated.

escalationauditingTheprocessoflookingforanincreaseinprivileges,suchaswhenanordinaryuserobtainsadministrator-levelprivileges.

EthernetThecommonnamefortheIEEE802.3standardmethodofpacketcommunicationbetweentwonodesatlayer2.

evidenceThedocuments,verbalstatements,andmaterialobjectsadmissibleinacourtoflaw.

eviltwinAwirelessattackperformedusingasecond,roguewirelessaccesspointdesignedtomimicarealaccesspoint.

eXclusiveOR(XOR)Bitwisefunctioncommonlyusedincryptography.

exposurefactorAmeasureofthemagnitudeoflossofanasset.Usedinthecalculationofsinglelossexpectancy(SLE).

eXtensibleAccessControlMarkupLanguage(XACML)AnopenstandardXML-basedlanguageusedtodescribeaccesscontrol.

ExtensibleAuthenticationProtocol(EAP)Auniversalauthentication

frameworkusedinwirelessnetworksandpoint-to-pointconnections.ItisdefinedinRFC3748andhasbeenupdatedbyRFC5247.

ExtensibleMarkupLanguage(XML)Atext-based,human-readabledatamarkuplanguage.

fail-safedefaultsTheprinciplethatwhenasystemfails,thedefaultfailurestatewillbeasafestatebydesign.

falsenegativeTermusedwhenasystemmakesanerrorandmissesreportingtheexistenceofanitemthatshouldhavebeendetected.

falsepositiveTermusedwhenasecuritysystemmakesanerrorandincorrectlyreportstheexistenceofasearched-forobject.Examplesincludeanintrusiondetectionsystemthatmisidentifiesbenigntrafficashostile,anantivirusprogramthatreportstheexistenceofavirusinsoftwarethatactuallyisnotinfected,orabiometricsystemthatallowsaccesstoasystemtoanunauthorizedindividual.

faulttoleranceThecharacteristicsofasystemthatpermitittooperateevenwhensub-componentsoftheoverallsystemfail.

FHSSSeefrequency-hoppingspreadspectrum.

filesystemaccesscontrollist(FACL)Theimplementationofaccesscontrolsaspartofafilesystem.

FileTransferProtocol(FTP)Anapplication-levelprotocolusedtotransferfilesoveranetworkconnection.

FileTransferProtocolSecure(FTPS)Anapplication-levelprotocolusedtotransferfilesoveranetworkconnectionthatusesFTPoveranSSLorTLSconnection.

firewallAnetworkdeviceusedtosegregatetrafficbasedonrules.

floodguardAnetworkdevicethatblocksflooding-typeDoS/DDoSattacks,frequentlypartofanIDS/IPS.

footprintingThestepsatesterusestodeterminetherangeandscopeofasystem.

forensics(orcomputerforensics)Thepreservation,identification,documentation,andinterpretationofcomputerdataforuseinlegalproceedings.

freespaceSectorsonastoragemediumthatareavailablefortheoperatingsystemtouse.

frequency-hoppingspreadspectrum(FHSS)Amethodofdistributingacommunicationovermultiplefrequenciesovertimetoavoidinterferenceanddetection.

fullbackupAcompletebackupofallfilesandstructuresofasystemtoanotherlocation.

fulldiskencryption(FDE)Theapplicationofencryptiontoanentiredisk,protectingallofthecontentsinonecontainer.

fuzzingTheuseoflargequantitiesofdatatotestaninterfaceagainstsecurityvulnerabilities.(Alsoknownasfuzztesting.)

GenericRoutingEncapsulation(GRE)AtunnelingprotocoldesignedtoencapsulateawidevarietyofnetworklayerpacketsinsideIPtunnelingpackets.

geo-taggingThemetadatathatcontainslocation-specificinformationthatisattachedtootherdataelements.

GloballyUniqueIdentifier(GUID)Auniquereferencenumberusedasanidentifierofaniteminasystem.

GnuPrivacyGuard(GPG)AnapplicationprogramthatfollowstheopenPGPstandardforencryption.

greyboxtestingAformoftestingwherethetesterhaslimitedorpartialknowledgeoftheinnerworkingofasystem.

grouppolicyThemechanismthatallowsforcentralizedmanagementandconfigurationofcomputersandremoteusersinaMicrosoftActiveDirectoryenvironment.

grouppolicyobject(GPO)StoresthegrouppolicysettingsinaMicrosoftActiveDirectoryenvironment.

hackerApersonwhoperformshackingactivities.

hackingThetermusedbythemediatorefertotheprocessofgainingunauthorizedaccesstocomputersystemsandnetworks.Thetermhasalsobeenusedtorefertotheprocessofdelvingdeepintothecodeandprotocolsusedincomputersystemsandnetworks.Seealsocracking.

hactivistAhackerwhouseshisorherskillsforpoliticalpurposes.

harddiskdrive(HDD)Amechanicaldeviceusedforthestoringofdigitaldatainmagneticform.

hardeningTheprocessofstrengtheningahostlevelofsecuritybyperformingspecificsystempreparations.

hardwaresecuritymodule(HSM)Aphysicaldeviceusedtoprotectbutstillallowuseofcryptographickeys.Itisseparatefromthehostmachine.

hashFormofencryptionthatcreatesadigestofthedataputintothealgorithm.Thesealgorithmsarereferredtoasone-wayalgorithmsbecausethereisnofeasiblewaytodecryptwhathasbeenencrypted.

hashedmessageauthenticationcode(HMAC)Theuseofacryptographichashfunctionandamessageauthenticationcodetoensuretheintegrityandauthenticityofamessage.

hashvalueSeemessagedigest.

hazardAhazardisasituationthatincreasesrisk.

HDDSeeharddiskdrive.

heating,ventilation,airconditioning(HVAC)Thesystemsusedtoheatandcoolairinabuildingorstructure.

HIDSSeehost-basedintrusiondetectionsystem.

hierarchicaltrustmodelAtrustmodelthathaslevelsortiersofanascendingnature.

highlystructuredthreatAthreatthatisbackedbythetimeandresourcestoallowvirtuallyanyformofattack.

HIPSSeehost-basedintrusionpreventionsystem.

honeynetAnetworkversionofahoneypot,orasetofhoneypotsnetworkedtogether.

honeypotAcomputersystemorportionofanetworkthathasbeensetuptoattractpotentialintruders,inthehopethattheywillleavetheothersystemsalone.Sincetherearenolegitimateusersofthissystem,anyattempttoaccessitisanindicationofunauthorizedactivityandprovidesaneasymechanismtospotattacks.

host-basedintrusiondetectionsystem(HIDS)AsystemthatlooksforcomputerintrusionsbymonitoringactivityononeormoreindividualPCsorservers.

host-basedintrusionpreventionsystem(HIPS)AsystemthatautomaticallyrespondstocomputerintrusionsbymonitoringactivityononeormoreindividualPCsorserversandwiththeresponsebeingbasedonaruleset.

hostsecuritySecurityfunctionalitythatispresentonahostsystem.

hotfixAsetofupdatesdesignedtofixaspecificproblem.

hotsiteAbackupsitethatisfullyconfiguredwithequipmentanddataandisreadytoimmediatelyaccepttransferofoperationalprocessingintheeventoffailureoftheoperationalsystem.

HSMSeehardwaresecuritymodule.

hubAnetworkdeviceusedtoconnectdevicesatthephysicallayeroftheOSImodel.

hybridtrustmodelAcombinationoftrustmodelsincludingmesh,hierarchical,andnetwork.

HypertextMarkupLanguage(HTML)AprotocolusedtomarkuptextforuseacrossHTTP.

HypertextTransferProtocol(HTTP)AprotocolfortransferofmaterialacrosstheInternetthatcontainslinkstoadditionalmaterial.

HypertextTransferProtocoloverSSL/TLS(HTTPS)AprotocolfortransferofmaterialacrosstheInternetthatcontainslinkstoadditionalmaterialthatiscarriedoverasecuretunnelviaSSLorTLS.

ICMPSeeInternetControlMessageProtocol.

IDEASeeInternationalDataEncryptionAlgorithm.

identificationTheprocessofdeterminingidentityaspartofidentitymanagementandaccesscontrol.Usuallyperformedonlyonce,whentheuserIDisassigned.

IEEESeeInstituteforElectricalandElectronicsEngineers.

IEEE802.11Afamilyofstandardsthatdescribenetworkprotocolsforwirelessdevices.

IEEE802.1XAnIEEEstandardforperformingauthenticationovernetworks.

IETFSeeInternetEngineeringTaskForce.

IKESeeInternetKeyExchange.

impactTheresultofavulnerabilitybeingexploitedbyathreat,resultinginaloss.

implicitdenyAphilosophythatallactionsareprohibitedunlessspecificallyauthorized.

incidentAsituationthatisdifferentthannormalforaspecificcircumstance.

incidentresponseTheprocessofrespondingto,containing,analyzing,andrecoveringfromacomputer-relatedincident.

incrementalbackupAbackupmodelwherefilesthathavechangedsincelastfullorincrementalbackuparebackedup.

IndicatorofCompromise(IOC)Asetofconditionsorevidencethatindicatesasystemmayhavebeencompromised.

informationcriticalityAnassessmentofthevalueofspecificelements

ofinformationandthesystemsthathandleit.

informationsecurityOftenusedsynonymouslywithcomputersecuritybutplacestheemphasisontheprotectionoftheinformationthatthesystemprocessesandstores,insteadofonthehardwareandsoftwarethatconstitutethesystem.

informationwarfareTheuseofinformationsecuritytechniques,bothoffensiveanddefensive,whencombatinganopponent.

InfrastructureasaService(IaaS)Theautomatic,on-demandprovisioningofinfrastructureelements,operatingasaservice;acommonelementofcloudcomputing.

initializationvector(IV)Adatavalueusedtoseedacryptographicalgorithm,providingforameasureofrandomness.

instantmessaging(IM)Atext-basedmethodofcommunicatingovertheInternet.

InstituteforElectricalandElectronicsEngineers(IEEE)Anonprofit,technical,professionalinstituteassociatedwithcomputerresearch,standards,andconferences.

intangibleassetAnassetforwhichamonetaryequivalentisdifficultorimpossibletodetermine.Examplesarebrandrecognitionandgoodwill.

integeroverflowAnerrorconditioncausedbythemismatchbetweenavariableassignedstoragesizeandthesizeofthevaluebeingmanipulated.

integrityPartoftheCIAofsecurity,thesecurityprinciplethatrequiresthatinformationisnotmodifiedexceptbyindividualsauthorizedtodoso.

interconnectionsecurityagreement(ISA)Anagreementbetweenpartiestoestablishproceduresformutualcooperationandcoordination

betweenthemwithrespecttosecurityrequirementsassociatedwiththeirjointproject.

InternationalDataEncryptionAlgorithm(IDEA)Asymmetricencryptionalgorithmusedinavarietyofsystemsforbulkencryptionservices.

InternetAssignedNumbersAuthority(IANA)ThecentralcoordinatorfortheassignmentofuniqueparametervaluesforInternetprotocols.TheIANAischarteredbytheInternetSociety(ISOC)toactastheclearinghousetoassignandcoordinatetheuseofnumerousInternetprotocolparameters.

InternetControlMessageProtocol(ICMP)OneofthecoreprotocolsoftheTCP/IPprotocolsuite,usedforerrorreportingandstatusmessages.

InternetEngineeringTaskForce(IETF)Alargeinternationalcommunityofnetworkdesigners,operators,vendors,andresearchers,opentoanyinterestedindividualconcernedwiththeevolutionoftheInternetarchitectureandthesmoothoperationoftheInternet.TheactualtechnicalworkoftheIETFisdoneinitsworkinggroups,whichareorganizedbytopicintoseveralareas(suchasrouting,transport,andsecurity).Muchoftheworkishandledviamailinglists,withmeetingsheldthreetimesperyear.

InternetKeyExchange(IKE)TheprotocolformerlyknownasISAKMP/Oakley,definedinRFC2409.AhybridprotocolthatusespartoftheOakleyandpartoftheSecureKeyExchangeMechanismforInternet(SKEMI)protocolsuitesinsidetheInternetSecurityAssociationandKeyManagementProtocol(ISAKMP)framework.IKEisusedtoestablishasharedsecuritypolicyandauthenticatedkeysforservicesthatrequirekeys(suchasIPsec).

InternetMessageAccessProtocolVersion4(IMAP4)Oneoftwo

commonInternetstandardprotocolsfore-mailretrieval.

InternetProtocol(IP)ThenetworklayerprotocolusedbytheInternetforroutingpacketsacrossanetwork.

InternetProtocolSecurity(IPsec)AprotocolusedtosecureIPpacketsduringtransmissionacrossanetwork.IPsecoffersauthentication,integrity,andconfidentialityservicesandusesAuthenticationHeaders(AH)andEncapsulatingSecurityPayload(ESP)toaccomplishthisfunctionality.

InternetSecurityAssociationandKeyManagementProtocol(ISAKMP)Aprotocolframeworkthatdefinesthemechanicsofimplementingakeyexchangeprotocolandnegotiationofasecuritypolicy.

Internetserviceprovider(ISP)AtelecommunicationsfirmthatprovidesaccesstotheInternet.

intrusiondetectionsystem(IDS)Asystemtoidentifysuspicious,malicious,orundesirableactivitythatindicatesabreachincomputersecurity.

intrusionpreventionsystem(IPS)Asystemtoidentifysuspicious,malicious,orundesirableactivitythatindicatesabreachincomputersecurityandrespondautomaticallywithoutspecifichumaninteraction.

IPsecSeeInternetProtocolSecurity.

ISASeeinterconnectionsecurityagreement.

ISAKMP/OakleySeeInternetKeyExchange.

jailbreakingTheprocessofbreakingOSsecurityfeaturesdesignedtolimitinteractionswiththeOSitself.Commonlyperformedonmobile

phonestounlockfeaturesorbreaklockstocarriers.

KerberosAnetworkauthenticationprotocoldesignedbyMITforuseinclient/serverenvironments.

keyIncryptography,asequenceofcharactersorbitsusedbyanalgorithmtoencryptordecryptamessage.

keyarchivingTheprocessesandprocedurestomakeasecurebackupofcryptographickeys.

keydistributioncenter(KDC)AportionoftheKerberosauthenticationsystem.

keyescrowTheprocessofplacingacopyofcryptographickeyswithatrustedthirdpartyforbackuppurposes.

keyrecoveryAprocessbywherelostkeyscanberecoveredfromastoredsecret.

keyspaceTheentiresetofallpossiblekeysforaspecificencryptionalgorithm.

keystretchingAmechanismthattakeswhatwouldbeweakkeysand“stretches”themtomakethesystemmoresecureagainstbrute-forceattacks.

Layer2TunnelingProtocol(L2TP)ACiscoswitchingprotocolthatoperatesatthedatalinklayer.

layeredsecurityThearrangementofmultiplelayersofdefense,aformofdefenseindepth.

LDAPSeeLightweightDirectoryAccessProtocol.

leastcommonmechanismTheprinciplewhereprotectionmechanismsshouldbesharedtotheleastdegreepossibleamongusers.

leastprivilegeAsecurityprincipleinwhichauserisprovidedwiththeminimumsetofrightsandprivilegesthatheorsheneedstoperformrequiredfunctions.Thegoalistolimitthepotentialdamagethatanyusercancause.

LightweightDirectoryAccessProtocol(LDAP)AnapplicationprotocolusedtoaccessdirectoryservicesacrossaTCP/IPnetwork.

LightweightExtensibleAuthenticationProtocol(LEAP)AversionofEAPdevelopedbyCiscopriorto802.11itopush802.1XandWEPadoption.

linearcryptanalysisTheuseoflinearfunctionstoapproximateacryptographicfunctionasameansofanalysis.

loadbalancerAnetworkdevicethatdistributescomputingacrossmultiplecomputers.

localareanetwork(LAN)Agroupingofcomputersinanetworkstructureconfinedtoalimitedareaandusingspecificprotocols,suchasEthernetforOSILayer2trafficaddressing.

localregistrationauthorityARegistrationAuthority(RA)thatispartofalocalunitorenterprise.Itistypicallyonlyusefulwithintheenterprise,butinmanycasesthiscanbesufficient.

logicbombAformofmaliciouscodeorsoftwarethatistriggeredbyaspecificeventorcondition.Seealsotimebomb.

loopprotectionTherequirementtopreventbridgeloopsattheLayer2level,whichistypicallyresolvedusingtheSpanningTreealgorithmonswitchdevices.

Low-Water-MarkpolicyAnintegrity-basedinformationsecuritymodelderivedfromtheBell–LaPadulamodel.

MACSeemandatoryaccesscontrolorMediaAccessControl.

MACfilteringTheuseoflayer2MACaddressestofiltertraffictoonlyauthorizedNICcards.

malwareAclassofsoftwarethatisdesignedtocauseharm.

mandatoryaccesscontrol(MAC)Anaccesscontrolmechanisminwhichthesecuritymechanismcontrolsaccesstoallobjects(files),andindividualsubjects(processesorusers)cannotchangethataccess.

man-in-the-middleattackAnyattackthatattemptstouseanetworknodeastheintermediarybetweentwoothernodes.Eachoftheendpointnodesthinksitistalkingdirectlytotheother,buteachisactuallytalkingtotheintermediary.

masterbootrecord(MBR)AstripofdataonaharddriveinWindowssystems,meanttoresultinspecificinitialfunctionsoridentification.

maximumtransmissionunit(MTU)Ameasureofthelargestpayloadthataparticularprotocolcancarryinasinglepacketinaspecificinstance.

MD5MessageDigest5,ahashingalgorithmandaspecificmethodofproducingamessagedigest.

meantimebetweenfailure(MTBF)Thestatisticallydeterminedperiodoftimebetweenfailuresofthesystem.

meantimetofailure(MTTF)Thestatisticallydeterminedtimetothenextfailure.

meantimetorepair(MTTR)Acommonmeasureofhowlongittakes

torepairagivenfailure.Thisistheaveragetime,andmayormaynotincludethetimeneededtoobtainparts.

MediaAccessControl(MAC)addressThedatalinklayeraddressforlocalnetworkaddressing.

memorandumofunderstanding(MOU)Adocumentexecutedbetweentwopartiesthatdefinessomeformofagreement.

messageauthenticationcode(MAC)Ashortpieceofdatausedtoauthenticateamessage.Seehashedmessageauthenticationcode.

messagedigestTheresultofapplyingahashfunctiontodata.Sometimesalsocalledahashvalue.Seehash.

metropolitanareanetwork(MAN)AcollectionofnetworksinterconnectedinametropolitanareaandusuallyconnectedtotheInternet.

MicrosoftChallenge-HandshakeAuthenticationProtocol(MSCHAP)AMicrosoft-developedvariantoftheChallenge-HandshakeAuthenticationProtocol(CHAP).

mitigateActiontakentoreducethelikelihoodofathreatoccurring.

modemAmodulator/demodulatorthatisdesignedtoconnectmachinesviatelephone-basedcircuits.

MonitoringasaService(MaaS)Theuseofathirdpartytoprovidesecuritymonitoringservices.

MSCHAPSeeMicrosoftChallenge-HandshakeAuthenticationProtocol.

MTBFSeemeantimebetweenfailure.

MTTFSeemeantimetofailure.

MTTRSeemeantimetorepair.

multipleencryptionTheuseofmultiplelayersofencryptiontoimproveencryptionstrength.

multiple-factorauthenticationTheuseofmorethanonefactorasproofintheauthenticationprocess.

MultipurposeInternetMailExtensions(MIME)Astandardthatdescribeshowtoencodeandattachnon-textualelementsinane-mail.

NACSeenetworkaccesscontrolorNetworkAdmissionControl.

NAPSeeNetworkAccessProtection.

NATSeeNetworkAddressTranslation.

NationalInstituteofStandardsandTechnology(NIST)AU.S.governmentagencyresponsibleforstandardsandtechnology.

NDASeenon-disclosureagreement.

nearfieldcommunication(NFC)Asetofstandardsandprotocolsforestablishingacommunicationlinkoververyshortdistances.Usedinmobiledevices.

networkaccesscontrol(NAC)Anapproachtoendpointsecuritythatinvolvesmonitoringandremediatingendpointsecurityissuesbeforeallowinganobjecttoconnecttoanetwork.

NetworkAccessProtection(NAP)AMicrosoftapproachtonetworkaccesscontrol.

NetworkAddressTranslation(NAT)AmethodofreaddressingpacketsinanetworkatagatewaypointtoenabletheuseoflocalnonroutableIPaddressesoverapublicnetworksuchastheInternet.

NetworkAdmissionControl(NAC)TheCiscotechnologyapproachforgenericnetworkaccesscontrol.

NetworkAttachedStorage(NAS)Theconnectionofstoragetoasystemviaanetworkconnection.

network-basedintrusiondetectionsystem(NIDS)Asystemforexaminingnetworktraffictoidentifysuspicious,malicious,orundesirablebehavior.

network-basedintrusionpreventionsystem(NIPS)Asystemthatexaminesnetworktrafficandautomaticallyrespondstocomputerintrusions.

NetworkBasicInput/OutputSystem(NetBIOS)Asystemthatprovidescommunicationservicesacrossalocalareanetwork.

networkforensicsTheapplicationofdigitalforensicsprocessestonetworktraffic.

networkinterfacecard(NIC)ApieceofhardwaredesignedtoconnectmachinesatthephysicallayeroftheOSImodel.

networkoperatingsystem(NOS)Anoperatingsystemthatincludesadditionalfunctionsandcapabilitiestoassistinconnectingcomputersanddevices,suchasprinters,toalocalareanetwork.

networkoperationscenter(NOC)Acontrolpointfromwherenetworkperformancecanbemonitoredandmanaged.

networksegmentationTheseparationofanetworkintoseparate

addressablesegmentstolimitnetworktraffictraversaltoareasoflimitedscope.

networktapAconnectiontoanetworkthatallowssampling,duplication,andcollectionoftraffic.

NetworkTimeProtocol(NTP)Aprotocolforthetransmissionoftimesynchronizationpacketsoveranetwork.

networkvulnerabilityscannerTheapplicationofvulnerabilityscanningtonetworkdevicestosearchforvulnerabilitiesatthenetworklevel.

NewTechnologyFileSystem(NTFS)AproprietaryfilesystemdevelopedbyMicrosoft,introducedin1993,thatsupportsawidevarietyoffileoperationsonservers,PCs,andmedia.

NewTechnologyLANMAN(NTLM)AdeprecatedsecuritysuitefromMicrosoftthatprovidesauthentication,integrity,andconfidentialityforusers.Becauseitdoesnotsupportcurrentcryptographicmethods,itisnolongerrecommendedforuse.

next-generationfirewallFirewalltechnologybasedonpacketcontentsasopposedtosimpleaddressandportinformation.

NFCSeenearfieldcommunication.

NICSeenetworkinterfacecard.

NISTSeeNationalInstituteofStandardsandTechnology.

non-disclosureagreement(NDA)Alegalcontractbetweenpartiesdetailingtherestrictionsandrequirementsbornebyeachpartywithrespecttoconfidentialityissuespertainingtoinformationtobeshared.

nonrepudiationTheabilitytoverifythatanoperationhasbeenperformedbyaparticularpersonoraccount.Thisisasystempropertythatpreventsthepartiestoatransactionfromsubsequentlydenyinginvolvementinthetransaction.

nullsessionThewayinwhichMicrosoftWindowsrepresentsanunauthenticatedconnection.

OakleyprotocolAkeyexchangeprotocolthatdefineshowtoacquireauthenticatedkeyingmaterialbasedontheDiffie-Hellmankeyexchangealgorithm.

objectreuseAssignmentofapreviouslyusedmediumtoasubject.Thesecurityimplicationisthatbeforeitisprovidedtothesubject,anydatapresentfromaprevioususermustbecleared.

one-timepadAnunbreakableencryptionschemeinwhichaseriesofnonrepeating,randombitsisusedonceasakeytoencryptamessage.Sinceeachpadisusedonlyonce,nopatterncanbeestablishedandtraditionalcryptanalysistechniquesarenoteffective.

OnlineCertificateStatusProtocol(OSCP)Aprotocolusedtorequesttherevocationstatusofadigitalcertificate.Thisisanalternativetocertificaterevocationlists.

opendesignTheprinciplethatprotectionmechanismsshouldnotdependuponsecrecyofdesignforsecurity.

openrelayAmailserverthatreceivesandforwardsmailfromoutsidesources.

OpenVulnerabilityandAssessmentLanguage(OVAL)AnXML-basedstandardforthecommunicationofsecurityinformationbetweentoolsandservices.

operatingsystem(OS)Thebasicsoftwarethathandlesinput,output,display,memorymanagement,andalltheotherhighlydetailedtasksrequiredtosupporttheuserenvironmentandassociatedapplications.

operationalmodelofcomputersecurityStructuringactivitiesintoprevention,detection,andresponse.

optinTheprimaryprivacystandardintheEU,whereapartymustoptintosharing,otherwisethedefaultoptionisnottosharetheinformationorgivepermissionforotheruse.

optoutTheprimaryprivacystandardintheUS,whereapartymustoptoutofsharing;otherwise,thedefaultoptionistosharetheinformationandgivepermissionforotheruse.

OrangeBookThenamecommonlyusedtorefertothenowoutdatedDepartmentofDefenseTrustedComputerSecurityEvaluationCriteria(TCSEC).

OVALSeeOpenVulnerabilityandAssessmentLanguage.

P2PSeepeer-to-peer.

PACSeeProxyAutoConfiguration.

PacketCapture(PCAP)Themethodsandfilesassociatedwiththecaptureofnetworktraffic,intheformoftextfiles.

PAMSeePluggableAuthenticationModules.

pan-tilt-zoom(PTZ)Atermusedtodescribeavideocamerathatsupportsremotedirectionalandzoomcontrol.

PAPSeePasswordAuthenticationProtocol.

passwordAstringofcharactersusedtoproveanindividual’sidentitytoasystemorobject.UsedinconjunctionwithauserID,itisthemostcommonmethodofauthentication.Thepasswordshouldbekeptsecretbytheindividualwhoownsit.

PasswordAuthenticationProtocol(PAP)Asimpleprotocolusedtoauthenticateausertoanetworkaccessserver.

Password-BasedKeyDerivationFunction2(PBKDF2)AkeyderivationfunctionthatispartoftheRSALaboratoriesPublicKeyCryptographyStandards,publishedasIETFRFC2898.

patchAreplacementsetofcodedesignedtocorrectproblemsorvulnerabilitiesinexistingsoftware.

PBXSeeprivatebranchexchange.

peer-to-peer(P2P)Anetworkconnectionmethodologyinvolvingdirectconnectionfrompeertopeer.

peer-to-peertrustmodelAtrustmodelbuiltuponactualpeer-to-peerconnectionandcommunicationtoestablishtrust.

penetrationtestingAsecuritytestinwhichanattemptismadetocircumventsecuritycontrolsinordertodiscovervulnerabilitiesandweaknesses.Alsocalledapentest.

permissionsAuthorizedactionsasubjectcanperformonanobject.Seealsoaccesscontrols.

personalelectronicdevice(PED)Atermusedtodescribeanelectronicdevice,ownedbytheuserandbroughtintotheenterprise,thatusesenterprisedata.Thisincludeslaptops,tablets,andmobilephones,tonameafew.

PersonalIdentityVerification(PIV)Policies,procedures,hardware,andsoftwareusedtosecurelyidentifyfederalworkers.

personallyidentifiableinformation(PII)Informationthatcanbeusedtoidentifyasingleperson.

pharmingTheuseofafakewebsitetosociallyengineersomeoneoutofcredentials.

phishingTheuseofsocialengineeringtotrickauserintorespondingtosomethingsuchasane-mailtoinstantiateamalware-basedattack.

phreakingUsedinthemediatorefertothehackingofcomputersystemsandnetworksassociatedwiththephonecompany.Seealsocracking.

physicalsecurityThepolicies,procedures,andactionstakentoregulateactualphysicalaccesstoandtheenvironmentofcomputingequipment.

PIDSeeprocessidentifier.

piggybackingAsocialengineeringtechniquethatinvolvesfollowingacredentialedpersonthroughacheckpointtopreventhavingtopresentcredentials—i.e.,followingsomeonethroughadooryouneedabadgetoopen,effectivelyusingtheirbadgeforentry.

PIISeepersonallyidentifiableinformation.

pingsweepTheuseofaseriesofICMPpingmessagestomapoutanetwork.

PlainOldTelephoneService(POTS)Thetermusedtodescribetheoldanalogphoneserviceandlaterthe“landline”digitalphoneservice.

plaintextIncryptography,apieceofdatathatisnotencrypted.Itcanalsomeanthedatainputintoanencryptionalgorithmthatwouldoutput

ciphertext.

PlatformasaService(PaaS)Theconceptofhavingprovisionableoperationalplatformsthatcanbeobtainedviaaservice.

PluggableAuthenticationModules(PAM)AmechanismusedinLinuxsystemstointegratelow-levelauthenticationmethodsintoanAPI.

Point-to-PointProtocol(PPP)TheInternetstandardfortransmissionofIPpacketsoveraserialline,asinadial-upconnectiontoanISP.

Point-to-PointProtocolExtensibleAuthenticationProtocol(PPPEAP)Astandardmethodfortransportingmulti-protocoldatagramsoverpoint-to-pointlinks.

Point-to-PointProtocolPasswordAuthenticationProtocol(PPPPAP)PAPisaPPPextensionthatprovidessupportforpasswordauthenticationmethodsoverPPP.

Point-to-PointTunnelingProtocol(PPTP)TheuseofgenericroutingencapsulationoverPPPtocreateamethodologyusedforvirtualprivatenetworking.

PortAddressTranslation(PAT)ThemanipulationofportinformationinanIPdatagramatapointinthenetworktomapportsinafashionsimilartoNetworkAddressTranslation’schangeofnetworkaddress.

portscanTheexaminationofTCPandUDPportstodeterminewhichareopenandwhatservicesarerunning.

pre-sharedkey(PSK)Asharedsecretthathasbeenpreviouslysharedbetweenpartiesandisusedtoestablishasecurechannel.

PrettyGoodPrivacy(PGP)Apopularencryptionprogramthathastheabilitytoencryptanddigitallysigne-mailandfiles.

preventativeintrusiondetectionAsystemthatdetectshostileactionsornetworkactivityandpreventsthemfromimpactinginformationsystems.

privacyProtectinganindividual’spersonalinformationfromthosenotauthorizedtoseeit.

privacy-enhancingtechnologyCryptographicprotectionmechanismsemployedtoensureprivacyofinformation.

privacyimpactassessment(PIA)Theprocessandprocedureofdeterminingtheprivacyimpactandsubsequentriskofdataelementsandtheiruseintheenterprise.

privatebranchexchange(PBX)Atelephoneexchangethatservesaspecificbusinessorentity.

privilegeauditingTheprocessofcheckingtherightsandprivilegesassignedtoaspecificaccountorgroupofaccounts.

privilegemanagementTheprocessofrestrictingauser’sabilitytointeractwiththecomputersystem.

processidentifier(PID)Auniqueidentifierforaprocessthreadintheoperatingsystemkernel.

ProtectedExtensibleAuthenticationProtocol(PEAP)AprotectedversionofEAPdevelopedbyCisco,Microsoft,andRSASecuritythatfunctionsbyencapsulatingtheEAPframesinaTLStunnel.

ProtectedHealthInformation(PHI)Informationthatcandisclosehealth-relateditemsforanindividualthatmustbeprotectedinthesystem.SimilartoPIIbuthealthrelatedinnature.

protocolanalyzerAtoolusedbynetworkpersonneltoidentifypacketsandheaderinformationduringnetworktransit.Theprimaryuseisin

troubleshootingnetworkcommunicationissues.

ProxyAutoConfiguration(PAC)AmethodofautomatingtheconnectionofwebbrowserstoappropriateproxyservicestoretrieveaspecificURL.

proxyserverAserverthatactsasaproxyforindividualrequestsandisusedforperformanceandsecuritypurposesinascalablefashion.

PSKSeepre-sharedkey.

psychologicalacceptabilityTheprinciplethatprotectionmechanismsshouldnotimpactusers,oriftheydo,theimpactshouldbeminimal.

PTZSeepan-tilt-zoom.

publickeycryptographySeeasymmetricencryption.

publickeyinfrastructure(PKI)Infrastructureforbindingapublickeytoaknownuserthroughatrustedintermediary,typicallyacertificateauthority.

qualitativeriskassessmentTheprocessofsubjectivelydeterminingtheimpactofaneventthataffectsaproject,program,orbusiness.Itinvolvestheuseofexpertjudgment,experience,orgroupconsensustocompletetheassessment.

quantitativeriskassessmentTheprocessofobjectivelydeterminingtheimpactofaneventthataffectsaproject,program,orbusiness.Itusuallyinvolvestheuseofmetricsandmodelstocompletetheassessment.

RADIUSRemoteAuthenticationDial-InUserService,astandardprotocolforprovidingauthenticationservices.Itiscommonlyusedindial-up,wireless,andPPPenvironments.

RAIDSeeRedundantArrayofIndependentDisks.

ransomwareMalwarethatencryptssensitivefilesandofferstheirreturnforaransom.

rapidapplicationdevelopment(RAD)Asoftwaredevelopmentmethodologythatfavorstheuseofrapidprototypesandchangesasopposedtoextensiveadvancedplanning.

RASSeeRemoteAccessService/Server.

RBACSeerule-basedaccesscontrolorrole-basedaccesscontrol.

RC4streamcipherAstreamcipherusedinTLSandWEP.

Real-timeBlackholeList(RBL)AsystemthatusesDNSinformationtodetectanddumpspame-mails.

Real-timeTransportProtocol(RTP)AprotocolforastandardizedpacketformatusedtocarryaudioandvideotrafficoverIPnetworks.

RecoveryAgent(RA)InMicrosoftWindowsenvironments,theentityauthorizedbythesystemtouseapublickeyrecoverycertificatetodecryptotherusers’filesusingaspecialprivatekeyfunctionassociatedwiththeEncryptingFileSystem(EFS).

recoverypointobjective(RPO)Theamountofdatathatabusinessiswillingtoplaceatrisk.Itisdeterminedbytheamountoftimeabusinesshastorestoreaprocessbeforeanunacceptableamountofdatalossresultsfromadisruption.

recoverytimeobjective(RTO)Theamountoftimeabusinesshastorestoreaprocessbeforeunacceptableoutcomesresultfromadisruption.

RedundantArrayofIndependentDisks(RAID)Theuseofanarrayof

disksarrangedinasingleunitofstorageforincreasingstoragecapacity,redundancy,andperformancecharacteristics.FormerlyknownasRedundantArrayofInexpensivedisks.

referencemonitorAnon-bypassableelementofthekernelthatprocessesandenforcesallsecurityinteractionsincludingsubjectobjectaccesses.

registrationauthority(RA)ThepartyinthePKIprocessthatestablishesidentityfortheCertificateAuthoritytoissueacertificate.

RemoteAccessServer/Service(RAS)Acombinationofhardwareandsoftwareusedtoenableremoteaccesstoanetwork.

RemoteAccessTrojan(RAT)Aformofmalwaredesignedtoenableremoteaccesstoasystembyanunauthorizedparty.

replayattackAnattackwheredataisreplayedthroughasystemtoreproduceaseriesoftransactions.

repudiationTheactofdenyingthatamessagewaseithersentorreceived.

reversesocialengineeringAsocialengineeringattackpatternwheretheattackerprepositionsthemselvestobethepersonyoucallwhenyouthinkyouareattacked.Becauseyoucallthem,yourleveloftrustislower.

residualriskRisksremainingafteraniterationofriskmanagement.

RingpolicyPartoftheBibasecuritymodel,apolicythatallowsanysubjecttoreadanyobjectwithoutregardtotheobject’slevelofintegrityandwithoutloweringthesubject’sintegritylevel.

RIPEMDAhashfunctiondevelopedinBelgium.TheacronymexpandstoRACEIntegrityPrimitivesEvaluationMessageDigest,butthisnameis

rarelyused.ThecurrentversionisRIPEMD-160.

riskThepossibilityofsufferingaloss.

riskassessmentorriskanalysisTheprocessofanalyzinganenvironmenttoidentifythethreats,vulnerabilities,andmitigatingactionstodetermine(eitherquantitativelyorqualitatively)theimpactofaneventaffectingaproject,program,orbusiness.

riskmanagementOveralldecision-makingprocessofidentifyingthreatsandvulnerabilitiesandtheirpotentialimpacts,determiningthecoststomitigatesuchevents,anddecidingwhatactionsarecosteffectivetotaketocontroltheserisks.

Rivest,Shamir,Adleman(RSA)Thenamesofthethreemenwhodevelopedapublickeycryptographicsystemandthecompanytheyfoundedtocommercializethesystem.

rogueaccesspointAnunauthorizedaccesspointinsertedintoanetworkallowingunauthorizedwirelessaccess.

role-basedaccesscontrol(RBAC)Anaccesscontrolmechanisminwhich,insteadoftheusersbeingassignedspecificaccesspermissionsfortheobjectsassociatedwiththecomputersystemornetwork,asetofrolesthattheusermayperformisassignedtoeachuser.

rootkitAformofmalwarethatmodifiestheOSinasystemtochangethebehaviorofthesystem.

routerAnetworkdevicethatoperatesatthenetworklayeroftheOSImodel.

RTPSeeReal-timeTransportProtocol.

rule-basedaccesscontrol(RBAC)Anaccesscontrolmechanismbased

onrules.

runlevelsInUNIXandLinuxsystems,runlevelsindicatethetypeofstatethesystemisin,from0(halted)to6(rebooting).Lowerrunlevelsindicatemaintenanceconditionswithfewerservicesrunning,higherrunlevelsarenormaloperatingconditions.EachUNIXvariantemploystheconceptinthesamemanner,butthespecificsforeachrunlevelcandiffer.

safeguardSeecontrol.

SafeHarborAseriesofprovisionstomanagethedifferentprivacypoliciesbetweentheUSandEUwhenitcomestodatasharing.

SANSeestorageareanetwork.

sandboxingTheconceptofisolatingasystemandspecificprocessesformtheOSinordertoprovidespecificlevelsofsecurity.

SCADASeesupervisorycontrolanddataacquisition.

SCEPSeeSimpleCertificateEnrollmentProtocol.

scriptkiddieAhackerwithlittletruetechnicalskillandhencewhousesonlyscriptsthatsomeoneelsedeveloped.

SecureCopyProtocol(SCP)Anetworkprotocolthatsupportssecurefiletransfers.

SecureDevelopmentLifecycle(SDL)modelAprocessmodeltoincludesecurityfunctionconsiderationaspartofthebuildprocessofsoftwareinanefforttoreduceattacksurfacesandvulnerabilities.

SecureFTPAmethodofsecurefiletransferthatinvolvesthetunnelingofFTPthroughanSSHconnection.ThisisdifferentthanSFTP.See

SecureShellFileTransferProtocol.

SecureHashAlgorithm(SHA)Ahashalgorithmusedtohashblockdata.ThefirstversionisSHA1,withsubsequentversionsdetailinghashdigestlength:SHA256,SHA384,andSHA512.

SecureHypertextTransferProtocol(SHTTP)AnalternativetoHTTPS,inwhichonlythetransmittedpagesandPOSTfieldsareencrypted.Renderedmoot,byandlarge,bywidespreadadoptionofHTTPS.

SecureKeyExchangeMechanismforInternet(SKEMI)AprotocolandstandardforthekeyexchangeacrosstheInternet.

Secure/MultipurposeInternetMailExtensions(S/MIME)AnencryptedimplementationoftheMIME(MultipurposeInternetMailExtensions)protocolspecification.

SecureShell(SSH)Asetofprotocolsforestablishingasecureremoteconnectiontoacomputer.Thisprotocolrequiresaclientoneachendoftheconnectionandcanuseavarietyofencryptionprotocols.

SecureShellFileTransferProtocol(SFTP)AsecurefiletransfersubsystemassociatedwiththeSecureShell(SSH)protocol.

SecureSocketsLayer(SSL)AnencryptinglayerbetweenthesessionandtransportlayersoftheOSImodeldesignedtoencryptabovethetransportlayer,enablingsecuresessionsbetweenhosts.

SecurityAssertionMarkupLanguage(SAML)AnXML-basedstandardforexchangingauthenticationandauthorizationdata.

securityassociation(SA)Aninstanceofsecuritypolicyandkeyingmaterialappliedtoaspecificdataflow.BothIKEandIPsecuseSAs,althoughtheseSAsareindependentofoneanother.IPsecSAsare

unidirectionalandareuniqueineachsecurityprotocol,whereasIKESAsarebidirectional.AsetofSAsisneededforaprotecteddatapipe,oneSAperdirectionperprotocol.SAsareuniquelyidentifiedbydestination(IPsecendpoint)address,securityprotocol(AHorESP),andsecurityparameterindex(SPI).

securitybaselineTheendresultoftheprocessofestablishinganinformationsystem’ssecuritystate.Itisaknowngoodconfigurationresistanttoattacksandinformationtheft.

SecurityContentAutomationProtocol(SCAP)Amethodofusingspecificprotocolsanddataexchangestoautomatethedeterminationofvulnerabilitymanagement,measurement,andpolicycomplianceacrossasystemorsetofsystems.

securitycontrolsAgroupoftechnical,management,oroperationalpoliciesandproceduresdesignedtoimplementspecificsecurityfunctionality.Accesscontrolsareanexampleofasecuritycontrol.

securityinformationeventmanagement(SIEM)Thenameusedforabroadrangeoftechnologicalsolutionstothecollectionandanalysisofsecurity-relatedinformationacrosstheenterprise.

securitykernelSeereferencemonitor.

securitythroughobscurityAnapproachtosecurityusingthemechanismofhidinginformationtoprotectit.

separation(orsegregation)ofdutiesAbasiccontrolthatpreventsordetectserrorsandirregularitiesbyassigningresponsibilitiestodifferentindividualssothatnosingleindividualcancommitfraudulentormaliciousactions.

SenderPolicyFramework(SPF)Ane-mailverificationsystemdesignedtodetectspoofede-mailaddresses.

sequencenumberAnumberwithinaTCPpackettomaintainTCPconnectionsandconversationintegrity.

server-sidescriptingTheprocessingofscriptsontheserversideofanInternetconnectiontopreventclienttamperingwiththeprocess.

servicelevelagreement(SLA)Anagreementbetweenpartiesconcerningtheexpectedorcontracteduptimeassociatedwithasystem.

servicesetidentifier(SSID)Identifiesaspecific802.11wirelessnetwork.Ittransmitsinformationabouttheaccesspointtowhichthewirelessclientisconnecting.

shadowfileThefilethatstorestheencryptedpasswordinasystem.

shieldedtwisted-pair(STP)Aphysicalnetworkconnectionconsistingoftwowirestwistedandcoveredwithashieldtopreventinterference.

shiftcipherAcipherthatoperatesbysubstitution,thereplacementofonecharacterforanother.

ShortMessageService(SMS)Aformoftextmessagingoverphoneandmobilephonecircuitsthatallowsupto160-charactermessagestobecarriedoversignalingchannels.

shouldersurfingAtechniquefromsocialengineeringwhereyouobserveanother’saction,suchasapasswordentry.

signaturedatabaseAcollectionofactivitypatternsthathavealreadybeenidentifiedandcategorizedandthattypicallyindicatesuspiciousormaliciousactivity.

SimpleCertificateEnrollmentProtocol(SCEP)Aprotocolusedinpublickeyinfrastructure(PKI)forenrollmentandotherservices.

SimpleMailTransferProtocol(SMTP)ThestandardInternetprotocolusedtotransfere-mailbetweenhosts.

SimpleNetworkManagementProtocol(SNMP)Astandardprotocolusedtomanagenetworkdevicesacrossanetworkremotely.

SimpleObjectAccessProtocol(SOAP)AnXML-basedspecificationforexchanginginformationassociatedwithwebservices.

SimpleSecurityRuleTheprinciplethatstatescomplexitymakessecuritymoredifficultandhencevaluessimplicity.

singlelossexpectancy(SLE)Monetarylossorimpactofeachoccurrenceofathreat.SLE=assetvalue×exposurefactor.

singlesign-on(SSO)AnauthenticationprocessbywhichtheusercanenterasingleuserIDandpasswordandthenmovefromapplicationtoapplicationorresourcetoresourcewithouthavingtosupplyfurtherauthenticationinformation.

slackspaceUnusedspaceonadiskdrivecreatedwhenafileissmallerthantheallocatedunitofstorage(suchasasector).

smartcardsAtokenwithachiptostorecryptographictokens.Becauseofthenatureofsmartcards,theyarenearlyimpossibletocopyorcounterfeit.

SMSSeeShortMessageService.

smurfattackAmethodofgeneratingsignificantnumbersofpacketsforaDoSattack.

snifferAsoftwareorhardwaredeviceusedtoobservenetworktrafficasitpassesthroughanetworkonasharedbroadcastmedia.

sniffingTheuseofasoftwareorhardwaredevice(sniffer)toobservenetworktrafficasitpassesthroughanetworkonasharedbroadcastmedia.

socialengineeringTheartofdeceivinganotherpersonsothatheorsherevealsconfidentialinformation.Thisisoftenaccomplishedbyposingasanindividualwhoshouldbeentitledtohaveaccesstotheinformation.

SoftwareasaService(SaaS)Theprovisioningofsoftwareasaservice,commonlyknownason-demandsoftware.

softwaredevelopmentlifecyclemodel(SDLC)Theprocessesandproceduresemployedtodevelopsoftware.Sometimesalsocalledsecuredevelopmentlifecyclemodelwhensecurityispartofthedevelopmentprocess.

solid-statedrive(SSD)Amassstoragedevice,suchasaharddrive,thatiscomposedofelectronicmemoryasopposedtoaphysicaldeviceofspinningplatters.

SONETSeeSynchronousOpticalNetworkTechnologies.

spamE-mailthatisnotrequestedbytherecipientandistypicallyofacommercialnature.Alsoknownasunsolicitedcommerciale-mail(UCE).

spamfilterAsecurityappliancedesignedtoremovespamatthenetworklayerbeforeitenterse-mailservers.

spearphishingAformoftargetedphishingwherespecificinformationisincludedtoconvincetherecipientthatthecommunicationisgenuine.

spimSpamsentoveraninstantmessagingchannel.

spoofingMakingdataappeartohaveoriginatedfromanothersourcesoastohidethetrueoriginfromtherecipient.

spywareMalwaredesignedtospyonause,typicallyrecordinginformationsuchaskeystrokesforpasswords.

SQLinjectionAnattackagainstaSQLengineparserdesignedtoperformunauthorizeddatabaseactivities.

SSDSeesolid-statedrive.

SSLstrippingattackAspecifictypeofman-in-the-middleattackagainstSSL.

steganographyTheuseofcryptographytohidecommunications.

storageareanetwork(SAN)Atechnology-basedstoragesolutionconsistingofnetworkattachedstorage.

STPSeeshieldedtwisted-pair.

streamcipherAnencryptionprocessusedagainstastreamofinformation,evenbitbybit,asopposedtooperationsperformedonblocks.

StructuredExceptionHandler(SEH)TheprocessusedtohandleexceptionsintheWindowsOScorefunctions.

StructuredQueryLanguage(SQL)Alanguageusedinrelationaldatabasequeries.

structuredthreatAthreatthathasreasonablefinancialbackingandcanlastforafewdaysormore.Theorganizationalelementsallowforgreatertimetopenetrateandattackasystem.

StructuredThreatInformationeXpression(STIX)AstandardXMLschemafordescribingandexchangingthreatinformation.

subnetmaskTheinformationthattellsadevicehowtointerpretthenetworkandhostportionsofanIPaddress.

subnettingThecreationofanetworkwithinanetworkbymanipulatinghowanIPaddressissplitintonetworkandhostportions.

SubscriberIdentityModule(SIM)AnintegratedcircuitorhardwareelementthatsecurelystorestheInternationalMobileSubscriberIdentity(IMSI)andtherelatedkeyusedtoidentifyandauthenticatesubscribersonmobiletelephones.

substitutionTheswitchingofonevalueforanotherincryptography.

supervisorycontrolanddataacquisition(SCADA)Agenerictermusedtodescribetheindustrialcontrolsystemnetworksusedtointerconnectinfrastructureelements(suchasmanufacturingplants,oilandgaspipelines,powergenerationanddistributionsystems,andsoon)andcomputersystems.

switchAnetworkdevicethatoperatesatthedatalayeroftheOSImodel.

switchedportanalyzer(SPAN)Atechnologyemployedthatcanduplicateindividualchannelscrossingaswitchtoanothercircuit.

symmetricencryptionEncryptionthatneedsallpartiestohaveacopyofthekey,sometimescalledasharedsecret.Thesinglekeyisusedforbothencryptionanddecryption.

SYNfloodAmethodofperformingDoSbyexhaustingTCPconnectionresourcesthroughpartiallyopeningconnectionsandlettingthemtime-out.

SynchronousOpticalNetworkTechnologies(SONET)Asetofstandardsusedfordatatransfersoveropticalnetworks.

systematicriskAformofriskthatcanbemanagedbydiversification.

tangibleassetAnassetforwhichamonetaryequivalentcanbedetermined.Examplesareinventory,buildings,cash,hardware,software,andsoon.

TCPwrappersAhost-basednetworkingACLsystem,usedinsomeLinuxsystemstofilternetworkaccesstoInternetProtocolservers.

TCP/IPhijackingAnattackwheretheattackerinterceptsandhijacksanestablishedTCPconnection.

TelnetAnetworkprotocolusedtoprovidecleartextbidirectionalcommunicationoverTCP.

TEMPESTTheU.S.military’snameforthefieldassociatedwithelectromagneticeavesdroppingonsignalsemittedbyelectronicequipment.SeealsoVanEckphenomenon.

TemporalKeyIntegrityProtocol(TKIP)Asecurityprotocolusedin802.11wirelessnetworks.

TerminalAccessControllerAccessControlSystem+(TACACS+)AremoteauthenticationsystemthatusestheTACACS+protocol,definedinRFC1492,andTCPport49.

threatAnycircumstanceoreventwiththepotentialtocauseharmtoanasset.

threatactorThepartybehindathreat,althoughitmaybeanon-personasinanenvironmentalissue.

threatvectorThemethodbywhichathreatactorintroducesaspecificthreat.

three-wayhandshakeAmeansofensuringinformationtransferencethroughathree-stepdataexchange.UsedtoinitiateaTCPconnection.

ticket-grantingserver(TGS)AportionoftheKerberosauthenticationsystem.

ticket-grantingticket(TGT)ApartoftheKerberosauthenticationsystemthatisusedtoproveidentitywhenrequestingservicetickets.

Time-basedOne-TimePassword(TOTP)Apasswordthatisusedonceandisonlyvalidduringaspecifictimeperiod.

timebombAformoflogicbombinwhichthetriggeringeventisadateorspecifictime.Seealsologicbomb.

TKIPSeeTemporalKeyIntegrityProtocol.

tokenAhardwaredevicethatcanbeusedinachallenge-responseauthenticationprocess.

TransactionSignature(TSIG)AprotocolusedasameansofauthenticatingdynamicDNSrecordsduringDNSupdates.

TransmissionControlProtocol(TCP)Theconnection-orientedtransportlayerprotocolforuseontheInternetthatallowspacket-leveltrackingofaconversation.

TransportLayerSecurity(TLS)AnewerformofSSLthatisnowanInternetstandard.

transpositionTherearrangementofcharactersbypositionaspartofcryptographicoperations.

trapdoorSeebackdoor.

TrivialFileTransferProtocol(TFTP)AsimplifiedversionofFTPusedforlow-overheadfiletransfersusingUDPport69.

TrojanAformofmaliciouscodethatappearstoprovideoneservice(andmayindeedprovidethatservice)butthatalsohidesanotherpurpose.Thishiddenpurposeoftenhasamaliciousintent.ThiscodemayalsobereferredtoasaTrojanhorse.

trunkingTheprocessofspanningasingleVLANacrossmultipleswitches.

TrustedAutomatedeXchangeofIndicatorInformation(TAXII)AnXMLschemafortheautomatedexchangeofcyberindicatorsbetweentrustedparties.

TrustedOSAnOSthatcanprovideappropriatelevelsofsecurityandhasmechanismstoprovideassuranceofsecurityfunction.

TrustedPlatformModule(TPM)Ahardwarechiptoenabletrustedcomputingplatformoperations.

tunnelingTheprocessofpackagingpacketssothattheycantraverseanetworkinasecure,confidentialmanner.

UnifiedExtensibleFirmwareInterface(UEFI)AspecificationthatdefinestheinterfacebetweenanOSandthehardwarefirmware.ThisisareplacementtoBIOS.

unifiedthreatmanagement(UTM)Theaggregationofmultiplenetworksecurityproductsintoasingleapplianceforefficiencypurposes.

UniformResourceIdentifier(URI)Asetofcharactersusedtoidentifythenameofaresourceinacomputersystem.AURLisaformofURI.

UniformResourceLocator(URL)AspecificcharacterstringusedtopointtoaspecificitemacrosstheInternet.

uninterruptiblepowersupply(UPS)Asourceofpower(generallya

battery)designedtoprovideuninterruptedpowertoacomputersystemintheeventofatemporarylossofpower.

UniversalSerialBus(USB)Anindustry-standardprotocolforcommunicationoveracabletoperipheralsviaastandardsetofconnectors.

unshieldedtwisted-pair(UTP)Aformofnetworkcablinginwhichpairsofwiresaretwistedtoreducecrosstalk.CommonlyusedinLANs.

unstructuredthreatAthreatthathasnosignificantresourcesorability—typicallyanindividualwithlimitedskill.

unsystematicriskRiskthatcannotbemitigatedbydiversification.Unsystematicriskscanresultinlossacrossalltypesofriskcontrols.

usageauditingTheprocessofrecordingwhodidwhatandwhenonaninformationsystem.

useracceptancetesting(UAT)Theapplicationofacceptance-testingcriteriatodeterminefitnessforuseaccordingtoend-userrequirements.

UserDatagramProtocol(UDP)AprotocolintheTCP/IPprotocolsuiteforthetransportlayerthatdoesnotsequencepackets—itis“fireandforget”innature.

userIDAuniquealphanumericidentifierthatidentifiesindividualswhenloggingintooraccessingasystem.

UTPSeeunshieldedtwisted-pair.

vampiretapAtapthatconnectstoanetworklinewithoutcuttingtheconnection.

VanEckphenomenonElectromagneticeavesdroppingthroughthe

interceptionofelectronicsignalsemittedbyelectricalequipment.SeealsoTempest.

videoteleconferencing(VTC)Abusinessprocessofusingvideosignalstocarryaudioandvisualsignalsbetweenseparatelocations,thusallowingparticipantstomeetviaavirtualmeetinginsteadoftravelingtoaphysicallocation.Modernvideoconferencingequipmentcanprovideveryrealisticconnectivitywhenlightingandbackgroundsarecontrolled.

VigenèrecipherApolyalphabeticsubstitutioncipherthatdependsonapassword.

virtuallocalareanetwork(VLAN)Abroadcastdomaininsideaswitchedsystem.

virtualprivatenetwork(VPN)Anencryptednetworkconnectionacrossanothernetwork,offeringaprivatecommunicationchannelacrossapublicmedium.

virtualizationdesktopinfrastructure(VDI)Theuseofserverstohostvirtualdesktopsbymovingtheprocessingtotheserverandusingthedesktopmachineasmerelyadisplayterminal.VDIoffersoperatingefficienciesaswellascostandsecuritybenefits.

virusAformofmaliciouscodeorsoftwarethatattachesitselftootherpiecesofcodeinordertoreplicate.Virusesmaycontainapayload,whichisaportionofthecodethatisdesignedtoexecutewhenacertainconditionismet(suchasonacertaindate).Thispayloadisoftenmaliciousinnature.

vishingPhishingovervoicecircuits,specificallyvoiceoverIP(VoIP).

voiceoverIP(VoIP)Thepacketizedtransmissionofvoicesignals(telephony)overInternetProtocol.

vulnerabilityAweaknessinanassetthatcanbeexploitedbyathreattocauseharm.

WAPSeeWirelessApplicationProtocol.

war-dialingAnattacker’sattempttogainunauthorizedaccesstoacomputersystemornetworkbydiscoveringunprotectedconnectionstothesystemthroughthetelephonesystemandmodems.

war-drivingTheattemptbyanattackertodiscoverunprotectedwirelessnetworksbywandering(ordriving)aroundwithawirelessdevice,lookingforavailablewirelessaccesspoints.

warmsiteAbackupsite,offpremises,thathashardwarebutisnotconfiguredwithdataandwilltakesometimetoswitchoverto.

WassenaarArrangementAsetofrulesandregulationsconcerningdual-usetechnologies,includingcryptography.Theserulesarerelatedtoarmstradingandsimilarnationalsecurityconcernsandimpactsomecybersecurityelements.

webapplicationfirewall(WAF)Afirewallthatoperatesattheapplicationlevel,specificallydesignedtoprotectwebapplicationsbyexaminingrequestsattheapplicationstacklevel.

WEPSeeWiredEquivalentPrivacy.

whalingThetargetingofhigh-valueindividuals.

whiteboxtestingAformoftestingwherethetesterhasknowledgeoftheinnerworkingsofasystem.

whitelistingAlistingofitemstobeallowedbyspecificinclusion.Theoppositeofblacklisting.

wideareanetwork(WAN)Anetworkthatspansalargegeographicregion.

Wi-FiProtectedAccess(WPA/WPA2)Aprotocoltosecurewirelesscommunicationsusingasubsetofthe802.11istandard.

Wi-FiProtectedSetup(WPS)Anetworksecuritystandardthatallowseasysetupofawirelesshomenetwork.

WiredEquivalentPrivacy(WEP)Theencryptionschemeusedtoattempttoprovideconfidentialityanddataintegrityon802.11networks.

wirelessaccesspoint(WAP)Anetworkaccessdevicethatfacilitatestheconnectionofwirelessdevicestoanetwork.

WirelessApplicationProtocol(WAP)Aprotocolfortransmittingdatatosmallhandhelddevicessuchascellularphones.

wirelessintrusiondetectionsystem(WIDS)Anintrusiondetectionsystemestablishedtocoverawirelessnetwork.

wirelessintrusionpreventionsystem(WIPS)Anintrusionpreventionsystemestablishedtocoverawirelessnetwork.

WirelessTransportLayerSecurity(WTLS)TheencryptionprotocolusedonWAPnetworks.

wormAnindependentpieceofmaliciouscodeorsoftwarethatself-replicates.Unlikeavirus,itdoesnotneedtobeattachedtoanotherpieceofcode.Awormreplicatesbybreakingintoanothersystemandmakingacopyofitselfonthisnewsystem.Awormcancontainadestructivepayloadbutdoesnothaveto.

writeblockerAspecificinterfaceforastoragemediathatdoesnotpermitwritingtooccurtothedevice.Thisallowscopiestobemade

withoutalteringthedevice.

X.500ThestandardformatfordirectoryservicesincludingLDAP.

X.509Thestandardformatfordigitalcertificates.

XMLSeeExtensibleMarkupLanguage.

XSRFSeecross-siterequestforgery.

XSSSeecross-sitescripting.

zero-dayAnamegiventoavulnerabilitywhoseexistenceisknown,butnottothedeveloperofthesoftware,henceitcanbeexploitedbeforepatchesaredevelopedandreleased.

zombieAmachinethatisatleastpartiallyunderthecontrolofabotnet.

INDEX

Pleasenotethatindexlinkspointtopagebeginningsfromtheprintedition.Locationsareapproximateine-readers,andyoumayneedtopagedownoneormoretimesafterclickingalinktogettotheindexedmaterial.

Symbols*-property(starproperty),enforcedbyBell-LaPadula,34–35

Numbers1Gmobilenetworks,3392.4GHzband,Bluetooth,3442Gmobilenetworks,3393DES(TripleDES)

databaseencryption,123IPsecusing,327overviewof,104–105SSHand,322supportedbyWTLS,340usedforSSL/TLSencryption,533

3Gmobilenetworks,339,3424Gmobilenetworks

comparingwith3GandLTE,342

featuresof,339overviewof,343

5GHzband,IEEE802.11a,348–349

AAAA(authentication,authorization,andaccounting)

Diameter,314overviewof,305RADIUS(RemoteAuthenticationDial-InUserService),312–314TACAS+(TerminalAccessControllerAccessControlSystem+),314–317

AACS(AdvancedAccessContentSystem),122ABAC(attribute-basedaccesscontrol),303–304acceptableusepolicy(AUP)

BYODconcerns,369humanresourcespolicies,49–50

accesscontrolABAC(attribute-basedaccesscontrol),303–304accountandpasswordexpirationand,297authenticationand,32authenticationcomparedwith,311CompTIASecurity+ExamObjectives,752–753DAC(discretionaryaccesscontrol),302deviceconfiguration,442–443electronicaccesscontrolsystems,197–198GroupPolicy,32–33GroupPolicyblockingdeviceaccess,451–452isolationofsystem,13MAC(mandatoryaccesscontrol),301mobiledevicesecurityand,365–366

networkaccesscontrol,267–268overviewof,31–32passwordpolicy,33physicalsecurityand,61–63,196RBAC(role-basedaccesscontrol),303remoteaccessand,311rule-basedaccesscontrol,303

accesscontrollists.SeeACLs(accesscontrollists)accesscontrolmatrix,300–301accesspoints.SeeAPs(accesspoints)accesstokens

biometrics,211–213falsepositivesandfalsenegatives,213–214somethingyouhave,210

accounting,configurationstatusaccounting,640accounting,inAAAprocess

overviewof,305RADIUS(RemoteAuthenticationDial-InUserService),314TACAS+(TerminalAccessControllerAccessControlSystem+),317

accountsadministrative.SeeadministratorscontrollingUNIXaccounts,418expiration,297,304generic,290group.Seegroupslogonrestrictions(timeofday),295user.Seeusers/useraccounts

ACKpackets,inTCPthree-wayhandshake,228–229ACLs(accesscontrollists)

dealingwithunauthorizedaccess,282formachinesecurity,441

mechanismsfirewallsarebasedon,262overviewof,300–301routersusing,259

ACM(AssociationforComputingMachinery),codeofethics,48ACs(AttributeCertificates),169–170ActiveServerPages(ASP),547activevs.passivetools,402–403ActiveX,545–546Adams,Carlisle,105–106add-ons,malicious,551AdditionalDecryptionKey(ADK),inPGP,521AddressResolutionProtocol(ARP)

ARPattacks.SeeARPpoisoningfindingMACaddresses,233–234

addressspaceclassesof,237comparingIPv4andIPv6,232private,237

ADK(AdditionalDecryptionKey),inPGP,521Adleman,Leonard,110–111administrativelaw,698administrators

backupsaskeyresponsibilityof,591functionsof,453specialuseraccounts,290

Administratorsgroup,291AdvancedAccessContentSystem(AACS),122AdvancedEncryptionStandard.SeeAES(AdvancedEncryptionStandard)AdvancedMobilePhoneSystem(AMPS),339advancedpersistentthreats.SeeAPTs(advancedpersistentthreats)adware,471–472

AES(AdvancedEncryptionStandard)databaseencryption,123filesystemencryption,123overviewof,105S/MIMEand,178SSHand,322supportinWPA2,354

affinitygroupings,toolsforriskmanagement,625agilemodel,forsoftwaredevelopment,559AH(AuthenticationHeader)

inIPsec,182–183fortrafficsecurity,327–329

AIM(AOLInstantMessenger),522airconditioning.SeeHVAC(heating,ventilation,andairconditioning)alarms,inphysicalsecurity,199–200ALE(annualizedlossexpectancy)

incalculatingrisks,622–624defined,611

alerts,regardingnewthreatsandsecuritytrends,57–58algorithms

asymmetric.Seeasymmetricencryptioncomparativestrengthandperformanceof,93incontemporaryencryption,96–97hashingfunctions.Seehashingalgorithmskeymanagement,98randomnumbersin,98symmetric.SeesymmetricencryptionusedinPGP,181usesof,116–117

AMPS(AdvancedMobilePhoneSystem),339analysisengine

decisiontreesusedby,390inHIDSs,389inIDSs,379inNIDSs,384

analysisphase,computerforensics,684AndroidOS,hardening,456annualizedlossexpectancy(ALE)

incalculatingrisks,622–624defined,611

annualizedrateofoccurrence(ARO)incalculatingrisks,623–624defined,611

anomalydetectionmodel,IDSmodels,379–380anonymity,wirelessattacksand,351anonymizingproxy,270anonymousFTP(blindFTP),540antennas

placement,360–361types,359–360

antimalwareproductsoverviewof,426–427polymorphicmalwareavoidingdetection,469

antispamproducts,430–431antispywareproducts,431–432antivirus(AV)products

BYODconcerns,367hosthardening,427–430malwaredefenses,473

AOLInstantMessenger(AIM),522APIs(applicationprogramminginterfaces),132AppSandbox,hardeningMacOSX,422

AppleApplicationfirewall,422AppleTalkprotocol,224appliances,inNIDSs,384applicationcontrol,integratedintohost-basedIPS,394applicationfirewalls,458applicationlayerproxies,262–263applicationprogramminginterfaces(APIs),132applicationvulnerabilityscanners,449applications.Seealsosoftware

application-levelattacks,473–474,572blacklisting,430,434,515CompTIASecurity+ExamObjectives,749–752configurationbaseline,579cryptographic,122–123mobileapplicationsecurity,370–372patchmanagement,579programviruses,467updates,426vulnerabilities,474webapplicationvulnerabilities,552–553whitelisting,371,434

applications,hardeningconfigurationbaseline,444hostsoftwarebaselines,448–449overviewof,444patchmanagement,445–448patches,444–445softwaredevelopmentand,578–579

AppLocker,foruseraccountcontrol,434–435APs(accesspoints)

attackson,351

IEEE802.11and,349–350rogueaccesspoints,82,352–353

APTs(advancedpersistentthreats)incurrentthreatenvironment,5modelof,654RATs(remoteaccesstrojans)and,496signsof,495stepsinmaintainingapresenceonnetwork,653

architecturesBYODconcerns,369network,221–222

ARL(authorityrevocationlist),142ARO(annualizedrateofoccurrence)

incalculatingrisks,623–624defined,611

ARP(AddressResolutionProtocol)ARPattacks,234findingMACaddresses,233–234

ARPpoisoningattacksonswitches,258overviewof,490typesofARPattacks,234

ASA(AttackSurfaceAnalyzer),hardeningWindowsOSs,416–417ASCII,canonicalformand,570Asianprivacylaws,729–730ASP(ActiveServerPages),547ASP.NET,547assertionservice,XKMS,178assets

defined,610identifyinginriskmanagementmodel,616

AssociationforComputingMachinery(ACM),codeofethics,48association,inIEEE802.11AP,349associative(realorphysical)evidence,676assurance,92asymmetricencryption.Seealsobyindividualasymmetricalgorithms

DH(Diffie-Hellman),109–110ECC(Ellipticcurvecryptography),112–113ElGamal,111–112howPGPworks,180overviewof,109–110inPGPsuite,122–123RSA(Rivest,Shamir,andAdleman),110–111tokensand,297vs.symmetric,113

ATM(AsynchronousTransferMode)cells,225networkprotocol,224tunneling,246–247

attachments,e-mailasattackvector,577MIMEhandling,508–509

AttackSurfaceAnalyzer(ASA),hardeningWindowsOSs,416–417attacks.Seealsobyindividualtypes;threats

onaddresssystem(IPaddresses),487–488adware,471–472APT(advancedpersistentthreat),495attacksurfaceareaminimization,560–561auditingand,497–499avenuesof,465–466backdoorsandtrapdoors,472–473botnets,471–472

cachepoisoning,488–490client-side,493–494DoS(denial-of-service),474–477onencryption,486–487logicbombs,471malwaredefenses,473–474malware(maliciouscode),466man-in-the-middle,483–484minimizingavenuesof,12–13nullsessions(WindowsOSs)and,478overviewof,464pass-the-hash,492passwordguessing,490–492phishingandpharming,485–486polymorphicmalware,469ransomware,473RATs(remoteaccesstrojans),496remediationactions,684replay,484reviewandQ&A,500–503rootkits,470–471scanning,486sniffing,479socialengineering,478softwareexploitation,492–493spam,484spim,485spoofing,480–482spyware,471SSL/TLS,534TCP/IPhijacking,483

toolsusedin,496–497transitiveaccessand,484Trojanhorses,470typesof,652–654viruses,466–468war-dialingandwar-driving,477–478worms,469

attribute-basedaccesscontrol(ABAC),303–304AttributeCertificates(ACs),169–170auditing

configurationstatusauditing,640overviewof,497–498performingroutinely,498–499securitylogsand,391usersandgroups,290

auditing,basicsecuritygoals,20AUP(acceptableusepolicy)

BYODconcerns,369humanresourcespolicies,49–50

authenticationinAAAprocess,305accesscontrolcomparedwith,311accountandpasswordexpirationand,297basicauthentication,307biometricsand,62–63captiveportalshandlingonwirelessnetworks,362CompTIASecurity+ExamObjectives,752–753digestauthentication,307–308domainpasswordpolicy,293–294grouplevel,291–292GroupPolicy,32–33

IPsec(IPSecurity),182–183Kerberos,308–309managingaccessbyroles,292mechanismsandpolicies,32mobileapplicationsecurity,371–372multifactorauthentication,214–215,307–308mutualauthentication,307–308overviewof,289passwordpolicies,33,292–293privilegemanagement,288–289remoteaccessand,306–307reviewandQ&A,331–335assecuritygoals,20inSSL/TLS,533SSO(singlesign-on),294–295TACAS+(TerminalAccessControllerAccessControlSystem+),315–316

timeofdayrestrictions,295–296tokenusein,296–297,307–308userlevel,289–291usesofcryptography,116–117inWPA,354X.500standardand,172

AuthenticationHeader(AH)inIPsec,182–183fortrafficsecurity,327–329

authenticationprotocolsCHAP(Challenge-HandshakeAuthenticationProtocol),320EAP(ExtensibleAuthenticationProtocol),319–320L2TP(Layer2TunnelingProtocol),320–321NTLM(NTLANManager),320

overviewof,317PAP(PasswordAuthenticationProtocol),320PPP(Point-to-PointProtocol),317–318PPTP(Point-to-PointTunnelingProtocol),318–319SSH(SecureShell),321–322Telnet,321tunnelingprotocols,317–318

Authenticode,codesecurityand,545–546authorityrevocationlist(ARL),142authorization

inAAAprocess,305RADIUS(RemoteAuthenticationDial-InUserService),314remoteaccessand,310–311TACAS+(TerminalAccessControllerAccessControlSystem+),316–317

AutomaticUpdates,Windows7,424–426autoplay,201–202AV(antivirus)products.Seeantivirus(AV)productsavailability

inCIA,20hostsand,254–255importanceof,253measuringinriskcalculation,625

Bback-outplans

inchangemanagement,642indisasterrecovery,601

backdoorsinoldschoolattacks,652

overviewof,472–473unauthorizedaccessvia,82

BackTrack,toolsetsrelatedtoattacks,496backuppowersources,209backups

alternativesites,596–597back-outplan,642databackups,45frequencyandretention,594–596overviewof,591–592storage,596strategies,592–594

bandwidth,demandfordataservicesand,339bankingrulesandregulations(U.S.),724–725bannergrabbing,403–404BaselCommittee,onrisks,614baselines

applicationconfiguration,579configurationbaseline,444configurationidentificationand,639defined,409hostsoftware,437,448–449identifyingandanalyzinginriskmanagement,626systemhardening,409UNIX,417–419

basicinput/outputsystem(BIOS),physicalsecurityand,200–201batchmode,HIDSsoperatingin,388BC(businesscontinuity)

BCP(businesscontinuityplan),585BIA(businessimpactanalysis),586continuityofoperations,587

disasterrecovery.Seedisasterrecoveryidentifyingcriticalsystems,586overviewof,584–585removingsinglepointsoffailure,586reviewandQ&A,604–607riskassessment,586successionplanning,586–587

BCP(businesscontinuityplan),585Bcrypt,keystretching,120beaconframes,inIEEE802.11,349Bell-LaPadulamodel,forconfidentiality,34–35bestevidencerule,677bestpractices

incidentresponse,664,667–668riskmanagement,627–629securitycompliance,56

BIA(businessimpactanalysis),586,588–589Biba,Kenneth,35Bibamodel,forintegrity,36BigData,computerforensicsand,690biometrics,physicalaccesscontrols,62–63,211–213BIOS(basicinput/outputsystem),physicalsecurityand,200–201birthdayattacks,492BitLocker

filesystemencryption,123hardeningWindowsOSs,413–415

black-boxtesting,insoftwaredevelopment,567black-hathacking,497blacklisting

antispamproducts,430filtering/blacklistingspamsenders,515

hosthardening,434blindFTP(anonymousFTP),540blockciphers

AES(AdvancedEncryptionStandard),105BlowfishandTwofish,107CAST(CarlisleAdamsandStaffordTavares),105–106DES(DataEncryptionStandard),104IDEA(InternationalDataEncryptionAlgorithm),107–108RC2,RC5,andRC6,106vs.streamciphers,108

Blowfish,107,322blu-raydiscs,280Bluebuggingattacks,346Bluejackingattacks,345Bluesnarfingattacks,346Bluetooth

attacks,345–346hardeningmobiledevices,455–456introductiontowirelessnetworks,337overviewof,343–345securityissues,65versions,345

BluetoothDOSattacks,346body,ine-mailstructure,506–508bollards,inphysicalsecurity,195bootloaders,virtualizationcomparedwith,254bootsectorviruses,467bootdiskattacks,192–194botnets

overviewof,471–472researchingspamincidence,514

BPAs(businesspartnershipagreements),59brandjacking,client-sideattacks,494Brewer-Nashconfidentialitymodel,35bridgeCAs,hybridtrustmodeland,160bridges,257–258BringYourOwnDevice(BYOD)

concerns,366–370humanresourcespolicies,52

browserscertificateuseby,535HTTPandHTTPSfordatatransfer,537–539Javaand,543malware,551plug-ins,550–551securing,546SSL/TLSsetupoptions,532

brute-forceattackspasswordguessing,491–492passwordstrengthand,294

buffer-overflowattacksoverviewof,575–576softwareexploits,493stringhandlingand,569onwebcomponents,542

bugschangemanagementand,636trackinginsoftwaredevelopment,571–572

BurpSuite,497bustopology,networktopologies,222businesscontinuity.SeeBC(businesscontinuity)businesscontinuityplan(BCP),585

businessimpactanalysis(BIA),586,588–589businesspartners,on-boarding/off-boarding,49businesspartnershipagreements(BPAs),59businessprocesses,riskmanagementand,612businessrisks,613BYOD(BringYourOwnDevice)

concerns,366–370humanresourcespolicies,52

CCAcertificates,136–137cablemodems,265–266cable,wirespeed,395cachepoisoning,488–490cachingproxy,270CACs(CommonAccessCards),typesoftokens,296CaliforniaSenateBill1386(SB1386),724cameras,inaccesscontrol.SeeCCTV(closedcircuitTV)campusareanetworks(CANs),networkarchitectures,221campusnetworks.Seealsointranet,242CAN-SPAM(ControllingtheAssaultofNon-SolicitedPornographyandMarketingAct),514,701–702

Canadianprivacylaws,729canonicalizationerrors,569–570CANs(campusareanetworks),networkarchitectures,221CapabilityMaturityModelIntegration(CMMI),644–645captiveportals,handlingauthenticationonwirelessnetworks,362CarlisleAdamsandStaffordTavares.SeeCAST(CarlisleAdamsandStaffordTavares)

CAs(certificateauthorities)certificaterevocation,139–141

certificateverificationandtrust,143–146choosingbetweenpublicandin-houseCAs,152–153CPS(certificationpracticesstatement),131hierarchicaltrustmodeland,157inhouseCAs,152–153outsourcedCAs,153–154overviewof,130–131peer-to-peertrustmodel,158–159PKIXstandardand,168publicCAs,151–152responsibilitiesof,169rootCAs,157servicesprovidedby,129trusting,131typingdifferencePKIstogether,154–155

case(common)law,698–699CAST(CarlisleAdamsandStaffordTavares)

algorithmsusedinPGP,181overviewof,105–106SSHand,322

Category3(Cat3),twistedpaircable,275Category5(Cat5),twistedpaircable,275Category6(Cat6),twistedpaircable,275causeandeffectanalysis,inriskmanagement,626CC(CommonCriteriaforInformationTechnologySecurity)

overviewof,184TrustedOSs,434–435

CCB(changecontrolboard),642–643CCMP(CounterModewithCipherBlockChaining-MessageAuthenticationCodesProtocol)

currentsecuritymethods,359

inWPA2,355CCTV(closedcircuitTV)

foraccesscontrol,198–199physicalaccesscontrols,196unlicensedbandsand,349

CDIs(constraineddataitems),inClark-Wilsonsecuritymodel,37CDs(compactdisks)

autoplay,201bootdiskattacks,192–194CD-R(compactdisc-recordable),279–280CD-RW(compactdisc-rewriteable),280

cells,ATM,225cellularphones.SeemobiledevicescentralizedPKIinfrastructures,146–147CEP(CertificateEnrollmentProtocol),incertificatemanagement,168,183

CER(crossovererrorrate),213–214CERT(ComputerEmergencyResponseTeam),651–652certificateauthorities.SeeCAs(certificateauthorities)certificate-basedthreats,160–161CertificateEnrollmentProtocol(CEP),incertificatemanagement,168,183

certificateextensions,135–136CertificateManagementProtocol(CMP),176certificatepath,157–158certificatepolicy(CP),152certificaterepositories,143,170certificaterevocationlists.SeeCRLs(certificaterevocationlists)certificateservers,131certificatesigningrequest(CSR),138certificateverification,143–146

certificates.Seedigitalcertificatescertificationpracticesstatements(CPSs)

areasaddressedbyPKIXmodel,169CAsand,131

CFAA(ComputerFraudandAbuseAct)overviewof,701–702privacyobjectivesof,721–722statutorylawscontrollingcomputercrime,699

CGI(CommonGatewayInterface),546chainofcustody,evidence,684Challenge-HandshakeAuthenticationProtocol(CHAP)

authenticationmechanismsinPPP,318overviewof,320

challenge/responsesystem,inblockingspam,516changecontrolboard(CCB),642–643changemanagement

back-outplan,642CCB(changecontrolboard),642–643changemanagementpolicy,44–45CMMI(CapabilityMaturityModelIntegration),644–645codeintegrityand,643–644defined,635implementing,640–642needfor,635–637overviewof,634–635phasesofconfigurationmanagement,639–640reviewandQ&A,646–649riskmitigationand,614–615scopeof,636separationofdutiesand,637–638

changes,typesof,637

CHAP(Challenge-HandshakeAuthenticationProtocol)authenticationmechanismsinPPP,318overviewof,320

chatprograms.SeeIM(instantmessaging)checksums,analysisofdatastreamforchanges,685Children’sOnlinePrivacyProtectionAct(COPPA),722China

APTattackonU.S.firms,5nation-statehacking,7OperationNightDragonattackoriginatingfrom,7powergridattacksand,4spyingby,5

choice,responsiblecollectionofPII,719chosen-plaintextattack,340Christmasattack,486CIA(confidentiality,integrity,andavailability)

cryptographyand,116–117overviewof,20

ciphersuitesTLSCipherSuiteRegistry,174usesofcryptography,117

ciphers.Seealsoalgorithmsincontemporaryencryption,96–97defined,90strongvs.weak,117

ciphertextattacksonencryption,486encryptingplaintextinto,90historicalperspectivesoncryptography,94

CIRT(ComputerIncidentResponseTeam),651–652Citibankattack(June-October1994),2

Clark-Wilsonintegritymodel,36–37Class1certificates,132Class2certificates,132Class3certificates,132ClassAaddresses,237ClassBaddresses,237ClassCaddresses,237classification

inBell-LaPadulasecuritymodel,34–35hardeningWindowsServer2012,415ofinformationindatapolicy,45–46U.S.governmentsecuritylabels,302

clean-agentfiresuppressionsystems,206cleandeskpolicies,52,83clickfraud,697client/serverarchitecture

client-sideattacks,493–494,554,577networkingand,222RADIUS,312server-sidescripts,547server-sidevs.client-sidevalidation,579–580

closedcircuitTV.SeeCCTV(closedcircuitTV)cloudcomputing

computerforensicsand,690disasterrecoveryand,599overviewof,283–284risksassociatedwith,629storingdata,440

clusters/clusteringfaulttolerancefrom,600–601freespace,slackspace,andallocatedspace,686

CMMI(CapabilityMaturityModelIntegration),644–645CMP(CertificateManagementProtocol),176CMS(CryptographicMessageSyntax)

S/MIMEand,179triple-encapsulatedmessages,180

coaxialcable,274CobaltStriketoolset,497code

arbitrary/remotecodeexecution,578codesigning,546,551–552codingphaseofsoftwaredevelopment,562–566injectionattacks.Seeinjectionattacksintegrity,643–644malicious.Seemalware(maliciouscode)reducingvulnerabilitiesin,563securecodingconcepts,568webcomponentsvulnerabilities,541–542

codeofethics,humanresourcepolicies,47–48CodeRedworm

buffer-overflowattacks,575historicalsecurityincidents,3

COFEE(ComputerOnlineForensicsEvidenceExtractor),679coldsites,alternativebackupsites,597collaborativedevelopment,changemanagementand,636collisionattacks,compromisinghashalgorithms,99collisiondomains,hubsandswitchesand,257commandinjectionattacks,575CommonAccessCards(CACs),typesoftokens,296common(case)law,698–699CommonCriteriaforInformationTechnologySecurity(CC)

overviewof,184

TrustedOSs,434–435CommonGatewayInterface(CGI),546CommonVulnerabilitiesandExposures.SeeCVE(CommonVulnerabilitiesandExposures)

CommonWeaknessEnumeration.SeeCWE(CommonWeaknessEnumeration)

communicationssecurity(COMSEC),19communityclouds,284compactdisks.SeeCDs(compactdisks)competentevidence,677completemediation,SaltzerandSchroeder’seightprinciplesofsecuritydesign,27

complianceCompTIASecurity+ExamObjectives,741–745withlaws,bestpracticesandstandards,56trainingand,58websecuritygatewaysproviding,271

CompTIASecurity+ExamObjectivesaccesscontrolandidentitymanagement,752–753application,data,andhostsecurity,749–752complianceandoperationalsecurity,741–745cryptography,753–755networksecurity,738–740threatsandvulnerabilities,745–749

ComputerEmergencyResponseTeam(CERT),651–652computerforensics

acquiringevidence,679–681analysisphase,684BYODconcerns,367–368chainofcustody,684conductinginvestigations,682–683

deviceforensics,688e-discovery,689–690ensuringdataisnotmodified,685filesystems,685–687hostforensics,685identifyingevidence,681metadataand,687–688networkforensics,689overviewof,674–675processof,677–679protectingevidence,681reviewandQ&A,691–695rulesregardingevidence,677standardsforevidence,676–677storingevidence,682transportingevidence,682typesofevidence,675–676

ComputerFraudandAbuseAct.SeeCFAA(ComputerFraudandAbuseAct)

ComputerIncidentResponseTeam(CIRT),651–652computermischief,699ComputerOnlineForensicsEvidenceExtractor(COFEE),679computersecurity,introduction

approachestosecuringsystems,13criminalorganizations,10currentthreats,4–7defined,1ethics,14historicalincidents,1–4insiders,9–10intruders,9

minimizingavenuesofattack,12–13nation-states,terrorists,andinformationwarfare,10–11referencematerials,14reviewandQ&A,15–17specificandopportunistictargets,12trends,11–12virusesandworms,8

computersoftwareconfigurationitems,639computertrespass,699COMSEC(communicationssecurity),19concentrators

intrafficmanagement,264VPNconcentrator,266–267

Conficker,4confidentialinformation,46confidentiality

inCIA,20,116–117IPsecand,182–183usesofcryptography,116WEPand,350WTLSand,340

confidentialitymodelsBell-LaPadulamodel,34–35Brewer-Nashmodel,35overviewof,34

configurationbaseline,applicationhardening,444,579configurationcontrol,614–615,640configurationidentification,639configurationitems,639configurationmanagement.Seealsochangemanagement

defined,635

hostsecurity,23phasesof,639–640

configurationstatusaccounting,640configurationstatusauditing,640confusion,secrecyprinciples,120connection-orientedprotocols,228connectionlessprotocols,228connections,forremoteaccessandauthenticationprotocols,330consent,inresponsiblecollectionofPII,719constraineddataitems(CDIs),inClark-Wilsonsecuritymodel,37contactlessaccesscards,197containment,isolatingincidents,661content

antispamfilters,430content-basedsignatures,381content-filteringproxy,270internetcontentfilters,272protectingwithIPsec,324UTMappliancesforinspecting,273websecuritygatewaysmonitoring,271

ContentScrambleSystem(CSS),digitalrightsmanagement,121–122context

context-basedsignaturesinIDSs,381protectingwithIPsec,325

contingencyplanning,589continuousriskmanagement,611–612ControllingtheAssaultofNon-SolicitedPornographyandMarketingAct(CAN-SPAM),514,701–702

controls(countermeasuresorsafeguards)defined,610designingandevaluating,617

ConventiononCybercrime,699–700convergence,200cookiecutterprograms,privacyenhancingtechnologies,730cookies

disabling,550name-valuepairsfordefinedpurposes,547–548usesof,548–550

COPPA(Children’sOnlinePrivacyProtectionAct),722copyrights,digitalrightsmanagement,708–710CoreImpacttoolset,497corporatenetworks.Seealsointranet,242corporatepolicies,BYODconcerns,368–369correctnessofsystem,approachestosecurity,13cost/benefitanalysis,inriskmanagement,626cost-effectivenessmodeling,inriskmanagement,626–627CounterModewithCipherBlockChaining-MessageAuthenticationCodesProtocol(CCMP)

currentsecuritymethods,359inWPA2,355

countermeasures(safeguardsorcontrols)defined,610designingandevaluating,617

CP(certificatepolicy),152CPSs(certificationpracticesstatements)

areasaddressedbyPKIXmodel,169CAsand,131

CRC(cyclicalredundancycheck),analysisofdatastreamforchanges,685credentialmanagement,mobileapplications,371creditcardregulation,703–704criminalorganizations,typesofthreats,10criticalflags,certificateextensionsand,136

criticalinfrastructuresFrameworkforImprovingCriticalInfrastructureCybersecurity,21–22

threatsto,11CRLs(certificaterevocationlists)

certificaterevocation,139–142certificatesuspension,139checkingtoseeifcertificateshavebeenrevoked,145–146distributionofCRLfiles,141–142PKIXstandardand,168–169

CRLSign,X.509digitalcertificateextensions,135cross-certificationcertificates

peer-to-peertrustmodel,158typesofcertificates,137

cross-siterequestforgery(XSRF)inputvalidationand,569overviewof,576–577

cross-sitescriptingattacks,client-side,554cross-sitescripting(XSS)attacks

inputvalidationand,569overviewof,572–573

crossovererrorrate(CER),213–214cryptanalysis

attacksonencryption,486defined,90quantumcryptanalysis,114

CryptographicMessageSyntax(CMS)S/MIMEand,179triple-encapsulatedmessages,180

cryptographyAES(AdvancedEncryptionStandard),105

algorithms,96–97asymmetricencryption,109–110,113blockciphersvs.streamciphers,108Blowfish,107CAST(CarlisleAdamsandStaffordTavares),105–106ciphersuites,117comparativestrengthandperformanceofalgorithms,93CompTIASecurity+ExamObjectives,753–755cryptographicapplications,122–123cryptographicerrorsandfailure,565databaseencryption,123defined,90DES(DataEncryptionStandard),103–105DH(DIffie-Hellman),109–110digitalsignatures,120–121DRM(digitalrightsmanagement),121–122ECC(Ellipticcurvecryptography),112–113ElGamal,111–112ephemeralkeys,118fundamentalmethodsin,92–93hashingfunctions,99–100,102–103historicalperspectiveson,93–94IDEA(InternationalDataEncryptionAlgorithm),107–108import/exportrestrictionson,705–706keyexchange,117–118keymanagement,98keystretching,118–119MD(MessageDigest),101–102nonrepudiationand,117one-timepads,96overviewof,90–92

proventechnologiesfor,123quantumcryptography,113–114randomnumbersand,98,566RC(RivestCipher),106–107reviewandQ&A,124–127RIPEMD(RACEIntegrityPrimitivesEvaluationMessageDigest),101

RSA(Rivest,Shamir,andAdleman),110–111secrecyprinciples,120sessionkeys,118SHA(SecureHashAlgorithm),100–101steganography,114–115substitutionciphers,94–96symmetricencryption,103,108symmetricvs.asymmetric,113transportencryption,120Twofish,107useinCIA,116–117

CSR(certificatesigningrequest),138CSS(ContentScrambleSystem),digitalrightsmanagement,121–122culture,ofriskmanagement,612CVE(CommonVulnerabilitiesandExposures)

application-levelattacks,572MITREsecuritymanagementenumerationsandstandards,578reducingcodevulnerabilities,563

CWE(CommonWeaknessEnumeration)CWE/SANSTop25MostDangerousSoftwareErrors,563–564MITREsecuritymanagementenumerationsandstandards,578reducingcodevulnerabilities,563

cyberkillchain,inincidentresponse,669CyberObservableeXpression(CybOX)

makingsecuritymeasurable,669–670standardsassociatedwithIOCs,669

cybercrimecomputertrespass,699ConventiononCybercrime,699–700currentthreatenvironment,4–5listofcommoncrimeschemes,698overviewof,697–698privacyand,701

cybersecurity,19CybersecurityFrameworkModel,21–22Cyberwar,3CybOX(CyberObservableeXpression)

makingsecuritymeasurable,669–670standardsassociatedwithIOCs,669

cyclicalredundancycheck(CRC),analysisofdatastreamforchanges,685

DDAC(discretionaryaccesscontrol),302DAP(DirectoryAccessProtocol),539DAT(digitalaudiotape),279data

analysisofdatastreams,687CompTIASecurity+ExamObjectives,749–752encryption,438–439ensuringforensicdataisnotmodified,685handlingBigData,440highavailabilityandfaulttolerance,599–600labeling,handling,disposingof,46managingstorageacrossnetwork,255–256

minimizationasmitigationstrategies,658mitigationstrategiesfortheftorloss,615ownership,45,366–367policies,45–47poorsecuritypractices,82securing,439–440storing,440–441unauthorizedsharing,45volatilityof,679websecuritygatewaysprotecting,271

dataatrest,datasecurity,440DataBreachInvestigationsReport(DBIR),Verizon,12databreaches

currentthreatenvironment,6–7privacy,733

DataEncryptionStandard.SeeDES(DataEncryptionStandard)dataintransit,datasecurity,440datainuse,datasecurity,440datalinklayer(Layer2),OSI

bridgesandswitchesoperatingat,257–258EthernetandLayer2addresses,233

datalossprevention(DLP)overviewof,304protectingdatatransfer,272

DataOverCableServiceInterfaceSpecification(DOCSIS),265DataProtectionDirective(EU),721–722dataprotection,Europeanstatutes,728databases

encrypting,123,439NoSQLdatabasevs.SQLdatabase,579

DataEncipherment,X.509digitalcertificateextensions,135

datagramsdefined,225encrypting,327–329IPpackets,226–227

DBIR(DataBreachInvestigationsReport),Verizon,12DCS(distributedcontrolsystems),hardeningSCADAsystems,454DDoS(distributeddenial-of-service)attacks,476–477decentralizedPKIinfrastructures,146–147decisionmaking,riskmanagementas,608decisiontrees,IDSanalysisengineusing,390defaultdeny,fail-safedefaults,25–26defenseindepth

inalternativeenvironments,459overviewof,29–31securityperimeterand,60

degaussingmedia,47deltabackups,592–594demilitarizedzone(DMZ)

diversityofdefense,31overviewof,240–241

demonstrativeevidence,676denial-of-service.SeeDoS(denial-of-service)attacksDepartmentofDefense(DoD),TEMPESTprogram,66–67DepartmentofJustice(DOJ),incidentresponsebestpractices,667–668deprecatedfunctions,566DES(DataEncryptionStandard)

S/MIMEand,178supportedbyWTLS,340symmetricencryptionalgorithm,103–104

designphase,softwaredevelopment,562detection

ofincidents,659–660inoperationalmodelofcomputersecurity,20

developmentlifecycle,softwaredevelopment,560devices

configuringinnetworkhardening,442–443forensics,688GroupPolicyblockingaccessto,451–452infrastructuresecurity,253inlinenetworkdevices,395mobiledevices.Seemobiledevicesnetworksegmentationlimitingcommunicationbetween,457–458removingtoisolateincidents,661–662theft,203–204wirelessdevices,264–265

DH(DIffie-Hellman)IPsecusing,327keyexchange,118overviewof,109–110PGPusing,181S/MIMEv3support,179SSL/TLSusing,533

DHCP(DynamicHostConfigurationProtocol)managingaddressspacewith,266overviewof,238

diagnostics,network,268–269Diameter,314dictionaryattacks,491differentialbackups,592–593differentialcryptanalysis,91DIffie-Hellman.SeeDH(DIffie-Hellman)Diffie,Whitfield,109–110

diffusion,secrecyprinciples,120digitalaudiotape(DAT),279digitalcertificates

inasymmetricencryption,109attributes,135–137CAs(certificateauthorities)and,130–131certificate-basedthreats,160–161certificaterepositories,143classesof,132defined,128,130forestablishingauthenticity,308–309extensions,135–136IPsecusing,327keydestruction,142lifecycle,137overviewof,134–135RAs(registrationauthorities)and,131–132registrationandgeneration,137–138renewal,138–139revocation,139–142stolen,161suspension,139trustandcertificateverification,143–146whattheyare,172

digitalforensics.Seealsocomputerforensics,676digitallineartape(DLT),279DigitalMillenniumCopyrightAct(DMCA),709digitalrightsmanagement(DRM),121–122,708–710digitalsandbox,396DigitalSignatureStandard(DSS),100digitalsignatures

inasymmetricencryption,109–110Canadianlaws,708codesigning,551–552ELGamalusedfor,111Europeanlaws,708overviewof,120–121RSAprotocolusedfor,111servicesprovidedbyS/MIME,179U.N.laws,707–708U.S.laws,707X.509digitalcertificateextensions,135

digitalvideodiscs.SeeDVDs(digitalvideodiscs)directevidence,676direct-sequencespreadspectrum(DSSS),348DirectoryAccessProtocol(DAP),539directoryservices,539–540directorytraversalattacks,575disasterrecovery

alternativebackupsites,596–597backoutplanning,601backupfrequencyandretention,594–596backupstorage,596backupstrategies,592–594backupsand,591–592categoriesofbusinessfunctions,588–589cloudcomputingand,599failureandrecoverytiming,600–601highavailabilityandfaulttolerance,599–600ITcontingencyplanning,589overviewof,587plans,587–588

RAID(RedundantArrayofIndependentDisks),601–602recoverytimeobjectivesandrecoverypointobjectives,591redundancyofspareparts,602–603securerecovery,598–599tabletopexercises,590tests,exercises,andrehearsals,589–590utilityandpowerinterruptions,597–598

disasterrecoveryplan.SeeDRP(disasterrecoveryplan)Discovery,377diskwipeutilities,forcomputerforensics,682disposalanddestructionpolicies,dumpsterdivingand,46–47distinguishednames,X.500standard,144distributedcontrolsystems(DCS),hardeningSCADAsystems,454distributeddenial-of-service(DDoS)attacks,476–477diversityofdefense,31DKIM(DomainKeysIdentifiedMail),517DLP(datalossprevention)

overviewof,304protectingdatatransfer,272

DLT(digitallineartape),279DMCA(DigitalMillenniumCopyrightAct),709DMZ(demilitarizedzone)

diversityofdefense,31overviewof,240–241

DNScachepoisoning,235DNS(DomainNameSystem)

howitworks,236remotepacketdelivery,235

DNSkiting,488DNSpoisoning

attacksonaddresssystem(IPaddresses),488

pharmingattacksand,76DNSspoofingattacks,489DNSBL(DNSblacklisting),515DNSSEC

hardeningWindowsServer2012,415remotepacketdelivery,235

DOCSIS(DataOverCableServiceInterfaceSpecification),265documentaryevidence,676DoD(DepartmentofDefense),TEMPESTprogram,66–67DOJ(DepartmentofJustice),incidentresponsebestpractices,667–668domaincontrollers

hardeningWindowsServer2008,414passwordpolicy,293

DomainNameSystem.SeeDNS(DomainNameSystem)domainpasswordpolicy,293–294DomainKeysIdentifiedMail(DKIM),517domains,settingpasswordsfor,294doors

mantraps,198inphysicalsecurity,195

DoS(denial-of-service)attacksCyberwar,3defendingagainst,476–477distributed,476ICMPexecuting,229,231overviewof,474–475performingwithphysicalaccess,194smurfattacks,476typesofoldschoolattacks,652

drive-bydownloadattacks,494driveimaging,194,683

DRM(digitalrightsmanagement),121–122,708–710DRP(disasterrecoveryplan)

categoriesofbusinessfunctions,588–589comparedwithbusinesscontinuityplan,589overviewof,587–588tests,exercises,andrehearsals,589–590

DSLmodems,265–266DSS(DigitalSignatureStandard),100DSSS(direct-sequencespreadspectrum),348dualcontrol,ofcryptographickeys,150duecare,indefiningreasonablebehavior,53duediligence,indefiningreasonablebehavior,53dueprocess,inguaranteeingindividualrights,54dumpsterdiving

disposalanddestructionpoliciesand,46–47poorsecuritypractices,80–81

duplication,investigationofincidents,665Duqu,5–6DVDs(digitalvideodiscs)

autoplay,201bootdiskattacks,192–194typesofopticalmedia,279–280

DynamicHostConfigurationProtocol(DHCP)managingaddressspacewith,266overviewof,238

dynamicNAT,239

Ee-discovery(electronicdiscovery),computerforensics,689–690e-mail

DKIMdetectingspoofing,517encrypting,517–518firewallsand,505headerandbodyinstructureof,506–508hoaxes,513–514howitworks,505–506hygiene,512maliciouscodeand,510–513MIMEprotocolin,508–509PGP,520–521phishingattacksvia,75reviewandQ&A,526–529S/MIME,179,518–520scanningforviruses,429securityof,509–510SIDFblockingspam,516–517spam,514–516spoofingattacks,480

e-mailusagepolicy,humanresourcespolicies,51EAP(ExtensibleAuthenticationProtocol)

authenticationmechanismsinPPP,318currentsecuritymethods,357overviewof,319–320

EAP-MD5,357–358EAP-TLS,312,357–358EAP-TTLS,357–358EAPOL(ExtensibleAuthenticationProtocoloverLAN),311–312EarlyLaunchAnti-Malware(ELAM),hardeningWindowsServer2012,415

eavesdroppingattacksonSSL/TLS,534

recentadvancesin,67vanEckphenomenon,66–67

ECC(Ellipticcurvecryptography),112–113ECDH(EllipticCurveDiffie-Hellman),110,113ECDHE(EllipticCurveDiffie-HellmanEphemeral),110,119economyofmechanism,SaltzerandSchroeder’seightprinciplesofsecuritydesign,26–27

ECPA(ElectronicCommunicationsPrivacyAct),700–701,702EDH(EphemeralDiffie-Hellman),110,119EDR(enhanceddatarate),344EDRM(ElectronicDiscoveryReferenceModel),689–690EFS(EncryptingFileSystem),123egressfiltering,antispamproducts,431ELAM(EarlyLaunchAnti-Malware),hardeningWindowsServer2012,415

elasticity,hostsand,254–255ElectricPowerGrid,historicalsecurityincidents,4electromagneticeavesdropping,66–67electromagneticinterference(EMI),209–210electronicaccesscontrolsystems

accesstokens,210–211biometrics,211–214doorwaysand,197–198multiple-factorauthentication,214–215smartcards,211

ElectronicCommunicationsPrivacyAct(ECPA),700–701,702ElectronicDiscoveryReferenceModel(EDRM),689–690electronickeyexchange,inRSAprotocol,111electronicmedia,280–281ElectronicPrivacyInformationCenter(EPIC),720ElGamal,111–112

elitehackers,9Ellipticcurvecryptography(ECC),112–113EllipticCurveDiffie-Hellman(ECDH),110,113EllipticCurveDiffie-HellmanEphemeral(ECDHE),110,119embeddedsystems,hardening,455emergencypoweroff(EPO)switches,209EMI(electromagneticinterference),209–210employeehiringandpromotions,humanresourcespolicies,48–49employees

eliminatingaccountsofformer,48mandatoryvacations,49retirement,separation,ortermination,49successionplanning,586–587

EncapsulatingSecurityPayload(ESP)encryptingdataportionofdatagram,327–329IPsec,182–183

enclaves,243–244EncryptingFileSystem(EFS),123encryption

algorithms.Seealgorithmsattackson,486–487cryptographycomparedwith,91dataencryption,438–439exampleofsecuritymethodsworkingagainsteachother,31hardwaredevicesin,437–438howPGPworks,180–181IMprogramslackingsupportfor,523–524import/exportrestrictionson,705–706man-in-the-middleattacksonencryptedtraffic,483–484mobileapplicationsecurity,371–372mobiledevicesecurity,363

PKIand,129privacyand,729S/MIMEservices,178SSLandTLSprotocols,531–536steganographycomparedwith,114–115

encryption,ofe-mailoverviewof,517–518PGP,520–521S/MIME,518–520

end-entitycertificatesPKIXstandardand,168typesofcertificates,136

endpoints,tunnelingprotocols,318enhanceddatarate(EDR),344enhancedsecurityservices(ESS),forS/MIME,179Enigmamachine,94enterprisemanagement,integratedintohost-basedIPS,394entropy,randomnessand,98enumerationattacks,652environmentalcontrols,204environmentalissues

firesuppression,64HVAC(heating,ventilation,andairconditioning),63–64UPS(uninterruptiblepowersupply),64

EphemeralDiffie-Hellman(EDH),110,119ephemeralkeys,118EPIC(ElectronicPrivacyInformationCenter),720EPO(emergencypoweroff)switches,209eradication,isolatingincidents,661errors/exceptionhandling

bugtracking,571–572

cryptographicerrorsandfailure,565exceptionmanagement,22–23language-specificfailures,566softwaredevelopment,568

escalation,incidentresponse,663ESP(EncapsulatingSecurityPayload)

encryptingdataportionofdatagram,327–329IPsec,182–183

ESS(enhancedsecurityservices),forS/MIME,179Ethernet

networkprotocol,224packetdeliveryand,233UTP/STPcable,274–275

ethics,14,710–712Europeanprivacylaws,728–729EVDO(EvolutionDataOptimized)

3Gmobilenetworks,342demandfordataservicesand,339

eventlogs,securitytemplates,453evidence

acquiring,679–681analysisof,684chainofcustody,684identifying,681protecting,681rulesregarding,677standardsfor,676–677storing,682transporting,682typesof,675–676

eviltwinattacks,352

EvolutionDataOptimized(EVDO)3Gmobilenetworks,342demandfordataservicesand,339

evolutionarymodel,softwaredevelopmentprocessmodels,559exceptions.Seeerrors/exceptionhandlingexclusionaryrule,ofevidence,677eXclusiveOR(XOR),useincryptography,97exercises,disasterrecovery,589–590expiration,accountandpassword,297,304exposurefactor,611eXtensibleAccessControlMarkupLanguage(XACML),304ExtensibleAuthenticationProtocol.SeeEAP(ExtensibleAuthenticationProtocol)

extranet,242–243

FFacebook,problemofsharingtoomuchinformation,57FACTA(FairandAccurateCreditTransactionsAct),725fail-safedefaults,SaltzerandSchroeder’seightprinciplesofsecuritydesign,26

FairCreditReportingAct(FCRA),725fakeURL,client-sideattacks,494falsenegatives

IDSs,382physicalaccesscontrols,213–214

falsepositivesIDSs,382physicalaccesscontrols,213–214

FamilyEducationRecordsandPrivacyAct(FERPA),721faulttolerance,269,599–600FC(FibreChannel),247

FCoE(FibreChanneloverEthernet),247FCRA(FairCreditReportingAct),725FDDI(FiberDistributedDataInterface),224FederalInformationProcessingStandardsPublications(FIPS),183FederalTradeCommission.SeeFTC(FederalTradeCommission)fences,inphysicalsecurity,195FERPA(FamilyEducationRecordsandPrivacyAct),721FiberCableCut,4FiberDistributedDataInterface(FDDI),224fiber-opticcable,275–276FibreChannel(FC),247FibreChanneloverEthernet(FCoE),247filepermissions

inMacOSX,422securitytemplatesand,453inUNIX,302

filesharing,IM(instantmessaging)and,523FileTransferProtocol.SeeFTP(FileTransferProtocol)FileTransferProtocolSecure(FTPS),322–323fileviewers,toolsforcomputerforensics,682files

encrypting,439hostforensics,685–687

FileVault,hardeningMacOSX,422filters

antispamproducts,430–431content-filteringproxy,270internetcontentfilters,272MACfiltering,359URLfilters,272

FIPS(FederalInformationProcessingStandardsPublications),183

firesuppressionfiredetection,207–208fireextinguishers,206–207organizationalsecurity,64

firewallsapplicationfirewalls,458auditingfirewallrules,499dealingwithunauthorizedaccess,282e-mailand,505hardeningMacOSX,422howtheywork,261–263integratedintohost-basedIPS,394locationofNIDSrelativeto,384–385next-generationfirewalls,263overviewof,260–261securitymethodsworkingagainsteachother,31softwarefirewalls,435–436webapplicationfirewallsvs.networkfirewalls,264WindowsFirewall,413,436

firmwareupdate,442versioncontrol,458

firstrespondersinforensicinvestigation,679inincidentresponse,660–661

Flame,currentthreatenvironment,5–6flashcards,typesofelectronicmedia,280flatnetworks,243floppydisks

bootdiskattacks,192–194typesofmagneticmedia,278

FOIA(FreedomofInformationAct),720–721footprintingattacks,typesofoldschoolattacks,652forensics.Seealsocomputerforensics

defined,674forensicimages,194,983forensicprograms,682forensicworkstations,681,682makingsecuritymeasurable,669–670

fragmentation,packet,225–226frames,EthernetandFrameRelay,225FrameworkforImprovingCriticalInfrastructureCybersecurity,21–22fraud.SeealsoCFAA(ComputerFraudandAbuseAct),697freespace,systemforensicsand,686FreedomofInformationAct(FOIA),720–721FTC(FederalTradeCommission)

CAN-SPAM(ControllingtheAssaultofNon-SolicitedPornographyandMarketingAct),514

enforcingSafeHarbor,729redflagrules,726roleincomputercrime,699

FTP(FileTransferProtocol)incommunicationbetweenclientandserver,322–323overviewof,540retrievingcertificatesfromrepositories,170

FTPS(FileTransferProtocolSecure),322–323fullbackup,592fulldiskencryption,438–439fullduplexmode,switches,257fuzzing

overviewof,571intestingphaseofsoftwaredevelopment,567–568

usebyhackers,493

Ggames

hardeninggameconsoles,457installingunauthorizedhardwareorsoftware,82

Ganttcharts,toolsforriskmanagement,626Gatekeeperapplication,hardeningMacOSX,422gates,inphysicalsecurity,195gateways,270generalriskmanagementmodel

assetidentification,616controldesignandevaluation,617impactdeterminationandquantification,617residualriskmanagement,618threatassessment,616–617

generators,utilityandpowerinterruptionsand,598geo-tagging,locationservices,370GhostNet,5GLBA(Gramm-Leach-BlileyAct)

governingcollectionofinformation,719overviewof,702–703privacyfeaturesof,724

GlobalPositioningSystem(GPS),364globallyuniqueidentifiers(GUIDs),450GnuPG,123goals,ofincidentresponse,654GPG(GNUPrivacyGuard),123,180GPOs(grouppolicyobjects)

domainpasswordpolicy,293

hardeningWindowsOSs,416systemhardening,450–451

GPS(GlobalPositioningSystem),364Gramm-Leach-BlileyAct.SeeGLBA(Gramm-Leach-BlileyAct)graphicaluserinterfaces(GUIs),418grey-boxtesting,567greylisting,inblockingspam,516GroupPolicy

accesscontrolpolicies,32–33referencingwithGUIDs,450systemhardening,450–452

grouppolicyobjects(GPOs).SeeGPOs(grouppolicyobjects)groups

Administratorsgroup,291auditing,290grouplevelauthentication,291–292overviewof,291–292securitytemplatesrestricting,453

guards,inphysicalsecurity,196guidelines,security,43–44GUIDs(globallyuniqueidentifiers),450GUIs(graphicaluserinterfaces),418

Hhackers/hacking

basicsecurityterminology,19black-hatandwhite-hat,497defined,9pros/consofhiring,48

hacktivistattacks,onspecifictargets,12

halon-basedfiresuppressionsystems,205–206handshake,TCP,228–229handshake,TLS,533harddrives

encryptionservicesof,438toolsforcomputerforensics,682typesofmagneticmedia,278

hardeningapplications.Seeapplications,hardeningdefined,408hosthardening.SeehosthardeningOSs(operatingsystems),240systemhardening.Seesystemhardening

hardwareencryptiondevices,437–438installingunauthorized,81–82securing,436–437

hardwaresecuritymodules(HSMs)hardwareencryptiondevices,438safeguardingcryptographickeys,147–148

hashvaluesindetectingintrusion,411hashingfunctionsand,99

hashingalgorithmsensuringforensicdataisnotmodified,685integrityand,116IPsecusing,327MD(MessageDigest),101–102overviewof,99–100RIPEMD(RACEIntegrityPrimitivesEvaluationMessageDigest),101

SHA(SecureHashAlgorithm),100–101summary,102–103typesofencryptionalgorithms,96

Haystack,377hazards,611HD(high-definition)opticalmedia,280headermanipulation

client-sideattacks,494violatingCAN-SPAMact,701

headersclient-sideattacks,554ine-mailstructure,506–508spamfilteringand,430

HealthInformationTechnologyforEconomicandClinicalHealthAct(HITECH),723–724

HealthInsurancePortabilityandAccountabilityAct(HIPAA),723–724hearsayrule,rulesofevidence,677Heartbleedvulnerability

inOpenSSLcryptography,79passworwwdsand,297

heating,ventilation,andairconditioning.SeeHVAC(heating,ventilation,andairconditioning)

Hellman,Martin,109–110heuristicscanning,antivirusproducts,427–428hexcharacters,570hiddenfiles,systemforensicsand,686HIDSs(host-basedIDSs)

activeandpassive,393advancedcapabilities,393–394advantages/disadvantages,391–393defined,378

overviewof,388–391securitydevices,267

hierarchicaltrustmodel,155–157highavailability,599–600HighSpeedPacketAccess(HSPA)

3Gmobilenetworks,342demandfordataservicesand,339

highlystructuredthreats,informationwarfareas,11hijackingattacks.SeeTCP/IPhijackingHIPAA(HealthInsurancePortabilityandAccountabilityAct),723–724hiringpolicies,48HITECH(HealthInformationTechnologyforEconomicandClinicalHealthAct),723–724

HMAC,IPsecusing,327HMAC-basedOne-TimePassword(HOTP),117hoaxes

e-mail,513–514securityofe-mailand,509socialengineeringattacks,77–78viruses,468

honeynets,397honeypots,396–397host-basedIDSs.SeeHIDSs(host-basedIDSs)hostforensics

filesystems,685–687Linuxmetadata,688overviewof,685Windowsmetadata,687–688

hosthardening,427–430antimalware,426–427antispam,430–431

antispyware,431–432AppLocker,434hardeningMacOSX,421–423hardeningUNIX/LinuxOSs,417–421hardeningWindowsOSs,413–417hardwaresecurity,436–437host-basedfirewalls,435–436host-basedsecuritycontrols,437–440hotfixes,servicepacks,andpatches,423–426machinehardening,411operatingsystemsecurityand,412overviewof,410–411pop-upblockers,432–433softwarebaselining,437TrustedOSs,434–435whitelistingandblacklistingapplications,434WindowsDefender,431–432

hostscalculating,238CompTIASecurity+ExamObjectives,749–752securityapproaches,23virtualizationprovidingavailabilityandelasticity,254–255vulnerabilityscanners,448–449

hotsites,alternativebackupsites,597hotfixes,hosthardening,423–426HOTP(HMAC-basedOne-TimePassword),117HSMs(hardwaresecuritymodules)

hardwareencryptiondevices,438safeguardingcryptographickeys,147–148

HSPA(HighSpeedPacketAccess)3Gmobilenetworks,342

demandfordataservicesand,339HSTS(HTTPStrictTransportSecurity),538–539HTML(HypertextMarkupLanguage),530HTTP(HypertextTransferProtocol)

fordatatransferoverweb,537–539headermanipulation,554Internetservices,242retrievingcertificatesfromrepositories,170webapplicationfirewallsand,264

HTTPStrictTransportSecurity(HSTS),538–539HTTPSEverywhere,538HTTPS(HTTPSecure)

fordatatransferoverweb,537–539SSLand/orTLSusedwith,182webapplicationfirewallsand,264

hubs,257–258humanresourcespolicies,47–53HVAC(heating,ventilation,andairconditioning)

environmentalcontrols,204environmentalissues,63–64hardeningembeddedsystems,455

hybridclouds,284hybrid(mixed)topology,223hybridpasswordattacks,492hybridtrustmodel,159–160HypertextMarkupLanguage(HTML),530HypertextTransferProtocol.SeeHTTP(HypertextTransferProtocol)

IIaaS(InfrastructureasaService)

cloudcomputingand,284overviewof,599

IC3(InternetCrimeComplaintCenter),698ICMP(InternetControlMessageProtocol)

inIPv6,226messagecodes,230–231overviewof,229–231preventingattacksof,476pros/consofblock,231

ICS(industrialcontrolsystems),454IDbadges,211IDEA(InternationalDataEncryptionAlgorithm)

IPsecusing,327PGPand,181SSHand,322symmetricencryptionalgorithms,107–108WTLSsupporting,340

identitymanagement.Seealsoauthentication,305–306identitytheft,725IdentityTheftandAssumptionDeterrence,719IDs.SeeuserIDsIDSs(intrusiondetectionsystems)

activevs.passivetools,402–403bannergrabbing,403–404comparedwithIPSs,396falsenegativesandfalsepositives,382historyof,377–378honeypots/honeynets,396–397host-based.SeeHIDSs(host-basedIDSs)models,379–381network-based.SeeNIDSs(network-basedIDSs)

innetworksecurity,24overviewof,376,378–379portscanner,400–402protocolanalyzers,398–399reviewandQ&A,405–407securitydevices,267securityperimeterand,60signatures,381–382SPAN(SwitchedPortAnalyzer),400tools,398inUTMsystem,272

IE(InternetExplorer).Seealsobrowsers,433IEEE802.11

attacks,350–354overviewof,347–348speedandfrequencyrangesfor802.11family,337variousstandards,348–350wirelessstandard,65

IEEE802.1Ximplementing,357–359remoteaccessmethods,311–312wirelessprotocols,312

IEEE802.3.SeealsoEthernet,233IEEE(InstituteforElectricalandElectronicsEngineers),codeofethics,48IETF(InternetEngineeringTaskForce)

PKIXstandard,134PKIXstandards,168–170S/MIMEstandard,178–179SSL/TLSstandard,532TLSworkinggroup,173

IGMP(InternetGroupManagementProtocol),226

IISmanagementinterface,hardeningWindowsServer2008,414IKE(InternetKeyExchange),175,329ILOVEYOUworm,3,512IM(instantmessaging)

comparedwithe-mail,510modernsystemsfor,524–525overviewof,522–524securing,524

IMAP(InternetMessageAccessProtocol),505impacts

incalculatingrisks,624defined,610determininginriskmanagementmodel,617

implicitdeny,fail-safedefaults,26in-vehiclecomputersystems,hardening,457incidentmanagement

defined,642riskmitigationand,615

incidentresponsecyberkillchainin,669defined,651DOJbestpractices,667–668establishingmanagementteamfor,651–652follow-up/lessonslearned,666–667forensicscomparedwith,675foundationsof,651goalsof,654identificationanddetectionphasesof,659–660implementingsecuritymeasures,658–659initialresponsephase,660–661investigationphase,664–665

IOCs(IndicatorsofCompromise),668–669isolatingincident,661–663metricsforsecurity,669–670NISTstandards,667overviewof,650planninganddeployingstrategies,663–664policiesandprocedures,54,655preparingfor,655–658processof,654–655recovery/reconstitutionprocedures,665–666reportingincident,666reviewandQ&A,671–673typesofattacks,652–654

incidentresponseteam,656–658incidents,defined,651increaseddatacenterdensity,204incrementalbackups,592–593IndicatorsofCompromise(IOCs),artifactsofintrusion,668–669industrialcontrolsystems(ICS),454information

criticalityinplanningincidentresponse,651OECDfairinformationpractices,727personallyidentifiable.SeePII(personallyidentifiableinformation)securitybasics,19

InformationSystemsAuditandControlAssociation(ISACA),612InformationSystemsSecurityAssociation(ISSA),48informationwarfare,10–11infrared(IR),276InfrastructureasaService(IaaS)

cloudcomputingand,284overviewof,599

infrastructure,PKIcentralizedanddecentralized,146–147overviewof,130

infrastructuresecurityBYODconcerns,369cloudcomputing,283–284coaxialcable,274concentrators,264contentandmalwareinspection,273devices,253DLP(datalossprevention),272electronicmedia,280–281fiber-opticcable,275–276firewalls,260–264FrameworkforImprovingCriticalInfrastructureCybersecurity,21–22

hubs,bridges,andswitches,257–258IDSs(intrusiondetectionsystems),267internetcontentfilters,272loadbalancers,269magneticmedia,282–283media,273,281–282mobiledevices,255modems,265–266monitoringanddiagnostics,268–269NAS(NetworkAttachedStorage),255–256networkaccesscontrol,267–268networkcomponents,256NICs(networkinterfacecards),256–257opticalmedia,279–280overviewof,252

PBX(privatebranchexchange),266physicalsecurityconcerns,282–283proxies,270–271removablemedia,277–278removablestorage,256reviewandQ&A,285–287routers,258–259threatstocriticalinfrastructure,11unguidedmedia,276–277URLfilters,273UTM(unifiedthreatmanagement),272–273UTP/STPcable,274–275virtualization,254–255VPNconcentrator,266–267websecuritygateways,271wirelessdevices,264–265

inhouseCAs,152–153initializationvector(IV)

inchosen-plaintextattack,340WEPweaknessbasedon,353–354

injectionattacksclient-sideattacks,494defendingagainst,575typesof,573–574

inlinenetworkdevices,395inlining,552input/outputvalidation,softwaredevelopmentand,568–571insiders

obtaininginsiderinformation,74–75typesofthreats,9–10

instantmessaging.SeeIM(instantmessaging)

InstituteforElectricalandElectronicsEngineers.SeeIEEE(InstituteforElectricalandElectronicsEngineers)

intangibleimpacts,impactdeterminationandquantification,617integeroverflowattacks,493,576IntegratedServicesDigitalNetwork(ISDN),318integrity

inCIA,20ofcode,643–644usesofcryptography,116WTLSand,340

integritymodelsBibamodel,36Clark-Wilsonmodel,36–37overviewof,35

intellectualpropertyrights,708–710interconnectionsecurityagreements(ISAs),59interfaces

GUIs(graphicaluserinterfaces),418securingmanagementinterfaces,443userinterfaceinIDSs,379

Internetcontentfilters,272internetusagepolicy,51networkarchitectures,221overviewof,241–242

InternetControlMessageProtocol.SeeICMP(InternetControlMessageProtocol)

InternetCrimeComplaintCenter(IC3),698InternetEngineeringTaskForce.SeeIETF(InternetEngineeringTaskForce)

InternetExplorer(IE).Seealsobrowsers,433

InternetGroupManagementProtocol(IGMP),226InternetKeyExchange(IKE),175,329InternetMessageAccessProtocol(IMAP),505InternetProtocol.SeeIP(InternetProtocol)InternetSecurityAssociationandKeyManagement(ISAKMP),174–175,327

InternetSmallComputerSystemInterface(iSCSI),247InternetworkOperatingSystem(IOS),Cisco,442InternetworkPacketExchange(IPX),224interoperabilityagreements,58–59interrelationshipdiagrams,toolsforriskmanagement,626intranet

networkarchitectures,221overviewof,242–243

intruderslayeredsecuritypreventing,29–30typesofthreats,9

intrusiondetectionsystems.SeeIDSs(intrusiondetectionsystems)intrusionpreventionsystems.SeeIPSs(intrusionpreventionsystems)investigation

conductingincomputerforensics,682–683phaseofincidentresponse,664–665rigorousnessofmethods,680–681stepsinforensicinvestigation,678

IOCs(IndicatorsofCompromise),artifactsofintrusion,668–669IOS(CiscoInternetworkOperatingSystem),442iOS,hardeningmobiledevices,456IPaddresses,236–238

attackson,487–488DNStranslatingnamesinto,235NATtranslatingprivateaddressesintopublic,238–239

spoofingattacks,480–481IP(InternetProtocol)

datagrams,226–227ICMP,229–231IPv4.SeeIPv4IPv6.SeeIPv6networkprotocol,224overviewof,226TCPvs.UDP,227–229

ipchains,host-basedfirewallsinLinuxOSs,435–436IPcomp(IPPayloadCompressionProtocol),183ipconfigcommand,inDNSpoisoning,489IPsec(IPSecurity)

configurations,325–326DHprotocolusedby,110implementingVPNs,266–267ISAKMPimplementationofkeyexchange,175overviewof,324–325protocols,327–329SAs(securityassociations),325transportandtunnelmodes,182–183

IPSs(intrusionpreventionsystems)comparedwithIDSs,396host-based,394overviewof,394–396inUTMsystem,272

iptables,host-basedfirewallsinLinuxOSs,435–436IPv4

datagrams,227vs.IPv6,231–232,443–444

IPv6

datagrams,227IGMPreplacedbyICMPandMLD,226securityconcerns,232vs.IPv4,443–444

IPX(InternetworkPacketExchange),224IR(infrared),276ISACA(InformationSystemsAuditandControlAssociation),612ISAKMP(InternetSecurityAssociationandKeyManagement),174–175,327

ISAs(interconnectionsecurityagreements),59iSCSI(InternetSmallComputerSystemInterface),247ISDN(IntegratedServicesDigitalNetwork),318iSKORPiTX,3ISO(InternationalOrganizationforStandardization)

implementingsecuritypolicies,184–185OSImodel,224–225

isolationofsystem,approachestosecurity,13ISSA(InformationSystemsSecurityAssociation),48ITcontingencyplanning,589ITorganizations,separationofdutiesin,638IV(initializationvector)

attack,352inchosen-plaintextattack,340WEPweaknessbasedon,353–354

Jjailbreaking,exceedingprivileges,456Java,542–543JavaVirtualMachines(JVMs),543JavaScript,544–545

“Jester,”2jobrotationpolicies,48JVMs(JavaVirtualMachines),543

KKaliLinuxtoolset,496KEA(KeyExchangeAlgorithm),179keystretching

Bcrypt,120overviewof,118–119PBDDF2(Password-BasedKeyDerivationFunction2),119

KeyCertSign,X.509digitalcertificateextensions,135KeyEncipherment,X.509digitalcertificateextensions,135keylogging,attackertechniques,471keys

inasymmetricencryption,109comparingpublicandprivatekeys,130incontemporaryencryption,96–97destroyingkeypairs,142electronickeyexchange,111ephemeralkeys,119exhaustivesearchofkeyspaceinattacksonencryption,487HSMssafeguarding,147–148ISAKMPimplementingkeyexchange,174–175keyarchiving,150keyescrow,118–119,150–151keymanagementandexchangeprotocols,327,329keypairsincontemporaryencryption,96keyrecovery,149–150mobileapplicationsecurity,371

privatekeyprotection,148–149quantumkeydistribution,114sessionkeysinsymmetricencryption,119sharingkeystore,133storingcritical,148insymmetricencryption,103,117–118TPM(TrustedPlatformModule),98weakDESkeys,104

keyspace,comparativestrengthandperformanceofalgorithms,93killcommand,stoppingrunningservicesonUNIXOSs,418Kismet,sniffersusedinattacksonIEEE8082.11,352

LL2TP(Layer2TunnelingProtocol),320–321languagefilters,antispamproducts,430LANs(localareanetworks),221laptops,theftof,201“lastmile”problem,277laws.SeelegalissuesLayer1(physicallayer),OSI,hubsoperatingat,257Layer2(datalinklayer),OSI

bridgesandswitchesoperatingat,257–258EthernetandLayer2addresses,233

Layer2TunnelingProtocol(L2TP),320–321layer3(networklayer),OSImodel,routersoperatingat,258layeredaccess,inphysicalsecurity,197layeredsecurity,defenseindepth,29–30LDAP(LIghtweightDirectoryAccessProtocol)

certificaterepositories,143injectionattacks,574

overviewof,539SSL/TLSfunctionsfor,539–540

LE(LowEnergy),Bluetoothfeatures,345LEAP(LightweightExtensibleAuthenticationProtocol),357leastcommonmechanism,SaltzerandSchroeder’seightprinciplesofsecuritydesign,28

leastprivilegeapplyingtosoftwaredevelopment,563SaltzerandSchroeder’seightprinciplesofsecuritydesign,24–25

LeastSignigicantBit(LSB),steganography,114–115legalissues

BYODconcerns,368–369CAN-SPAM(ControllingtheAssaultofNon-SolicitedPornographyandMarketingAct),701–702

CFAA(ComputerFraudandAbuseAct),701compliancewithsecurity-relatedlaws,56computertrespass,699ConventiononCybercrime,699–700cybercrime,697–698digitalsignaturelaws,706–708DRM(digitalrightsmanagement),708–710ECPA(ElectronicCommunicationsPrivacyAct),700–701GLBA(Gramm-Leach-BlileyAct),702–703import/exportrestrictionsonencryption,705–706internationalprivacylaws.Seeprivacy,internationallawsoverviewof,696PCIDSS(PaymentCardIndustryDataSecurityStandard),703–704primarysourcesoflawsandregulations,698–699privacylaws,703reviewandQ&A,713–715significantU.S.laws,700

SOX(Sarbanes-OxleyAct),703U.S.privacylaws.Seeprivacy,U.S.lawsUSAPatriotAct,702

lessonslearned,incidentresponseand,666–667Levin,Vladimir,2LightweightExtensibleAuthenticationProtocol(LEAP),357linearcryptanalysis,91LinkedIN,57LinuxOSs

forensicsappliedtometadata,688GroupPolicy,32–33hardening,419–421patches,426softwarepackageupdateutility,425

LiveCDs,193,202Lloyd,Timothy,2loadbalancing

faulttolerancefrom,600–601overviewof,269

localareanetworks(LANs),221localregistrationauthorities(LRAs),132–133LocalSecurityPolicyutility(secpol),450locallysharedobjects(LSOs),assecurityorprivacythreat,577locateservice,XKMS,177locationawareness,GroupPolicyproviding,451locationservices,mobiledevices,370lockout,mobiledevicesecurity,363locks

masterkeysand,210physicalaccesscontrols,62,196–197securinghardware,437

logicbombs,471logon

logging,391restrictions(timeofday),295

logsevidence,682logon,391

LongTermEvolution(LTE),comparingwith3Gand4G,342loopprotection,switchesand,258LoveLettervirus,3LowEnergy(LE),Bluetoothfeatures,345Low-Water-Markpolicy,Bibasecuritymodel,36LRAs(localregistrationauthorities),132–133LSB(LeastSignigicantBit),steganography,114–115LSOs(locallysharedobjects),assecurityorprivacythreat,577LTE(LongTermEvolution),comparingwith3Gand4G,342

MMACfiltering,359MACfloodingattacks,258MAC(mandatoryaccesscontrol)

comparingwithMediaAccessControl,234inMacOSX,422overviewof,301

MAC(MediaAccessControl)addresseslocalpacketdelivery,233–234NICsand,256–257packetdeliveryand,233remotepacketdelivery,234–235rogueaccesspointsexploiting,353

MacOSX,hardening,421–423machinehardening,411macroviruses,467–468MACs(messageauthenticationcodes),340magicnumber,forfileidentificationinforensics,687magneticmedia,278–279maildeliveryagent(MDA),506mailrelaying,sendingspamvia,515mailtransferagent(MTA),e-mailagents,506mailuseragent(MUA),e-mailagents,506mainframes,hardening,456–457malware(maliciouscode).Seealsobyindividualtypes

adware,471–472antimalwareproducts,426–427backdoorsandtrapdoors,472–473botnets,471–472browsers,551defenses,473–474

defined,7detectionandprevention,394e-mail,510–513logicbombs,471maliciousadd-ons,551overviewof,466polymorphicmalware,469ransomware,473rootkits,470–471spyware,471Trojanhorses,470UTMappliancesformalwareinspections,273viruses,466–468websecuritygatewaysprotectingagainst,271worms,469

man-in-the-middleattacksdefeatingkeyexchangebyinterceptingkey,97eviltwinattacksand,352overviewof,483–484publickeysand,129sessionhijacking,553SSL/TLS,534,536

ManagedServiceAccounts,hardeningWindowsServer2012,415managementinterfaces,securing,443managementteam,establishingforincidentresponse,651–652mandatoryaccesscontrol.SeeMAC(mandatoryaccesscontrol)MANs(metropolitanareanetworks),221mantraps,preventingtailgating,198masterkeys,locksand,210MaximumTransmissionUnit(MTU),packets,225MBSA(MicrosoftBaselineSecurityAnalyzer),448–450

MD(MessageDigest)MD5ensuringdataisnotmodified,685MD5supportedbyWTLS,340MD5usedforSSL/TLSencryption,533overviewof,101–102

MDA(maildeliveryagent),506MDM(mobiledevicemanagement),363,365meantimebetweenfailures(MTBF),600,624meantimetofailure(MTTF),625meantimetorecovery(meantimetorestore),601meantimetorepair(MTTR),624media

coaxialcable,274disposalanddestructionpolicies,46–47electronicmedia,280–281fiber-opticcable,275–276magneticmedia,282–283opticalmedia,279–280overviewof,273physicalsecurityconcerns,282–283removable,277–278scanningforviruses,428securityconcerns,281–282unguidedmedia,276–277UTP/STPcable,274–275

MediaAccessControladdresses.SeeMAC(MediaAccessControl)addresses

Melissavirus,2–3memorandumofunderstanding(MOUs),interoperabilityagreements,59memorysticks,280mesharchitecture

ofCAs,158–159wirelessnetworks,223

messageauthenticationcodes(MACs),340MessageDigest.SeeMD(MessageDigest)messageencryption,servicesprovidedbyS/MIME,178messageintegrity,usesofcryptography,116metadata

inhostforensics,687–688innetworkforensics,689

metamorphicmalware,466Metasploittoolset,496metrics

makingsecuritymeasurable,669–670training,58

metropolitanareanetworks(MANs),221microSDcards,280MicrosoftBaselineSecurityAnalyzer.SeeMBSA(MicrosoftBaselineSecurityAnalyzer)

MicrosoftManagementConsole(MMC),SecurityTemplatessnap-in,453MicrosoftOutlook,S/MIMEoptionsin,519–520microwavelinks,RFwavesand,277MIDAS(MulticsIntrusionDetectionandAlertingSystem),377MIME(MultipurposeInternetMailExtensions)protocoland,508–509Mimikatztoolset,492MIMO(multiple-inputmultipleoutput)

antennaplacementand,361featuresinIEEE802.11,348–349

misusedetectionmodel,IDSmodels,380mitigation

dataminimizationand,658defined,611

riskmanagement,614–615,628–629Mitnick,Kevin,2MITRE

oncodingvulnerabilities,563makingsecuritymeasurable,669–670securitymanagementenumerationsandstandards,578standardsassociatedwithIOCs,669

MLD(MulticastListenerDiscovery),inIPv6,226MMC(MicrosoftManagementConsole),SecurityTemplatessnap-in,453mobileapplicationsecurity,370–372mobiledevicemanagement(MDM),363,365mobiledevices

applicationsecurity,370–372BYOD(BringYourOwnDevice)concerns,366–370encrypting,439hardening,455–456infrastructuresecurityand,255locationservices,370mobilephones,338–340overviewof,362securing,363–366

models,IDSs,379–381models,riskmanagement

applying,619generalmodel,616–618NISTmodels,618–619SEImodel,618

modems(modulator/demodulator),265–266monitoring

CCTV(closedcircuitTV)for,198–199content,271

networks,268–269,665ports,400

Morriswormbuffer-overflowattacks,575historicalsecurityincidents,2

MOUs(memorandumofunderstanding),interoperabilityagreements,59MTA(mailtransferagent),e-mailagents,506MTBF(meantimebetweenfailures),624MTTF(meantimetofailure),625MTTR(meantimetorepair),624MTU(MaximumTransmissionUnit),packets,225MUA(mailuseragent),e-mailagents,506MulticastListenerDiscovery(MLD),inIPv6,226MulticsIntrusionDetectionandAlertingSystem(MIDAS),377multifactorauthentication,310multipleencryption,3DESasexampleof,104multiple-factorauthentication,214–215multiple-inputmultipleoutput(MIMO)

antennaplacementand,361featuresinIEEE802.11,348–349

MultipurposeInternetMailExtensions(MIME)protocoland,508–509multitasking,hardeningMacOSX,422multpartitenature,ofmalware,466mutualaidagreements,alternativebackupsites,597mutualauthentication,310

NNAC(NetworkAdmissionControl),268NADIR(NetworkAuditDirectorandIntrusionRepair),377NAP(NetworkAccessProtection)

controllingaccesstonetworks,267hardeningWindowsOSs,413–414

NAS(networkaccessserver),312NAS(NetworkAttachedStorage),255–256NAT(NetworkAddressTranslation),238–240,261nation-states

currentthreatenvironment,5–7typesofthreats,10–11

NationalInstituteofScienceandTechnology.SeeNIST(NationalInstituteofScienceandTechnology)

NationalWhiteCollarCrimeCenter(NW3C),698NDP(NetworkDiscoveryProtocol),232nearfieldcommunication(NFC),347needtoknowprinciple

Brewer-Nashmodel,35insecurity,46

Nessus,networkvulnerabilityscanner,448–449NetFlow

collectingnetworkdata,665innetworkforensics,689

NetRanger,monitoringnetworklinks,378NetStumbler,attacksonIEEE802.11,351–352networkaccesscontrol,267–268NetworkAccessProtection(NAP)

controllingaccesstonetworks,267hardeningWindowsOSs,413–414

networkaccessserver(NAS),312NetworkAddressTranslation(NAT),238–240,261NetworkAdmissionControl(NAC),268networkanalyzers.Seesniffers/sniffingNetworkAttachedStorage(NAS),255–256

NetworkAuditDirectorandIntrusionRepair(NADIR),377network-basedIDSs.SeeNIDSs(network-basedIDSs)network-basedintrusiondetection,267NetworkDiscoveryProtocol(NDP),232networkfabric,flatnetworks,243networkhardening

deviceconfiguration,442–443IPv4vs.IPv6,443–444overviewof,441securingmanagementinterfaces,443softwareupdates,442VLANmanagement,443

networkinterfacecards(NICs)overviewof,256–257promiscuousmode,383–384,398

networklayer(layer3),OSImodel,routersoperatingat,258networkoperatingsystems(NOSs),410networkoperationscenter(NOC),268–269networksegmentation,limitingcommunicationbetweendevices,457–458networks/networking

accesscontrol,267–268architectures,221–222CompTIASecurity+ExamObjectives,738–740concentrators,264contentandmalwareinspection,273contentfilters,272datagrams,226–227DLP(datalossprevention),272DMZ(demilitarizedzone),240–241enclaves,243–244extranet,242–243

firewalls,260–264flatnetworks,243forensics,689hubs,bridges,andswitches,257–258ICMP(InternetControlMessageProtocol),229–231IDSs(intrusiondetectionsystems),267Internet,241–242intranet,242–243IPaddressesandsubnetting,236–238IP(InternetProtocol),226IPv4vs.IPv6,231–232loadbalancers,269modems,265–266monitoringanddiagnostics,268–269,665NAT(NetworkAddressTranslation),238–240networktapsbyprotocolanalyzers,399NICs(networkinterfacecards),256–257overviewof,220,256packetdelivery,233–236packets,225–226PBX(privatebranchexchange),266protocols,223–225proxies,270–271reviewandQ&A,248–251routers,258–259securityapproaches,24securitybasics,19securityzones,240TCPvs.UDP,227–229topologies,222–223tunneling,246–247

URLfilters,273UTM(unifiedthreatmanagement),272–273VLANs,244–246VPNconcentrator,266–267vulnerabilityscanners,448websecuritygateways,271wirelessdevices,264–265

next-generationfirewalls,263NFC(nearfieldcommunication),347NICs(networkinterfacecards)

overviewof,256–257promiscuousmode,383–384,398

NIDSs(network-basedIDSs)activeandpassiveNIDSs,387advantages/disadvantages,386–387defined,378overviewof,382–386tools,387–388

NIST(NationalInstituteofScienceandTechnology)definitionofincidentresponse,655DESstandard,104FIPSstandards,183FrameworkforImprovingCriticalInfrastructureCybersecurity,21–22

publicationsrelatedtocomputersecurity,667riskmanagementmodel,618–619

nmapfingerprintingoperatingsystemwith,652portscanners,444

NOC(networkoperationscenter),268–269nonrepudiation

basicsecuritygoals,20usesofcryptography,117X.509digitalcertificateextensions,135

NorthKorea,Sonyhackand,7NoSQLdatabase,vs.SQLdatabase,579NOSs(networkoperatingsystems),410notice,inresponsiblecollectionofPII,719notification,incidentresponseand,663NPP(NoticeofPrivacyPractices),723nslookupcommand,inDNSpoisoning,488–489NTLM(NTLANManager),320nullsessions(WindowsOSs),478NW3C(NationalWhiteCollarCrimeCenter),698

OOakley,keymanagementandexchange,327obfuscation,approachestosecurity,13OCSP(onlinecertificatestatusprotocol),142OECD(OrganizationforEconomicCo-operationandDevelopment),727OFDM(orthogonalfrequencydivisionmultiplexing),348–349oldschoolattacks,651–652OmegaEngineering,2omnidirectionalantennas,359on-boarding/off-boarding,BYODconcerns,368one-timepads,96onlinecertificatestatusprotocol(OCSP),142opendesign,SaltzerandSchroeder’seightprinciplesofsecuritydesign,27–28

openproxy,270–271openrelays,sendingspamvia,515

OpenShortestPathFirst(OSPF),442OpenSystemInterconnectionmodel.SeeOSI(OpenSystemInterconnection)model

OpenVulnerabilityandAssessmentLanguage(OVAL),578OpenWebApplicationSecurityProject(OWASP)

sessionmanagementcheatsheet,22web-basedvulnerabilitiesand,553

OpenIOCstandard,669OpenPGPstandard

alternativestoPGP,180GnuPGandGPG,123

OpenSSLcryptography,79OperationAurora,5OperationBotRoast,3–4OperationNightDragon,7operationalmodelofcomputersecurity,20,72operationalsecurity.Seeorganizationalsecurityoperations,continuityof,587opt-in/opt-outapproachestoprivacy,inU.S.andEurope,727opticalmedia,279–280OrganizationforEconomicCo-operationandDevelopment(OECD),727organizationalsecurity

alertsregardingnewthreatsandsecuritytrends,57–58awarenessandtraining,54–55changemanagementpolicy,44–45compliancewithlaws,bestpracticesandstandards,56CompTIASecurity+ExamObjectives,741–745datapolicies,45–47duecareandduediligence,53dueprocess,54electromagneticeavesdropping,66–67

environmentalissues,63–64firesuppression,64humanresourcespolicies,47–53incidentresponsepoliciesandprocedures,54interoperabilityagreements,58–59overviewof,42physicalaccesscontrols,61–63policies,procedures,standards,andguidelines,43–44policytrainingandprocedures,55preparingforincidentresponse,655–656reviewandQ&A,68–71role-basedtraining,55–56securityperimeter,60–61trainingmetricsandcompliance,58userhabitsin,56–57wirelessnetworksand,65–66

orthogonalfrequencydivisionmultiplexing(OFDM),348–349OSI(OpenSystemInterconnection)model

bridgesandswitchesoperatingatLayer2,257–258hubsoperatingatLayer1,257networkprotocolsand,224–225routersoperatingatLayer3,258

OSPF(OpenShortestPathFirst),442OSs(operatingsystems).Seealsobyindividualoperatingsystem

hardening,240hosthardening,412hostsecurityand,23passivetoolsformapping,402–403systemhardening,409–410trusted,434–435

out-of-bandcommunication,keyexchangeas,118

Outlook,S/MIMEoptionsin,519–520outsourcedCAs,153–154OVAL(OpenVulnerabilityandAssessmentLanguage),578OWASP(OpenWebApplicationSecurityProject)

sessionmanagementcheatsheet,22web-basedvulnerabilitiesand,553

PP2P(peer-to-peer)

alertsregardingnewthreatsandsecuritytrends,57Bluetoothandwirelesscommunication,65networkarchitectures,222trustmodel,158–159

PaaS(PlatformasaService),284packetfiltering,mechanismsfirewallsarebasedon,261–262packetflags,TCP,229packetsniffers.Seesniffers/sniffingpackets

fragmentation,225–226localpacketdelivery,233–234MTU(MaximumTransmissionUnit),225overviewof,225remotepacketdelivery,234–236

PaddingOracleOnDowngradedLegacyEncryption(POODLE)attacks,532

pan,tilt,zoom(PTZ)cameras,199panelantennas,360PANs(personalareanetworks),65PAP(PasswordAuthenticationProtocol),318,320Paretocharts,toolsforriskmanagement,626

paritybits,analysisofdatastreamforchanges,685partitions,systemforensicsand,686partners,on-boarding/off-boarding,49pass-the-hashattacks,492PasswordAuthenticationProtocol(PAP),318,320Password-BasedKeyDerivationFunction2(PBDDF2),119passwords

accesscontrolpolicies,33deviceconfiguration,442–443domainpasswordpolicy,293–294expiration,297guessingattacks,294,490–492hardeningWindowsServer2008,414passwordpolicy,292–293poorsecuritypractices,78–80SSO(singlesign-on),294–295

PAT(PortAddressTranslation),239patches

applicationhardening,444–445applications(programs),579BYODconcerns,367hosthardening,423–426patchmanagement,445–448virtualizationand,254

PaymentCardIndustryDataSecurityStandard(PCIDSS),703–704,725PBDDF2(Password-BasedKeyDerivationFunction2),119PBX(privatebranchexchange),266PCIDSS(PaymentCardIndustryDataSecurityStandard),703–704,725PEAP(ProtectedEAP)

currentsecuritymethods,357PEAP-TLS,312

peer-to-peer.SeeP2P(peer-to-peer)penetrationtests,analysisofsecuritymeasures,44people,roleinsecurity

cleandeskpolicies,83dathandlingand,82dumpsterdiving,80–81hoaxes,77–78installingunauthorizedhardwareorsoftware,81–82obtaininginsiderinformation,74–75overviewof,72passwordselection,78–80phishingattacks,75–76physicalaccess,82–83piggybacking(tailgating),80poorpracticesand,78reversesocialengineering,77reviewandQ&A,86–89securityawarenessand,84shouldersurfing,76–77,80socialengineeringand,73–74SPAM,76trainingprograms,85vishingattacks,76

perfectforwardsecrecy,secrecyprinciples,120perimetersecurity

NIDSsin,383organizationalsecurity,60–61

permissionscompletemediationand,27MacOSXfilepermissions,422formachinesecurity,441

NTFS,297–298reviewingasriskmitigationstrategy,615securitytemplates,453UNIXfilepermissions,302inWindowssecuritymodel,289–290

personalareanetworks(PANs),65personalidentificationnumbers(PINs)

inasymmetricencryption,297shouldersurfingattacksand,77,80

PersonalIdentityVerification(PIV)cards,211PersonalInformationProtectionandElectronicDataAct(PIPEDA),729personallyidentifiableinformation.SeePII(personallyidentifiableinformation)

personnel,successionplanning,586–587PERT(programevaluationandreviewtechnique)charts,626PET(privacyenhancingtechnology),730PGP(PrettyGoodPrivacy)

cryptographicapplications,122encryptinge-mail,520–521howitworks,180–182overviewof,180

pharmingattacksoverviewof,485–486typesofphishingattacks,76

PHI(ProtectedHealthInformation),723phishingattacks

alertsregardingnewthreatsandsecuritytrends,57socialengineeringattacks,75–76typesof,485–486

phones.Seemobiledevices;telecommunicationsPHP,server-sidescripts,547

phreakingbasicsecurityterminology,19hacksonphonesystem,266

physicallayer(Layer1),OSI,hubsoperatingat,257physical(realorassociative)evidence,676physicalsecurity

accessbynon-employees,82–83accesscontrols,61–63,196accesstokens,211–214alarms,199–200attacksrelatedtophysicalaccess,191–194autoplayand,201–202BIOSandUEFI,200–201cameras,198–199convergenceand,200dealingwithunauthorizedaccess,282–283devicetheft,203–204doors,198electronicaccesscontrolsystems,197–198environmentalcontrols,204firedetection,207–208firesuppression,205–207guardsin,196isolationofsystem,13layeredaccess,197locks,196–197multiple-factorauthentication,214–215overviewof,190–191policiesandprocedures,200powerprotection,208–210reviewandQ&A,216–219

sniffingattacksand,479USBdevicesand,201walls,fences,gates,anddoorsin,195

PIA(privacyimpactassessment),731PID(processID),hardeningUNIXOSs,418piggybacking(tailgating),poorsecuritypractices,80PII(personallyidentifiableinformation)

collecting,717notice,choice,andconsent,719overviewof,717–718searchingforyourown,718

pingofdeath,386pingofdeath(POD),475pingsweep,231PINs(personalidentificationnumbers)

inasymmetricencryption,297shouldersurfingattacksand,77,80

PIPEDA(PersonalInformationProtectionandElectronicDataAct),729PIV(PersonalIdentityVerification)cards,211PKCs(PublicKeyCertificates),168–169PKCS(PublicKeyCryptographyStandards)

overviewof,170–171PKCS#1attack,341assubsetofRSASecurity,168

PKI(publickeyinfrastructure)centralizedanddecentralizedinfrastructures,146–147certificateattributes,135–137certificateauthorities,130–131certificate-basedthreats,160–161certificateextensions,135–136certificatekeydestruction,142

certificatelifecycle,137certificateregistrationandgeneration,137–138certificaterenewal,138–139certificaterepositories,143certificaterevocation,139–142certificatesuspension,139combiningtypesofPKIs,154–155CSR(certificatesigningrequest),138digitalcertificates,134–135hierarchicaltrustmodel,155–157HSMs(hardwaresecuritymodules),147–148hybridtrustmodel,159–160inhouseCAs,152–153keyescrow,150–151keyrecovery,149–150LRAs(localregistrationauthorities),132–133OCSP(onlinecertificatestatusprotocol),142outsourcedCAs,153–154overviewof,128–130peer-to-peertrustmodel,158–159privatekeyprotection,148–149publicCAs,151–152RAs(registrationauthorities)and,131–132reviewandQ&A,162–165trustandcertificateverification,143–146trustmodelsand,155–157

PKI(publickeyinfrastructure),protocolsCC(CommonCriteriaforInformationTechnologySecurity),184ciphersuites,174CMP(CertificateManagementProtocol),176FIPS(FederalInformationProcessingStandardsPublications),183

HTTPS(HTTPSecure),182IPsec(IPSecurity),182–183ISAKMP(InternetSecurityAssociationandKeyManagement),174–175

ISO/IEC27002,184–185overviewof,166–168PGP(PrettyGoodPrivacy),180–182PKCS(PublicKeyCryptographyStandards),170–171PKIX(PKIX.509),169–170reviewandQ&A,186–189S/MIME(Secure/MultipurposeInternetMailExtensions),178–180SSL/TLS(SecureSocketsLayer/TransportLayerSecurity),173–174WTLS(WirelessTransportLayerSecurity),184X.509,172XKMS(XMLKeyManagementSpecification),176–178

PKIX(PKIX.509)CMP(CertificateManagementProtocol),176digitalcertificates,134majorareasaddressedby,169–170modelillustrated,168

plaintextattacksonencryption,486encryptingintociphertext,90historicalperspectivesoncryptography,94

plansbusinesscontinuity,585contingencyplanning,589disasterrecovery,587–588

PlatformasaService(PaaS),284PMI(privilegemanagementinfrastructure),170POD(pingofdeath),475

Point-to-PointProtocol(PPP),317–318Point-to-PointTunnelingProtocol(PPTP),318–319policies

accesscontrolpolicy,32–33BYODconcerns,368–369changemanagementpolicy,44–45cleandeskpolicies,83datapolicy,45–47defined,43developing,43–44domainpasswordpolicy,293–294enforcing,410firewallpolicy,260–261groups.SeeGroupPolicyhumanresourcespolicy,47–53incidentresponsepolicy,54,655ISO/IEC27002inimplementationof,184–185passwordpolicy,292–293physicalsecurity,200privacypolicy,52–53,730softwarerestrictive,434trainingand,55

policycertificates,137policylifecycle,43polymorphicmalware,466,469POODLE(PaddingOracleOnDowngradedLegacyEncryption)attacks,532

poorsecuritypracticescleandeskpolicies,83datahandlingand,82dumpsterdiving,80–81

installingunauthorizedhardwareorsoftware,81–82overviewof,78passwordselection,78–80physicalaccess,82–83piggybacking(tailgating),80shouldersurfing,80

pop-upblockers,432–433POP3(PostOfficeProtocolversion3),505PortAddressTranslation(PAT),239portmirroring,byprotocolanalyzers,399–400portmonitoring,400portscanners

nmap,402overviewof,400–402viewingopenservices,444

portscans,usingNIDS,386ports,forremoteaccessandauthenticationprotocols,330PostOfficeProtocolversion3(POP3),505power

GroupPolicyprovidingpowermanagement,451protection,208–210recoveringfrompowerinterruptions,597–598Wi-Fipowerlevels,361

PPP(Point-to-PointProtocol),317–318PPTP(Point-to-PointTunnelingProtocol),318–319PrettyGoodPrivacy.SeePGP(PrettyGoodPrivacy)prevention

ofdataloss.SeeDLP(datalossprevention)ofICMPattacks,476ofintruderswithlayeredsecurity,29–30ofintrusions.SeeIPSs(intrusionpreventionsystems)

inoperationalmodelofcomputersecurity,20stepsadministratorscantake,13ofSYNfloodattacks,477oftailgating,198

primenumbersuseinDHprotocol,110useinRSAprotocol,111

printing,location-based,452privacy

BYODconcerns,368compliancesteps,730cybercrimeand,701databreaches,733encryptionand,729notice,choice,andconsent,719overviewof,716–717PET(privacyenhancingtechnology),730PIA(privacyimpactassessment),731PII(personallyidentifiableinformation),717–718policies,52–53,730reviewandQ&A,734–736sensitivePII,718useractionsand,732–733webissues,731–732

PrivacyActof1974,719–720privacyenhancingtechnology(PET),730privacyimpactassessment(PIA),731privacy,internationallaws

Asianlaws,729–730Canadianlaws,729Europeanlaws,728–729

OECD(OrganizationforEconomicCo-operationandDevelopment),727

overviewof,727privacy,U.S.laws

CaliforniaSenateBill1386(SB1386),724CFAA(ComputerFraudandAbuseAct),721–722COPPA(Children’sOnlinePrivacyProtectionAct),722FACTA(FairandAccurateCreditTransactionsAct),725FCRA(FairCreditReportingAct),725FERPA(FamilyEducationRecordsandPrivacyAct),721FOIA(FreedomofInformationAct),720–721GLBA(Gramm-Leach-BlileyAct),724HIPAA(HealthInsurancePortabilityandAccountabilityAct),723–724

overviewof,719–720PCIDSS(PaymentCardIndustryDataSecurityStandard),725PrivacyActof1974,720U.S.bankingrulesandregulations,724–725VPPA(VideoPrivacyProtectionAct),722–723

privateaddressspace,RFC1918,237privatebranchexchange(PBX),266privateclouds,283privatekeys

howPGPworks,180protecting,148–149publickeyscomparedwith,130

privilegemanagementinfrastructure(PMI),170privileges

defined,288escalation,652jailbreaking,456

leastprivilege,24–25managing,288–289separationofprivilege,25–26usinglow-privilegemachinetoaccesssensitiveinformation,191WindowsOSs,298–300

procedures,55defined,43developing,43–44incidentresponse,54physicalsecurity,200

processID(PID),hardeningUNIXOSs,418processmodels,forsoftwaredevelopment,559–560productionsystems,patching,446productivity,websecuritygatewaysmonitoring,271programevaluationandreviewtechnique(PERT)charts,626programs.Seeapplicationspromiscuousmode,NICsand,383–384,398promotions,humanresourcespolicies,48proofofpossession,publickeys,138ProtectedEAP(PEAP)

currentsecuritymethods,357PEAP-TLS,312

ProtectedHealthInformation(PHI),723protection,inoperationalmodelofcomputersecurity,20protectionrings,OSsecurityand,410protocolanalyzers.Seealsosniffers/sniffing,398–399protocols,network,223–225proxies

applicationlayer,262–263proxyattacks,270–271proxyservers,270

SSL/TLS,535prudentpersonprinciple,53pscommand,viewingrunningservicesonUNIXOSs,418PSTN(publicswitchedtelephonenetwork),60psychologicalacceptability,SaltzerandSchroeder’seightprinciplesofsecuritydesign,29

PTZ(pan,tilt,zoom)cameras,199publicCAs

choosingbetweenpublicandin-houseCAs,152–153outsourcedCAscomparedwith,153overviewof,151–152

publicclouds,284PublicKeyCertificates(PKCs),168,169publickeycryptography.SeeasymmetricencryptionPublicKeyCryptographyStandards.SeePKCS(PublicKeyCryptographyStandards)

publickeyinfrastructure.SeePKI(publickeyinfrastructure)publickeys

certificaterepositories,143CSR(certificatesigningrequest),138howPGPworks,180man-in-the-middleattacks,129privatekeyscomparedwith,130proofofpossession,138

publicswitchedtelephonenetwork(PSTN),60publicWi-Fi,securing,362

QQA(qualityassurance),changemanagementand,635Qakbotworm,isolating,662QCs(QualifiedCertificates),170

qualitativeriskassessmentaddingobjectivityto,621–622comparingwithquantitativeassessment,625defined,611overviewof,620–621

qualityassurance(QA),changemanagementand,635quantitativeriskassessment

defined,611overviewof,621

quantumcryptanalysis,114quantumcryptography,113–114quantummechanics,113–114quarantine,isolatingincidents,661

RRACEIntegrityPrimitivesEvaluationMessageDigest(RIPEMD),101radiofrequency.SeeRF(radiofrequency)RADIUS(RemoteAuthenticationDial-InUserService)

accounting,314authentication,312–314authorization,314overviewof,312remoteaccessvulnerabilities,329–330

RAID(RedundantArrayofIndependentDisks),601–602rainbowtables,102randomnumbers

cryptographyand,566usewithencryptionalgorithms,98

ransomware,473RapidSpanningTreeProtocol(RSTP),243

RAs(registrationauthorities)local,132–133overviewof,131–132PKIXstandardand,168servicesprovidedby,129

RAS(remoteaccessserver),305RATs(remoteaccesstrojans),496,653RBAC(role-basedaccesscontrol),303RBL(Real-timeBlackholeList),515RC(RivestCipher)

IEEE802.11attacksonRC4,353RC4usedforconfidentialityinWEP,350RC4usedforSSL/TLSencryption,533RC5supportedbyWTLS,340versionsof,106–107

RDP(RemoteDesktopProtocol),322real(associativeorphysical)evidence,676Real-timeBlackholeList(RBL),515realtime,HIDSsoperatingin,388reciprocalsites,alternativebackupsites,597records,securitytrainingand,58recoveryagent,150recoverypointobjectives(RPOs)

disasterrecovery,591failureandrecoverytiming,601

recovery/reconstitutionprocedures,incidentresponse,665–666recoverytimeobjectives(RTO),disasterrecovery,591redflagrules,FTC,726redundancy

RAID(RedundantArrayofIndependentDisks),601–602ofspareparts,602–603

referencemonitor,enforcingsecuritypolicies,410registrationauthorities.SeeRAs(registrationauthorities)registry

forensicartifactsin,687–688securitytemplatesand,453

regulations,primarysourcesof.Seealsolegalissues,698–699rehearsals,disasterrecovery,589–590releasecontrol,635releasemanagement,641relevantevidence,standardsofevidence,677remediationactions,afterattacks,684remoteaccess

accesscontrol,311authentication,306–310authorization,310–311connections,330filetransferprotocols,322–323identificationin,305–306IEEE802.1X,311–312IPsec(IPSecurity),324–329keyissueformultiusersystems,289methods,312–314processof,305reviewandQ&A,331–335TACAS+(TerminalAccessControllerAccessControlSystem+),314–317

vulnerabilities,329–330remoteaccessserver(RAS),305remoteaccesstrojans(RATs),496,653RemoteAuthenticationDial-InUserService.SeeRADIUS(RemoteAuthenticationDial-InUserService)

RemoteDesktopProtocol(RDP),322remoteprocedurecall(RPC),568remotewiping,mobiledevicesecurity,363removablemedia

electronicmedia,280–281encrypting,439magneticmedia,278–279opticalmedia,279–280overviewof,277–278

removablestoragemobiledevicesecurityand,366overviewof,256

renewal,digitalcertificates,138–139replayattacks,484reports

inIDSs,379incidentresponse,666

requirementsphase,softwaredevelopment,561–562residualriskmanagement,618response,inoperationalmodelofcomputersecurity,20retention,auditing,499retrievalmethod,XKMS,177reverseproxy,271reversesocialengineering,77revocation,digitalcertificates,139–142RF(radiofrequency)

antennaplacementand,360sitesurveystestingforRFinterference,361unguidedmedia,277

RFC1918,privateaddressspace,237Rifkin,StanleyMark,74–75

rightsauditinguserrights,498reviewingasriskmitigationstrategy,615securitytemplatescontrollingsettings,453WindowsOSs,289,298–300

Rijndael,AESbasedon,105Ringpolicy,Bibasecuritymodel,36ringtopology,networktopologies,222RIP(RoutingInformationProtocol),442RIPEMD(RACEIntegrityPrimitivesEvaluationMessageDigest),101risks/riskmanagement

acceptance,625assessment,586avoidance,transference,acceptance,mitigation,anddeterrence,628–629

bestpractices,627–629businessrisks,613calculations,622–625cost-effectivenessmodeling,626–627cultureof,612generalriskmanagementmodel,616–618internationalbankingexample,609–610mitigationstrategies,614–615models,619NISTmodels,618–619overviewof,608–609qualitativeandquantitativeassessment,620–622,625reviewandQ&A,630–633SEI(SoftwareEngineeringInstitute)model,618technologyrisks,613–614tools,625–626

vocabulary,610–611whatitis,611–612

RivestCipher.SeeRC(RivestCipher)Rivest,Ron,106–107,110–111Rivest,Shamir,andAdleman(RSA)algorithm.SeeRSA(Rivest,Shamir,andAdleman)algorithm

rlogincommand,Telnet,321roadappleattacks,193rogueaccesspoints

unauthorizedaccessvia,82useforattacksonIEEE802.11,352–353

roguedevice,detectionof,234roguemodems,war-dialingand,477roles

hardeningWindowsServer2008,414managingaccessby,292role-basedaccesscontrol(RBAC),303role-basedtraining,55–56

rootaccount,specialuseraccounts,290rootCA,172rootkits,470–471rounds,DES,104routers/routing,235

infrastructuresecurity,258–259softwareupdates,442

RoutingInformationProtocol(RIP),442RPC(remoteprocedurecall),568RPOs(recoverypointobjectives)

disasterrecovery,591failureandrecoverytiming,601

RSA(Rivest,Shamir,andAdleman)algorithm

overviewof,110–111PGPusing,181PKCS#1attackand,341SSHand,322SSL/TLSusing,533

RSASecurityPKCSassubsetof,168PKCS(PublicKeyCryptographyStandards),170–171S/MIMEstandard,178,518

RSTP(RapidSpanningTreeProtocol),243RTO(recoverytimeobjectives),disasterrecovery,591rule-based

accesscontrol,303antivirusproducts,428

runlevels,hardeningUNIXOSs,418Russia

nation-statehacking,7powergridattacksand,4

SS/MIME(Secure/MultipurposeInternetMailExtensions)

CMStriple-encapsulatedmessages,180encryptinge-mail,518–520historyof,178–179overviewof,178specificationsinversion3,179

SaaS(SoftwareasaService)cloudcomputingand,284DRM(digitalrightsmanagement)and,122

SafeHarbor,dataprotection,728–729

SAFECode(SoftwareAssuranceForumforExcellenceinCode),560safeguards(controlsorcountermeasures)

defined,610designingandevaluating,617

Saltzer,Jerome,24SAML(SecurityAssertionMarkupLanguage),185sandboxing

digitalsandbox,396exampleofleastcommonmechanism,28virtualizationand,255

SANs(storageareanetworks)networkarchitectures,221overviewof,247storingdata,441

Sarbanes-OxleyAct(SOX),637,703SAs(securityassociations)

IPsec,325ISAKMP,175

SaudiAramco,6SB1386(CaliforniaSenateBill1386),724SCA(StoredCommunicationsAct),700SCADA(supervisorycontrolanddataacquisition),454scanningattacks,486,652Schneider,Bruce,107Schroeder,Michael,24SCM(SecurityComplianceManager),416screenlocks,mobiledevicesecurity,363–364scriptkiddies,9scriptinglanguages,JavaScript,544–545scripts,server-side,547SDcards,280

SDL(securedevelopmentlifecycle)modelsecurecodingconcepts,568softwaredevelopmentprocessmodels,559–560

secrecyprinciples,120secretinformation,classificationof,46Section404controls,Sarbanes-OxleyAct,703SecureBoot,hardeningWindowsServer2012,414–415securedevelopmentlifecycle(SDL)model

securecodingconcepts,568softwaredevelopmentprocessmodels,559–560

SecureFileTransferProtocol(SFTP),322–323,540–541SecureKeyExchangeMechanismforInternet(SKEMI),327Secure/MultipurposeInternetMailExtensions.SeeS/MIME(Secure/MultipurposeInternetMailExtensions)

securerecovery.Seealsodisasterrecovery,598–599SecureShell.SeeSSH(SecureShell)SecureSocketsLayer.SeeSSL(SecureSocketsLayer)securityapproaches

hostsecurity,23networksecurity,24overviewof,23

SecurityAssertionMarkupLanguage(SAML),185securityassociations(SAs)

IPsec,325ISAKMP,175

securityawarenessprogramsforemployees,84trainingfor,54–55

SecurityComplianceManager(SCM),416securityconcepts

accesscontrol,31–32

authentication,32Bell-LaPadulamodel,34–35Bibamodel,36Brewer-Nashmodel,35CIA(confidentiality,integrity,andavailability),20Clark-Wilsonmodel,36–37completemediation,27computersecurity,19confidentialitymodels,34configurationmanagement,23CybersecurityFrameworkModel,21–22defenseindepth,29–31diversityofdefense,31economyofmechanism,26–27exceptionmanagement,22–23fail-safedefaults,26GroupPolicy,32–33hostsecurity,23integritymodels,35leastcommonmechanism,28leastprivilege,24–25networksecurity,24opendesign,27–28operationalmodelofcomputersecurity,20overviewof,19passwordpolicy,33psychologicalacceptability,29reviewandQ&A,38–41securityapproaches,23ofsecuritymodels,33–34securityprinciples,24

securitytenets,22securityterminology,19separationofprivilege,25–26sessionmanagement,22

securitycontrolsABAC(attribute-basedaccesscontrol),303–304accountexpirationand,304ACLs(accesscontrollists),300–301inalternativeenvironments,459DAC(discretionaryaccesscontrol),302DLP(datalossprevention),304host-based,437–440MAC(mandatoryaccesscontrol),301permissions,297–298RBAC(role-basedaccesscontrol),303reviewandQ&A,331–335rule-basedaccesscontrol,303userrightsandprivileges,298–300

securitykernel,enforcingsecuritypolicies,410securitylayers,inhardening,458securitymodels

Bell-LaPadulamodel,34–35Bibamodel,36Brewer-Nashmodel,35Clark-Wilsonmodel,36–37confidentialitymodels,34integritymodels,35overviewof,33–34

securityperimeter.Seeperimetersecuritysecuritypolicies.Seepoliciessecurityprinciples(SaltzerandSchroeder)

completemediation,27defenseindepth,29–31diversityofdefense,31economyofmechanism,26–27fail-safedefaults,26leastcommonmechanism,28leastprivilege,24–25opendesign,27–28overviewof,24psychologicalacceptability,29separationofprivilege,25–26

securitytemplates,systemhardening,452–453securitytenets

configurationmanagement,23exceptionmanagement,22–23sessionmanagement,22

securityterminologyCIA(confidentiality,integrity,andavailability),20computersecurity,19CybersecurityFrameworkModel,21–22operationalmodelofcomputersecurity,20overviewof,19

securitythroughobscurity,28securityzones

conduitsand,246DMZ(demilitarizedzone),240–241enclaves,243–244extranet,242–243flatnetworks,243Internet,241–242intranet,242–243

overviewof,240VLANs(virtualLANs),244–245

SEI(SoftwareEngineeringInstitute)CMMImodels,644–645continuousriskmanagement,611–612riskmanagementmodel,618

self-certifying,rootCA,172self-signedcertificates,hierarchicaltrustmodeland,157SenderIDFramework(SIDF),blockingspamine-mail,516–517sensors,inNIDSs,384separationofduties

changemanagementand,637–638inClark-Wilsonsecuritymodel,37dualcontrol,150identifying,642overviewof,25–26

separationofprivilege,SaltzerandSchroeder’seightprinciplesofsecuritydesign,25–26

sequencenumbers,spoofingattacksand,481–482serverfarms,faulttolerancefrom,601servers

antivirussoftwarefor,429client/serverarchitectures,222hardening,411HTTPandHTTPSfordatatransfer,537–539infrastructuresecurity,253server-sidescripts,547server-sidevs.client-sidevalidation,579–580

servicelevelagreements(SLAs)cloudcomputingand,599interoperabilityagreements,59

servicepacks,hosthardening,423–426servicesetidentifiers(SSIDs)

featuresinIEEE802.11,349identifyingrogueaccesspoints,353

servicessecuritytemplatescontrollingsettings,453turningoffunneeded,411,417,443

sessionhijackingattacks.SeealsoTCP/IPhijacking,553sessionkeys,insymmetricencryption,118sessionmanagement,22SET(Social-EngineeringToolkit),496SFTP(SecureFileTransferProtocol),322–323,540–541SHA(SecureHashAlgorithm)

ensuringdataisnotmodified,685usedforSSL/TLSencryption,533versionsof,100–101WTLSsupport,340

shadowfiles,hardeningUNIXOSs,418–419Shamir,Adi,110–111Shamoon,6Shannon,Claude,120sharedsecret,symmetricencryptionand,103shieldedtwistedpair(STP)cable,274–275shiftciphers,94shouldersurfing

poorsecuritypractices,80socialengineeringattacks,76–77

side-jackingattacks,553SIDF(SenderIDFramework),blockingspamine-mail,516–517SignalingSystem7(SS7),224signature-basedscanning,antivirusproducts,427

signaturedatabaseinHIDSs,389inIDSs,379inNIDSs,384

signaturesdigital.SeedigitalsignaturesIDSs,381–382inIPSs,394

signedapplets,551–552SimpleMailTransferProtocol(SMTP),417SimpleNetworkManagementProtocol.SeeSNMP(SimpleNetworkManagementProtocol)

SimpleSecurityRule,inBell-LaPadulasecuritymodel,34simplicity,economyofmechanism,26–27singlelossexpectancy(SLE),incalculatingrisks,611,622–624singlepointoffailure

highavailabilityand,600removing,586

singlesign-on(SSO),294–295sitesurveys,Wi-Fi,361–362SKEMI(SecureKeyExchangeMechanismforInternet),327slackspace,systemforensicsand,686Slammerworm,3,575SLAs(servicelevelagreements)

cloudcomputingand,599interoperabilityagreements,59

SLE(singlelossexpectancy),incalculatingrisks,611,622–624smartcards,280smartphones,339SMTP(SimpleMailTransferProtocol)

controllingport25onmailservers,514

e-mailprotocols,505UNIXbaselinesand,417

smurfattacks,480–481SNA(SystemsNetworkArchitecture),224snapshots,virtualmachines,254sniffers/sniffing

checkingownconnections,539observingnetworktrafficforunauthorizedaccess,282overviewof,479useforattacksonIEEE802.11,352

SNMP(SimpleNetworkManagementProtocol)changingcommunitystrings,443interoperabilityand,269managingrouters,259managingswitches,258softwareupdatesand,442

Snort,NIDStools,387–388socialengineering

hoaxes,77–78obtaininginsiderinformation,74–75overviewof,73–74phishingattacks,57,75–76reversesocialengineering,77shouldersurfing,76–77spam,76typesofattacks,478vishingattacks,76

Social-EngineeringToolkit(SET),496socialmedia/socialnetworking

alertsregardingnewthreatsandsecuritytrends,57humanresourcespolicies,49

wormsand,469software.Seealsoapplications

baselinesofhostsoftware,437,448–449changecontrolworkflow,641changemanagementand,636exploits,492–493host-basedfirewalls,435–436installingunauthorized,81–82patches,4,13,426updates,425,442,473versionsandchangemanagement,636whitelistingandblacklisting,434

SoftwareasaService(SaaS)cloudcomputingand,284DRM(digitalrightsmanagement)and,122

SoftwareAssuranceForumforExcellenceinCode(SAFECode),560softwaredevelopment,558

applicationattacks,572applicationconfigurationbaseline,579applicationhardening,578–579applicationpatchmanagement,579arbitrary/remotecodeexecution,578attachmentsasattackvector,577buffer-overflowattacks,575–576bugtracking,571–572client-sideattacks,577codingphase,562–566designphase,562error/exceptionhandling,568fuzzing,571injections,573–575

input/outputvalidation,568–571integeroverflowattacks,576LSOs(locallysharedobjects),577NoSQLdatabasevs.SQLdatabase,579OVAL(OpenVulnerabilityandAssessmentLanguage),578processmodelsfor,559–560requirementsphase,561–562reviewandQ&A,581–583securecodingconcepts,568securingdevelopmentlifecycle,560server-sidevs.client-sidevalidation,579–580softwareengineeringprocess,559testingphase,567–568threatmodelingandattacksurfaceareaminimization,560–561XSRF(cross-siterequestforgery),576–577XSS(cross-sitescripting)attacks,572–573zero-dayvulnerabilities,577

SoftwareEngineeringInstitute.SeeSEI(SoftwareEngineeringInstitute)softwareengineeringprocess,559SoftwareRestrictivePolicies(SRP),434solidstatedrives(SSDs)

forensicsand,688overviewof,281

Sonyhack,6–7SOX(Sarbanes-OxleyAct),637,703spam

antispamproducts,430–431e-mailand,514–516overviewof,484SIDF(SenderIDFramework)blocking,516–517socialengineeringattacks,76

SpamURIReal-timeBlockLists(SURBL),inblockingspam,516SPAN(SwitchedPortAnalyzer)

IDSssupporting,399overviewof,400

SpanningTreeProtocol(STP),243,258spareparts,redundancyof,602–603spearphishingattacks,75,485SPF(SenderPolicyFramework)record,inblockingspam,517spimattacks,76,485spiralmodel,softwaredevelopment,559spoliation,alteringdigitalevidence,676,680spoofingattacks

DKIM(DomainKeysIdentifiedMail)detectinge-mailspoofing,517e-mailspoofing,480IPaddressspoofing,480–481overviewof,480sequencenumbersand,481–482trustedrelationshipsand,481

SPR(systemproblemreport),643spyware

antispywareproducts,431–432overviewof,471

SQLdatabase,579SQLinjectionattacks,573–574SQLSlammer,572SRP(SoftwareRestrictivePolicies),434SS7(SignalingSystem7),224SSDs(solidstatedrives)

forensicsand,688overviewof,281

SSH(SecureShell)

DHprotocolusedby,110securingnetworkfunctions,321–322STFPusing,540

SSIDs(servicesetidentifiers)featuresinIEEE802.11,349identifyingrogueaccesspoints,353

SSL(SecureSocketsLayer)DHprotocolusedby,110disabling,174howSSL/TLSworks,532–536HTTPSusing,182interactingwithPKIandcertificates,173overviewof,531–532POODLE(PaddingOracleOnDowngradedLegacyEncryption)attacks,532

SSLstrippingattacks,538SSL/TLSfunctionsforLDAPservices,539–540

SSO(singlesign-on),294–295standards.Seealsobyindividualtypes

compliancewithsecurity-related,56defined,43developing,43–44

starproperty(*-property),enforcedbyBell-LaPadula,34–35startopology,networktopologies,222STARTTLSmethod,e-mailprotocolsand,505stateofcompromise,incidentresponse,667statefulpacketfiltering,261–262staticNAT,239statutorylaws,698steganography,114–115STIX(StructuredThreatInformationeXpression),669–670

storageauditing,498backups,596managingdatastorageacrossnetwork,255–256removable,256

storageareanetworks(SANs)networkarchitectures,221overviewof,247storingdata,441

storagesegmentationBYODconcerns,367mobiledevicesecurityand,364–365

StoredCommunicationsAct(SCA),700STP(shieldedtwistedpair)cable,274–275STP(SpanningTreeProtocol),243,258streamciphers

RC4streamcipher,107,350,353vs.blockciphers,104,108

streams,forensictoolsanalyzingonWindowssystems,687stringhandling,buffer-overflowand,569StructuredThreatInformationeXpression(STIX),669–670structuredthreats,criminalorganizationsin,10Stuxnetattack,5–6,454subnetmasks,236subnetting,236–238substitutionciphers,92,94–96successionplanning,businesscontinuityand,586–587sufficientevidence,standardsofevidence,677superuser,specialuseraccounts,290supervisorycontrolanddataacquisition(SCADA),454SURBL(SpamURIReal-timeBlockLists),inblockingspam,516

Suricata,NIDStools,387–388surveillance

CCTV(closedcircuitTV)for,198–199physicalaccesscontrols,62

suspension,digitalcertificates,139SwitchedPortAnalyzer(SPAN)

IDSssupporting,399overviewof,400

switchesloopprotection,258overviewof,257–258

symmetricencryptionAES(AdvancedEncryptionStandard),105asymmetricencryptioncomparedwith,113blockciphersvs.streamciphers,108Blowfish,107CAST(CarlisleAdamsandStaffordTavares),105–106DES(DataEncryptionStandard),103–105howPGPworks,180IDEA(InternationalDataEncryptionAlgorithm),107–108overviewof,103inPGPsuite,122–123RC(RivestCipher),106–107sessionkeysin,119inSSL/TLS,533summary,108tokensand,296Twofish,107

SYNfloodattacks,475,477SYNpackets,inTCPthree-wayhandshake,228–229systemhardening

inalternativeenvironments,454–457applications(programs).Seeapplications,hardeningbaselinesand,409grouppolicyand,450–452host-based.Seehosthardeningidentifyingcriticalsystemsforbusinesscontinuityplanning,586methods,457–459network-based.Seenetworkhardeningoperatingsystemsand,409–410overviewof,408preparingforincidentresponse,656preventativestepsadministratorscantake,13reviewandQ&A,460–463securitytemplatesand,452–453vulnerabilities,627

systemproblemreport(SPR),643systematicrisks,611SystemsNetworkArchitecture(SNA),224

Ttabletcomputer,theftof,201tabletopexercises,preparingfordisasterrecovery,590TACAS+(TerminalAccessControllerAccessControlSystem+)

remoteaccessmethods,314–317remoteaccessvulnerabilities,329–330

tailgating(piggybacking),poorsecuritypractices,80tangibleimpacts,impactdeterminationandquantification,617tape,typesofmagneticmedia,278–279targets,specificandopportunistic,12Tavares,Stafford,105–106

TAXII(TrustedAutomatedeXchangeofIndicatorInformation),669–670TCO(totalcostofownership),626TCP/IPhijacking

overviewof,482sequencenumbersand,482

TCP/IP(TransmissionControlProtocol/InternetProtocol)importanceof,227overviewof,224traceswithWireshark,403

TCP(TransmissionControlProtocol)ISAKMPimplementationontransportlayer,175packetflags,229portscanners,444resetmessage,387three-wayhandshake,228–229vs.UDP,227–229

TCPwrappershost-basedfirewallsinLinuxOSs,435–436overviewof,459protectingUNIXOSs,419

teams,incidentresponse,651–652,656–658technologyrisks,613–614telecommunications

hacksonphonesystem,266mobilephones.Seemobiledevices

telephony,266Telnet

bannergrabbing,404managingrouters,259managingswitches,258remoteaccessvia,321

softwareupdatesand,442TEMPESTprogram,DoD(DepartmentofDefense),66–67,209templates,securitytemplates,452–453TemporalKeyIntegrityProtocol(TKIP),354–355TerminalAccessControllerAccessControlSystem+(TACAS+)

remoteaccessmethods,314–317remoteaccessvulnerabilities,329–330

terrorists,typesofthreats,10–11tests

changemanagement,635disasterrecovery,589–590softwaredevelopment,567–568

theftdevicetheft,203–204DLP(datalossprevention),304oflaptopsandtablets,201mitigationstrategies,615

third-partytrustmodel,130threats

actors,610advancedpersistentthreats.SeeAPTs(advancedpersistentthreats)alerts,57–58assessinginriskmanagementmodel,616–617certificate-based,160–161CompTIASecurity+ExamObjectives,745–749criminalorganizations,10current,4–7defined,610insiders,9–10intruders,9modeling,560–561

nation-states,terrorists,andinformationwarfare,10–11probability/likelihood,628sourcesortypesof,7vectors,610,627–628virusesandworms,8

three-wayhandshake,TCP,228–229Time-basedOne-TimePassword(TOTP),292timebomb,471timestampauthority(TSA),nonrepudiationservices,136TKIP(TemporalKeyIntegrityProtocol),354–355TLSCipherSuiteRegistry,174TLSHandshakeProtocol,173–174TLSRecordProtocol,173TLS(TransportLayerSecurity)

DHprotocolusedby,110inEAP-TLS,357handshake,533howSSL/TLSworks,532–536HTTPSusing,182interactingwithPKIandcertificates,173–174overviewof,531–532SSL/TLSfunctionsforLDAPservices,539–540STARTTLSmethod,505usinginplaceofSSL,533vulnerabilities,541WTLSbasedon,340

TMS(TransportManagementSystem),640TokenRing,224tokens

foraccess.Seeaccesstokensasauthenticationfactor,296–297

inchallenge/responseprocess,310tools

computerforensics,682NIDSs(network-basedIDSs),387–388riskmanagement,625–626steganography,115usedinattacks,496–497

tools,IDSsactivevs.passive,402–403bannergrabbers,403–404portscanners,400–402protocolanalyzers,398–399SPAN(SwitchedPortAnalyzer),400

topsecretinformation,classificationof,46topologies,network,222–223totalcostofownership(TCO),626TotalTestersoftwareforexampractice,756–757TOTP(Time-basedOne-TimePassword,292TPM(TrustedPlatformModule)

creatingandstoringencryptionkeys,194hardwareencryptiondevices,438inkeymanagement,98

trafficcollectorinHIDSs,389inIDSs,378inNIDSs,383

trainingmetricsandcompliance,58programsfor,85role-based,55–56securityawareness,54–55

securitypoliciesandprocedures,55transitiveaccess,attacksviolatingtrustrelationshipbetweenmachines,484

transitivetrusts,mobileapplicationsecurity,372transportencryption,120TransportLayerSecurity.SeeTLS(TransportLayerSecurity)TransportManagementSystem(TMS),640transportmode,IPsec,182–183transpositioncipher,92–94trapdoors

inasymmetricencryption,109overviewof,472–473

trapping,antispamproducts,431trends(security-related)

alertsand,57–58overviewof,11–12

TrillianIMclient,523TripleDES(3DES).See3DES(TripleDES)Tripwire

hashvaluesusedindetectingintrusion,411passivetools,402

Trojanhorses,470trust

certificateverificationand,143–146hierarchicaltrustmodel,155–157hybridtrustmodel,159–160mobileapplicationsecurityand,372peer-to-peertrustmodel,158–159

trustanchors,155–156trustdomains,154–155TRUSTe,onPII,718

TrustedAutomatedeXchangeofIndicatorInformation(TAXII),669–670TrustedOSs,434–435TrustedPlatformModule.SeeTPM(TrustedPlatformModule)trustedrelationships,spoofingattacks,481TSA(timestampauthority),nonrepudiationservices,136tunneling

authenticationprotocols,317–318IPsectunnelmode,182–183L2TP(Layer2TunnelingProtocol),320–321overviewof,246–247PPP(Point-to-PointProtocol),317–318

tunnelingproxies,270twistedpaircable,UTP/STP,274–275Twitter,sharingtoomuchinformation,57Twofish,107typosquatting,client-sideattacks,494

UUDIs(unconstraineddataitems),inClark-Wilsonsecuritymodel,37UDP(UserDatagaramProtocol)

ISAKMPimplementationontransportlayer,175portscanners,444vs.TCP,227–229

UEFI(UnifiedExtensibleFirmwareInterface)hardeningWindowsServer2012,414physicalsecurityand,200–201

UMTS(UniversalMobileTelecommunicationsSystem),342unconstraineddataitems(UDIs),inClark-Wilsonsecuritymodel,37unerasetools,forcomputerforensics,682unguidedmedia

IR(infrared),276overviewof,276RF(radiofrequency),277

Unicode,569–570UnifiedExtensibleFirmwareInterface(UEFI)

hardeningWindowsServer2012,414physicalsecurityand,200–201

unifiedthreatmanagement(UTM),272–273UniformResourceLocator(URL),530uninterruptiblepowersupply.SeeUPS(uninterruptiblepowersupply)UniversalMobileTelecommunicationsSystem(UMTS),342UniversalSerialBus(USB)

devices.SeeUSBdevicesencryption,438tokens,296

UNIXOSsbaselines,417DAC(discretionaryaccesscontrol),302filepermissions,302hardeningUNIX,418–419MacOSXbasedon,421–422

unshieldedtwistedpair(UTP)cable,274–275unsolicitedcommerciale-mail.Seealsospam,514unstructuredthreats,9unsystematicrisks,611unusedfeatures,disablingformobiledevicesecurity,366updates

antivirusproducts,428applications,426malwaredefenses,473manual,458

software,426,442upgrades,comparedwithpatches,445UPS(uninterruptiblepowersupply)

inphysicalsecurity,64protectingagainstshort-termpowerfailure,208utilityandpowerinterruptionsand,598

URLfilters,blockingprohibitedwebsites,273URLhijacking,client-sideattacks,494URL(UniformResourceLocator),530USAPatriotAct,702USBdevices

bootdiskattacksusingflashdrives,192–194physicalsecurityand,201possiblesourcesofforensicinformationon,687typesofelectronicmedia,280–281

USBtokens,296USB(UniversalSerialBus),encryption,438usecases,intestingphaseofsoftwaredevelopment,567useracceptance,BYODconcerns,369UserAccountControl,hardeningWindowsOSs,413UserDatagramProtocol.SeeUDP(UserDatagaramProtocol)userIDs

identificationin,305–306sessionmanagementand,22SSO(singlesign-on),294–295vs.usernames,289

userinterface,inIDSs,379userrights.Seerightsusernames,289users/useraccounts

auditingaccess,498

auditingaccounts,290authentication,289–291controllingwithAppLocker,434identificationin,305–306privacy,732–733privilegemanagement,288–289reviewingrightsandpermissionsasriskmitigationstrategy,615securitytemplates,453specialaccounts,290userhabits,56–57

UTF-8,570UTM(unifiedthreatmanagement),272–273UTP(unshieldedtwistedpair)cable,274–275

Vvacations,humanresourcespolicies,49–50validateservice,XKMS,177validation

input/outputvalidation,568–571server-sidevs.client-sidevalidation,579–580

vanEckphenomenon,66,209vehicles,hardeningin-vehiclecomputingsystems,457ventilation.SeeHVAC(heating,ventilation,andairconditioning)Verizon,DataBreachInvestigationsReport,12versioncontrol,635VideoPrivacyProtectionAct(VPPA),722–723videosurveillance,physicalaccesscontrols,62Vigenèrecipher,95–96virtualLANs.SeeVLANs(virtualLANs)virtualmachines(VMs),254–255

virtualprivatenetworks.SeeVPNs(virtualprivatenetworks)virtualization

benefitsof,254–255risksassociatedwith,629

virusesalertsregardingnewthreatsandsecuritytrends,57armoredviruses,468avoidinginfection,468BYODconcerns,367e-mailmalware,510–513historicalsecurityincidents,2–3overviewof,466–467speedofproliferation,3typesof,8,467–468

vishingattacksoverviewof,485socialengineeringattacks,76

VLANs(virtualLANs)managing,443networkarchitectures,222overviewof,244–245securityimplicationsof,245trunking,245

VMs(virtualmachines),254–255VoIP(VoiceoverIP)

4Gmobilenetworks,343PBXand,266securityperimeterand,60–61vishingattacks,76

VPNs(virtualprivatenetworks)GroupPolicyprovidingVPNcompatibility,451

overviewof,323–324PPTPand,318–319tunneling,246–247VPNconcentrator,266–267

VPPA(VideoPrivacyProtectionAct),722–723vulnerabilities

application,474application-levelattacks,572assessment,43bugtracking,571–572CompTIASecurity+ExamObjectives,745–749defined,610eliminating,465minimizingavenuesofattack,465–466nullsessions(WindowsOSs),478patchesand,4reducingincode,563remoteaccess,329–330researching,656system,627turningoffunneededservices,411,417WAP,341webapplication,552–553webcomponent,541zero-day,577

vulnerabilityscanners,413,448–450

WW3C(WorldWideWebConsortium),176–178walls,inphysicalsecurity,195

WANs(wideareanetworks),221WAPgap,341WAP(WirelessApplicationProtocol)

demandfordataservicesand,339mobiledataapplications,337vulnerabilityinWAPaggregation,341WTLSand,340

WAPs(wirelessaccesspoints),60,264–265war-chalkingattacks,351war-dialingattacks

IEEE802.11attacksand,351overviewof,477

war-drivingattacksdealingwithunauthorizedaccess,283IEEE802.11attacksand,351overviewof,477–478

war-flyingattacks,351war-walkingattacks,351warmsites,alternativebackupsites,597WASC(WebApplicationSecurityConsortium),553WassenaarArrangement,705–706water-basedfiresuppressionsystems,205waterfallmodel,softwaredevelopment,559wateringholeattacks,client-sideattacks,495weakkeys

attacksonencryption,486–487inDES,104keystretching,119

Web2.0security,554webapplicationfirewalls,264WebApplicationSecurityConsortium(WASC),553

webbrowsers.Seebrowserswebcomponents

ActiveX,545–546applicationvulnerabilitiesand,552–553browserplug-ins,550–551buffer-overflowattacks,542CGI(CommonGatewayInterface),546client-sideattacks,554code-basedvulnerabilities,541–542concerns,531cookies,547–550DAPandLDAPfordirectoryservices,539–540FTPandSFTPforfiletransfer,540–541HTTPandHTTPSfordatatransfer,537–539Java,542–543JavaScript,544–545maliciousadd-ons,551overviewof,530–531reviewandQ&A,555–557securingbrowsers,546server-sidescripts,547sessionhijackingattacks,553signedapplets,551–552SSLandTLSprotocolsforencryption,531–536vulnerabilities,541Web2.0security,554

webprivacycookiesand,732overviewof,731–732

webprotocolsDAPandLDAPfordirectoryservices,539–540

FTPandSFTPforfiletransfer,540–541HTTPandHTTPSfordatatransfer,537–539SSLandTLSforencryption,531–536

webproxies,271websecuritygateways,271websites

blockingprohibitedsites,273phishingattacksvia,75

Websitedefacementincident,3weight-basedsystem,antivirusproducts,428WEP(WiredEquivalentPrivacy)

confidentiality,350dynamickeygeneration,357–358IEEE802.11attacksand,353–354toolsforcrackingWEPkeys,352

WEPCrack,352whalingattacks,75white-boxtesting,insoftwaredevelopment,567white-hathacking,497whitelistingapplications,434Wi-FiProtectedAccess.SeeWPA(Wi-FiProtectedAccess)Wi-FiProtectedSetup(WPS),355wideareanetworks(WANs),221WiMAXband,337WindowsDefender

hosthardening,431–432OShardening,413

WindowsFirewall,413,436WindowsMail,519–520WindowsOSs

DAC(discretionaryaccesscontrol),302

disablingautoplay,202findingMACaddresses,233–234GroupPolicy,32–33,450–452groups,291hostforensics,687–688hosthardening,413–417NAP(NetworkAccessProtection),267–268patches,426privilegesoruserrights,298–300securitycontrolsandpermissions,297–298securitytemplates,453

WindowsServer2008,hardening,413–414WindowsServer2012,hardening,414–415WindowsServerUpdateServices(WSUS),447–448WindowsUpdateutility,424–426WindowsVista/7

AutomaticUpdates,424–426filesystemencryption,123hardening,413

wirespeed,cable,395WiredEquivalentPrivacy.SeeWEP(WiredEquivalentPrivacy)wirelessaccesspoints(WAPs),60,264–265WirelessApplicationProtocol.SeeWAP(WirelessApplicationProtocol)wirelessLANs(WLANs),337wirelessnetworks

captiveportalshandlingauthenticationon,362introductionto,337–338mesharchitecture,223securityissues,65–66wirelessprotocols,312

wirelesssecurity

3Gmobilenetworks,3424Gmobilenetworks,343attackersconnectingtonetworkviawirelessbridges,192Bluetoothand,343–345Bluetoothattacks,345–346IEEE802.11and,347–350IEEE802.11attacks,350–354introductiontowirelessnetworks,337–338methods,354–355,357–359mobilephones,338–340NFC(nearfieldcommunication),347reviewandQ&A,373–375settingupWPA2,355–357WAP(WirelessApplicationProtocol),340–341wirelessdevicesand,264–265

wirelesssystems,configuringantennaplacement,360–361antennatypes,359–360captiveportals,362overviewof,359powerlevels,361securingpublicWi-Fi,362sitesurveys,361–362

WirelessTransportLayerSecurity(WTLS),184,340–341Wireshark

opensourceprotocolanalyzer,399sniffersusedinattacksonIEEE8082.11,352TCP/IPtraces,403

WLANs(wirelessLANs),337WorcesterAirportincident,2workstations

antivirussoftwarefor,429–430forensicworkstation,681infrastructuresecurity,253securing,412

WorldWideWebConsortium(W3C),176–178WorldWideWeb(WWW),242worms

e-mailmalware,510,512examplesofandprotectionagainst,469historicalsecurityincidents,2–4Qakbotworm,662typesofthreats,8

WPA(Wi-FiProtectedAccess)overviewof,354–355settingupWPA2,355–357WPA2(Wi-FiProtectedAccess2),355

WPS(Wi-FiProtectedSetup),355wrappers.SeeTCPwrapperswriteblockers,inforensicinvestigation,683WSUS(WindowsServerUpdateServices),447–448WTLS(WirelessTransportLayerSecurity),184,340–341WWW(WorldWideWeb),242

XX.25Aprotocol,224X.500standard

coveringcertificatesusedforauthentication,172fordirectoryservices,539distinguishednames,144

X.509standard

fordigitalcertificates,134overviewof,172PKC(PublicKeyCertificate),168useswithTLS,357

XACML(eXtensibleAccessControlMarkupLanguage),304XKMS(XMLKeyManagementSpecification),176–178XMASattack,486XMLinjectionattacks,574XMLKeyManagementSpecification(XKMS),176–178XOR(eXclusiveOR),useincryptography,97XSRF(cross-siterequestforgery)

inputvalidationand,569overviewof,576–577

XSS(cross-sitescripting)attacksinputvalidationand,569overviewof,572–573

YYagiantennas,360

ZZenmapportscanner,402zero-dayvulnerabilities,577ZigBeewirelessbands,337Zimmermann,Philip,122zombies,inDDoSattacks,476ZoneAlarm,fromCheckPointSoftwareTechnologies,436zones,innetworkcontrolsystems,246zones,security.Seesecurityzones

  • Title Page
  • Copyright
  • About the Authors
  • Acknowledgments
  • Contents at a Glance
  • Contents
  • Foreword
  • Preface
  • Introduction
  • Instructor Web Site
  • Chapter 1 Introduction and Security Trends
    • The Computer Security Problem
      • Definition of Computer Security
      • Historical Security Incidents
      • The Current Threat Environment
      • Threats to Security
      • Security Trends
    • Targets and Attacks
      • Specific Target
      • Opportunistic Target
      • Minimizing Possible Avenues of Attack
    • Approaches to Computer Security
    • Ethics
    • Additional References
    • Chapter 1 Review
  • Chapter 2 General Security Concepts
    • Basic Security Terminology
      • Security Basics
      • Security Tenets
      • Security Approaches
      • Security Principles
      • Access Control
      • Authentication Mechanisms
      • Authentication and Access Control Policies
    • Security Models
      • Confidentiality Models
      • Integrity Models
    • Chapter 2 Review
  • Chapter 3 Operational and Organizational Security
    • Policies, Procedures, Standards, and Guidelines
      • Security Policies
      • Change Management Policy
      • Data Policies
      • Human Resources Policies
      • Due Care and Due Diligence
      • Due Process
      • Incident Response Policies and Procedures
    • Security Awareness and Training
      • Security Policy Training and Procedures
      • Role-Based Training
      • Compliance with Laws, Best Practices, and Standards
      • User Habits
      • New Threats and Security Trends/Alerts
      • Training Metrics and Compliance
    • Interoperability Agreements
      • Service Level Agreements
      • Business Partnership Agreement
      • Memorandum of Understanding
      • Interconnection Security Agreement
    • The Security Perimeter
    • Physical Security
      • Physical Access Controls
      • Physical Barriers
    • Environmental Issues
      • Fire Suppression
    • Wireless
    • Electromagnetic Eavesdropping
      • Modern Eavesdropping
    • Chapter 3 Review
  • Chapter 4 The Role of People in Security
    • People—A Security Problem
      • Social Engineering
      • Poor Security Practices
    • People as a Security Tool
      • Security Awareness
      • Security Policy Training and Procedures
    • Chapter 4 Review
  • Chapter 5 Cryptography
    • Cryptography in Practice
      • Fundamental Methods
      • Comparative Strengths and Performance of Algorithms
    • Historical Perspectives
      • Substitution Ciphers
      • One-Time Pads
    • Algorithms
      • Key Management
      • Random Numbers
    • Hashing Functions
      • SHA
      • RIPEMD
      • Message Digest
      • Hashing Summary
    • Symmetric Encryption
      • DES
      • 3DES
      • AES
      • CAST
      • RC
      • Blowfish
      • Twofish
      • IDEA
      • Block vs. Stream
      • Symmetric Encryption Summary
    • Asymmetric Encryption
      • Diffie-Hellman
      • RSA
      • ElGamal
      • ECC
      • Asymmetric Encryption Summary
      • Symmetric vs. Asymmetric
    • Quantum Cryptography
    • Steganography
    • Cryptography Algorithm Use
      • Confidentiality
      • Integrity
      • Authentication
      • Nonrepudiation
      • Cipher Suites
      • Key Exchange
      • Key Escrow
      • Session Keys
      • Ephemeral Keys
      • Key Stretching
      • Secrecy Principles
      • Transport Encryption
      • Digital Signatures
      • Digital Rights Management
      • Cryptographic Applications
      • Use of Proven Technologies
    • Chapter 5 Review
  • Chapter 6 Public Key Infrastructure
    • The Basics of Public Key Infrastructures
    • Certificate Authorities
    • Registration Authorities
      • Local Registration Authorities
    • Digital Certificates
      • Certificate Extensions
      • Certificate Attributes
    • Certificate Lifecycles
      • Registration and Generation
      • CSR
      • Renewal
      • Suspension
      • Revocation
      • Key Destruction
    • Certificate Repositories
    • Trust and Certificate Verification
    • Centralized and Decentralized Infrastructures
      • Hardware Security Modules
      • Private Key Protection
      • Key Recovery
      • Key Escrow
    • Public Certificate Authorities
    • In-House Certificate Authorities
      • Choosing Between a Public CA and an In-House CA
      • Outsourced Certificate Authorities
      • Tying Different PKIs Together
      • Trust Models
    • Certificate-Based Threats
      • Stolen Certificates
    • Chapter 6 Review
  • Chapter 7 PKI Standards and Protocols
    • PKIX and PKCS
      • PKIX Standards
      • PKCS
      • Why You Need to Know the PKIX and PKCS Standards
    • X.509
    • SSL/TLS
    • Cipher Suites
    • ISAKMP
    • CMP
    • XKMS
    • S/MIME
      • IETF S/MIME History
      • IETF S/MIME v3 Specifications
    • PGP
      • How PGP Works
    • HTTPS
    • IPsec
    • CEP
    • Other Standards
      • FIPS
      • Common Criteria
      • WTLS
      • ISO/IEC 27002 (Formerly ISO 17799)
      • SAML
    • Chapter 7 Review
  • Chapter 8 Physical Security
    • The Security Problem
    • Physical Security Safeguards
      • Walls and Guards
      • Physical Access Controls and Monitoring
      • Convergence
      • Policies and Procedures
      • Environmental Controls
    • Fire Suppression
      • Water-Based Fire Suppression Systems
      • Halon-Based Fire Suppression Systems
      • Clean-Agent Fire Suppression Systems
      • Handheld Fire Extinguishers
      • Fire Detection Devices
    • Power Protection
      • UPS
      • Backup Power and Cable Shielding
      • Electromagnetic Interference
    • Electronic Access Control Systems
      • Access Tokens
    • Chapter 8 Review
  • Chapter 9 Network Fundamentals
    • Network Architectures
    • Network Topology
    • Network Protocols
      • Protocols
      • Packets
    • Internet Protocol
      • IP Packets
      • TCP vs. UDP
      • ICMP
    • IPv4 vs. IPv6
    • Packet Delivery
      • Ethernet
      • Local Packet Delivery
      • Remote Packet Delivery
      • IP Addresses and Subnetting
      • Network Address Translation
    • Security Zones
      • DMZ
      • Internet
      • Intranet
      • Extranet
      • Flat Networks
      • Enclaves
      • VLANs
      • Zones and Conduits
    • Tunneling
    • Storage Area Networks
      • iSCSI
      • Fibre Channel
      • FCoE
    • Chapter 9 Review
  • Chapter 10 Infrastructure Security
    • Devices
      • Workstations
      • Servers
      • Virtualization
      • Mobile Devices
      • Device Security, Common Concerns
      • Network Attached Storage
      • Removable Storage
    • Networking
      • Network Interface Cards
      • Hubs
      • Bridges
      • Switches
      • Routers
      • Firewalls
      • How Do Firewalls Work?
      • Next-Generation Firewalls
      • Web Application Firewalls vs. Network Firewalls
      • Concentrators
      • Wireless Devices
      • Modems
      • Telephony
      • VPN Concentrator
    • Security Devices
      • Intrusion Detection Systems
      • Network Access Control
      • Network Monitoring/Diagnostic
      • Load Balancers
      • Proxies
      • Web Security Gateways
      • Internet Content Filters
      • Data Loss Prevention
      • Unified Threat Management
    • Media
      • Coaxial Cable
      • UTP/STP
      • Fiber
      • Unguided Media
    • Removable Media
      • Magnetic Media
      • Optical Media
      • Electronic Media
    • Security Concerns for Transmission Media
    • Physical Security Concerns
    • Cloud Computing
      • Private
      • Public
      • Hybrid
      • Community
      • Software as a Service
      • Platform as a Service
      • Infrastructure as a Service
    • Chapter 10 Review
  • Chapter 11 Authentication and Remote Access
    • User, Group, and Role Management
      • User
      • Group
      • Role
    • Password Policies
      • Domain Password Policy
    • Single Sign-On
      • Time of Day Restrictions
      • Tokens
      • Account and Password Expiration
    • Security Controls and Permissions
      • Access Control Lists
      • Mandatory Access Control (MAC)
      • Discretionary Access Control (DAC)
      • Role-Based Access Control (RBAC)
      • Rule-Based Access Control
      • Attribute Based Access Control (ABAC)
      • Account Expiration
    • Preventing Data Loss or Theft
    • The Remote Access Process
      • Identification
      • Authentication
      • Authorization
      • Access Control
    • Remote Access Methods
      • IEEE 802.1X
      • RADIUS
      • TACACS+
      • Authentication Protocols
      • FTP/FTPS/SFTP
      • VPNs
      • IPsec
      • Vulnerabilities of Remote Access Methods
    • Connection Summary
    • Chapter 11 Review
  • Chapter 12 Wireless Security and Mobile Devices
    • Introduction to Wireless Networking
    • Mobile Phones
      • Wireless Application Protocol
      • 3G Mobile Networks
      • 4G Mobile Networks
    • Bluetooth
      • Bluetooth Attacks
    • Near Field Communication
    • IEEE 802.11 Series
      • 802.11: Individual Standards
      • Attacking 802.11
      • Current Security Methods
    • Wireless Systems Configuration
      • Antenna Types
      • Antenna Placement
      • Power Level Controls
      • Site Surveys
      • Captive Portals
      • Securing Public Wi-Fi
    • Mobile Devices
      • Mobile Device Security
      • BYOD Concerns
      • Location Services
      • Mobile Application Security
    • Chapter 12 Review
  • Chapter 13 Intrusion Detection Systems and Network Security
    • History of Intrusion Detection Systems
    • IDS Overview
      • IDS Models
      • Signatures
      • False Positives and False Negatives
    • Network-Based IDSs
      • Advantages of a NIDS
      • Disadvantages of a NIDS
      • Active vs. Passive NIDSs
      • NIDS Tools
    • Host-Based IDSs
      • Advantages of HIDSs
      • Disadvantages of HIDSs
      • Active vs. Passive HIDSs
      • Resurgence and Advancement of HIDSs
    • Intrusion Prevention Systems
    • Honeypots and Honeynets
    • Tools
      • Protocol Analyzer
      • Switched Port Analyzer
      • Port Scanner
      • Passive vs. Active Tools
      • Banner Grabbing
    • Chapter 13 Review
  • Chapter 14 System Hardening and Baselines
    • Overview of Baselines
    • Operating System and Network Operating System Hardening
      • OS Security
    • Host Security
      • Machine Hardening
      • Operating System Security and Settings
      • OS Hardening
      • Hardening Microsoft Operating Systems
      • Hardening UNIX- or Linux-Based Operating Systems
      • Updates (a.k.a. Hotfixes, Service Packs, and Patches)
      • Antimalware
      • White Listing vs. Black Listing Applications
      • Trusted OS
      • Host-based Firewalls
      • Hardware Security
      • Host Software Baselining
    • Host-Based Security Controls
      • Hardware-Based Encryption Devices
      • Data Encryption
      • Data Security
      • Handling Big Data
      • Cloud Storage
      • Storage Area Network
      • Permissions/ACL
    • Network Hardening
      • Software Updates
      • Device Configuration
      • Securing Management Interfaces
      • VLAN Management
      • IPv4 vs. IPv6
    • Application Hardening
      • Application Configuration Baseline
      • Application Patches
      • Patch Management
      • Host Software Baselining
    • Group Policies
    • Security Templates
    • Alternative Environments
      • SCADA
      • Embedded Systems
      • Phones and Mobile Devices
      • Mainframe
      • Game Consoles
      • In-Vehicle Computing Systems
      • Alternative Environment Methods
      • Network Segmentation
      • Security Layers
      • Application Firewalls
      • Manual Updates
      • Firmware Version Control
      • Wrappers
      • Control Redundancy and Diversity
    • Chapter 14 Review
  • Chapter 15 Types of Attacks and Malicious Software
    • Avenues of Attack
      • Minimizing Possible Avenues of Attack
    • Malicious Code
      • Viruses
      • Worms
      • Polymorphic Malware
      • Trojan Horses
      • Rootkits
      • Logic Bombs
      • Spyware
      • Adware
      • Botnets
      • Backdoors and Trapdoors
      • Ransomware
      • Malware Defenses
    • Attacking Computer Systems and Networks
      • Denial-of-Service Attacks
      • Social Engineering
      • Null Sessions
      • Sniffing
      • Spoofing
      • TCP/IP Hijacking
      • Man-in-the-Middle Attacks
      • Replay Attacks
      • Transitive Access
      • Spam
      • Spim
      • Phishing
      • Spear Phishing
      • Vishing
      • Pharming
      • Scanning Attacks
      • Attacks on Encryption
      • Address System Attacks
      • Cache Poisoning
      • Password Guessing
      • Pass-the-Hash Attacks
      • Software Exploitation
      • Client-Side Attacks
    • Advanced Persistent Threat
      • Remote Access Trojans
    • Tools
      • Metasploit
      • BackTrack/Kali
      • Social-Engineering Toolkit
      • Cobalt Strike
      • Core Impact
      • Burp Suite
    • Auditing
      • Perform Routine Audits
    • Chapter 15 Review
  • Chapter 16 E-Mail and Instant Messaging
    • How E-Mail Works
      • E-Mail Structure
      • MIME
    • Security of E-Mail
      • Malicious Code
      • Hoax E-Mails
      • Unsolicited Commercial E-Mail (Spam)
      • Sender ID Framework
      • DomainKeys Identified Mail
    • Mail Encryption
      • S/MIME
      • PGP
    • Instant Messaging
      • Modern Instant Messaging Systems
    • Chapter 16 Review
  • Chapter 17 Web Components
    • Current Web Components and Concerns
    • Web Protocols
      • Encryption (SSL and TLS)
      • The Web (HTTP and HTTPS)
      • HTTPS Everywhere
      • HTTP Strict Transport Security
      • Directory Services (DAP and LDAP)
      • File Transfer (FTP and SFTP)
      • Vulnerabilities
    • Code-Based Vulnerabilities
      • Buffer Overflows
      • Java
      • JavaScript
      • ActiveX
      • Securing the Browser
      • CGI
      • Server-Side Scripts
      • Cookies
      • Browser Plug-ins
      • Malicious Add-ons
      • Signed Applets
    • Application-Based Weaknesses
      • Session Hijacking
      • Client-Side Attacks
      • Web 2.0 and Security
    • Chapter 17 Review
  • Chapter 18 Secure Software Development
    • The Software Engineering Process
      • Process Models
      • Secure Development Lifecycle
    • Secure Coding Concepts
      • Error and Exception Handling
      • Input and Output Validation
      • Fuzzing
      • Bug Tracking
    • Application Attacks
      • Cross-Site Scripting
      • Injections
      • Directory Traversal/Command Injection
      • Buffer Overflow
      • Integer Overflow
      • Cross-Site Request Forgery
      • Zero-Day
      • Attachments
      • Locally Shared Objects
      • Client-Side Attacks
      • Arbitrary/Remote Code Execution
      • Open Vulnerability and Assessment Language
    • Application Hardening
      • Application Configuration Baseline
      • Application Patch Management
      • NoSQL Databases vs. SQL Databases
      • Server-Side vs. Client-Side Validation
    • Chapter 18 Review
  • Chapter 19 Business Continuity and Disaster Recovery, and Organizational Policies
    • Business Continuity
      • Business Continuity Plans
      • Business Impact Analysis
      • Identification of Critical Systems and Components
      • Removing Single Points of Failure
      • Risk Assessment
      • Succession Planning
      • Continuity of Operations
    • Disaster Recovery
      • Disaster Recovery Plans/Process
      • Categories of Business Functions
      • IT Contingency Planning
      • Test, Exercise, and Rehearse
      • Recovery Time Objective and Recovery Point Objective
      • Backups
      • Alternative Sites
      • Utilities
      • Secure Recovery
      • Cloud Computing
      • High Availability and Fault Tolerance
      • Failure and Recovery Timing
    • Chapter 19 Review
  • Chapter 20 Risk Management
    • An Overview of Risk Management
      • Example of Risk Management at the International Banking Level
      • Risk Management Vocabulary
    • What Is Risk Management?
      • Risk Management Culture
    • Business Risks
      • Examples of Business Risks
      • Examples of Technology Risks
    • Risk Mitigation Strategies
      • Change Management
      • Incident Management
      • User Rights and Permissions Reviews
      • Data Loss or Theft
    • Risk Management Models
      • General Risk Management Model
      • Software Engineering Institute Model
      • NIST Risk Models
      • Model Application
    • Qualitatively Assessing Risk
    • Quantitatively Assessing Risk
      • Adding Objectivity to a Qualitative Assessment
      • Risk Calculation
    • Qualitative vs. Quantitative Risk Assessment
    • Tools
      • Cost-Effectiveness Modeling
    • Risk Management Best Practices
      • System Vulnerabilities
      • Threat Vectors
      • Probability/Threat Likelihood
      • Risk-Avoidance, Transference, Acceptance, Mitigation, Deterrence
      • Risks Associated with Cloud Computing and Virtualization
    • Chapter 20 Review
  • Chapter 21 Change Management
    • Why Change Management?
    • The Key Concept: Separation of Duties
    • Elements of Change Management
    • Implementing Change Management
      • Back-out Plan
    • The Purpose of a Change Control Board
      • Code Integrity
    • The Capability Maturity Model Integration
    • Chapter 21 Review
  • Chapter 22 Incident Response
    • Foundations of Incident Response
      • Incident Management
      • Anatomy of an Attack
      • Goals of Incident Response
    • Incident Response Process
      • Preparation
      • Security Measure Implementation
      • Incident Identification/Detection
      • Initial Response
      • Incident Isolation
      • Strategy Formulation
      • Investigation
      • Recovery/Reconstitution Procedures
      • Reporting
      • Follow-up/Lessons Learned
    • Standards and Best Practices
      • State of Compromise
      • NIST
      • Department of Justice
      • Indicators of Compromise
      • Cyber Kill Chain
      • Making Security Measurable
    • Chapter 22 Review
  • Chapter 23 Computer Forensics
    • Evidence
      • Types of Evidence
      • Standards for Evidence
      • Three Rules Regarding Evidence
    • Forensic Process
      • Acquiring Evidence
      • Identifying Evidence
      • Protecting Evidence
      • Transporting Evidence
      • Storing Evidence
      • Conducting the Investigation
    • Analysis
    • Chain of Custody
    • Message Digest and Hash
    • Host Forensics
      • File Systems
      • Windows Metadata
      • Linux Metadata
    • Device Forensics
    • Network Forensics
    • E-Discovery
      • Reference Model
      • Big Data
      • Cloud
    • Chapter 23 Review
  • Chapter 24 Legal Issues and Ethics
    • Cybercrime
      • Common Internet Crime Schemes
      • Sources of Laws
      • Computer Trespass
      • Significant U.S. Laws
      • Payment Card Industry Data Security Standard (PCI DSS)
      • Import/Export Encryption Restrictions
      • Non-U.S. Laws
      • Digital Signature Laws
      • Digital Rights Management
    • Ethics
    • Chapter 24 Review
  • Chapter 25 Privacy
    • Personally Identifiable Information (PII)
      • Sensitive PII
      • Notice, Choice, and Consent
    • U.S. Privacy Laws
      • Privacy Act of 1974
      • Freedom of Information Act (FOIA)
      • Family Education Records and Privacy Act (FERPA)
      • U.S. Computer Fraud and Abuse Act (CFAA)
      • U.S. Children’s Online Privacy Protection Act (COPPA)
      • Video Privacy Protection Act (VPPA)
      • Health Insurance Portability & Accountability Act (HIPAA)
      • Gramm-Leach-Bliley Act (GLBA)
      • California Senate Bill 1386 (SB 1386)
      • U.S. Banking Rules and Regulations
      • Payment Card Industry Data Security Standard (PCI DSS)
      • Fair Credit Reporting Act (FCRA)
      • Fair and Accurate Credit Transactions Act (FACTA)
    • Non-Federal Privacy Concerns in the United States
    • International Privacy Laws
      • OECD Fair Information Practices
      • European Laws
      • Canadian Laws
      • Asian Laws
    • Privacy-Enhancing Technologies
    • Privacy Policies
      • Privacy Impact Assessment
    • Web Privacy Issues
      • Cookies
    • Privacy in Practice
      • User Actions
      • Data Breaches
    • Chapter 25 Review
  • Appendix A CompTIA Security+ Exam Objectives: SY0-401
  • Appendix B About the Download
    • System Requirements
    • Downloading Total Tester Premium Practice Exam Software
    • Total Tester Premium Practice Exam Software
      • Installing and Running Total Tester
    • Technical Support
      • Total Seminars Technical Support
      • McGraw-Hill Education Content Support
  • Glossary
  • Index
Select one of the three topics defined in the essay quiz section on (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Kieth Sipes

Last Updated:

Views: 6159

Rating: 4.7 / 5 (67 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Kieth Sipes

Birthday: 2001-04-14

Address: Suite 492 62479 Champlin Loop, South Catrice, MS 57271

Phone: +9663362133320

Job: District Sales Analyst

Hobby: Digital arts, Dance, Ghost hunting, Worldbuilding, Kayaking, Table tennis, 3D printing

Introduction: My name is Kieth Sipes, I am a zany, rich, courageous, powerful, faithful, jolly, excited person who loves writing and wants to share my knowledge and understanding with you.